--- base_model: MoritzLaurer/mDeBERTa-v3-base-xnli-multilingual-nli-2mil7 tags: - generated_from_trainer metrics: - accuracy model-index: - name: mDeBERTa-v3-base-xnli-multilingual-zeroshot-v5.0-nli-downsample-and-non-nli results: [] datasets: - asadfgglie/nli-zh-tw-all - asadfgglie/BanBan_2024-10-17-facial_expressions-nli language: - zh pipeline_tag: zero-shot-classification --- # mDeBERTa-v3-base-xnli-multilingual-zeroshot-v5.0-nli-downsample-and-non-nli This model is merge dataset stratege version of v3.0 and v4.0. This model is a fine-tuned version of [MoritzLaurer/mDeBERTa-v3-base-xnli-multilingual-nli-2mil7](https://huggingface.co/MoritzLaurer/mDeBERTa-v3-base-xnli-multilingual-nli-2mil7) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4531 - F1 Macro: 0.8330 - F1 Micro: 0.8337 - Accuracy Balanced: 0.8331 - Accuracy: 0.8337 - Precision Macro: 0.8330 - Recall Macro: 0.8331 - Precision Micro: 0.8337 - Recall Micro: 0.8337 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 128 - seed: 20241201 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.06 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 Macro | F1 Micro | Accuracy Balanced | Accuracy | Precision Macro | Recall Macro | Precision Micro | Recall Micro | |:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:|:-----------------:|:--------:|:---------------:|:------------:|:---------------:|:------------:| | 0.3748 | 0.85 | 200 | 0.4218 | 0.7971 | 0.7999 | 0.7970 | 0.7999 | 0.7973 | 0.7970 | 0.7999 | 0.7999 | | 0.2693 | 1.69 | 400 | 0.4523 | 0.8061 | 0.8078 | 0.8077 | 0.8078 | 0.8053 | 0.8077 | 0.8078 | 0.8078 | | 0.1905 | 2.54 | 600 | 0.4720 | 0.8226 | 0.8242 | 0.8241 | 0.8242 | 0.8217 | 0.8241 | 0.8242 | 0.8242 | ### Eval results |Datasets|asadfgglie/nli-zh-tw-all/test|asadfgglie/BanBan_2024-10-17-facial_expressions-nli/test|eval_dataset|test_dataset| | :---: | :---: | :---: | :---: | :---: | |eval_loss|0.48|0.269|0.484|0.453| |eval_f1_macro|0.821|0.909|0.816|0.833| |eval_f1_micro|0.822|0.909|0.818|0.834| |eval_accuracy_balanced|0.821|0.909|0.816|0.833| |eval_accuracy|0.822|0.909|0.818|0.834| |eval_precision_macro|0.821|0.909|0.816|0.833| |eval_recall_macro|0.821|0.909|0.816|0.833| |eval_precision_micro|0.822|0.909|0.818|0.834| |eval_recall_micro|0.822|0.909|0.818|0.834| |eval_runtime|239.87|4.066|58.954|236.797| |eval_samples_per_second|35.436|232.633|32.042|31.913| |eval_steps_per_second|0.279|1.967|0.254|0.253| |epoch|2.99|2.99|2.99|2.99| |Size of dataset|8500|946|1889|7557| ### Framework versions - Transformers 4.33.3 - Pytorch 2.5.1+cu121 - Datasets 2.14.7 - Tokenizers 0.13.3