--- base_model: MoritzLaurer/mDeBERTa-v3-base-xnli-multilingual-nli-2mil7 tags: - generated_from_trainer metrics: - accuracy model-index: - name: mDeBERTa-v3-base-xnli-multilingual-nli-2mil7 results: [] datasets: - asadfgglie/nli-zh-tw-all language: - zh pipeline_tag: zero-shot-classification --- # mDeBERTa-v3-base-xnli-multilingual-zeroshot-v4.0-only-nli-downsample This model use same dataset with [asadfgglie/mDeBERTa-v3-base-xnli-multilingual-zeroshot-v1.0](https://huggingface.co/asadfgglie/mDeBERTa-v3-base-xnli-multilingual-zeroshot-v1.0), but training set was downsampled as 80% size of non-nli dataset [asadfgglie/BanBan_2024-10-17-facial_expressions-nli](https://huggingface.co/datasets/asadfgglie/BanBan_2024-10-17-facial_expressions-nli). This model is a fine-tuned version of [MoritzLaurer/mDeBERTa-v3-base-xnli-multilingual-nli-2mil7](https://huggingface.co/MoritzLaurer/mDeBERTa-v3-base-xnli-multilingual-nli-2mil7) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4486 - F1 Macro: 0.8264 - F1 Micro: 0.8274 - Accuracy Balanced: 0.8270 - Accuracy: 0.8274 - Precision Macro: 0.8260 - Recall Macro: 0.8270 - Precision Micro: 0.8274 - Recall Micro: 0.8274 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 128 - seed: 20241201 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.06 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 Macro | F1 Micro | Accuracy Balanced | Accuracy | Precision Macro | Recall Macro | Precision Micro | Recall Micro | |:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:|:-----------------:|:--------:|:---------------:|:------------:|:---------------:|:------------:| | 0.3242 | 1.69 | 200 | 0.4044 | 0.8308 | 0.8312 | 0.8322 | 0.8312 | 0.8306 | 0.8322 | 0.8312 | 0.8312 | ### Eval results |Datasets|asadfgglie/nli-zh-tw-all/test|asadfgglie/BanBan_2024-10-17-facial_expressions-nli/test|eval_dataset|test_dataset| | :---: | :---: | :---: | :---: | :---: | |eval_loss|0.445|1.142|0.429|0.449| |eval_f1_macro|0.827|0.505|0.83|0.826| |eval_f1_micro|0.828|0.55|0.831|0.827| |eval_accuracy_balanced|0.828|0.548|0.831|0.827| |eval_accuracy|0.828|0.55|0.831|0.827| |eval_precision_macro|0.827|0.575|0.83|0.826| |eval_recall_macro|0.828|0.548|0.831|0.827| |eval_precision_micro|0.828|0.55|0.831|0.827| |eval_recall_micro|0.828|0.55|0.831|0.827| |eval_runtime|275.581|4.734|54.573|209.065| |eval_samples_per_second|30.844|199.853|31.151|32.526| |eval_steps_per_second|0.243|1.69|0.257|0.258| |epoch|2.99|2.99|2.99|2.99| |Size of dataset|8500|946|1700|6800| ### Framework versions - Transformers 4.33.3 - Pytorch 2.5.1+cu121 - Datasets 2.14.7 - Tokenizers 0.13.3