asarvazyan commited on
Commit
15ae341
1 Parent(s): 629d94a

Add PPO LunarLander-V2 Model

Browse files
README.md CHANGED
@@ -16,7 +16,7 @@ model-index:
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
- value: 200.28 +/- 75.61
20
  name: mean_reward
21
  verified: false
22
  ---
 
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
+ value: 271.29 +/- 19.15
20
  name: mean_reward
21
  verified: false
22
  ---
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f7105540820>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f71055408b0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f7105540940>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f71055409d0>", "_build": "<function ActorCriticPolicy._build at 0x7f7105540a60>", "forward": "<function ActorCriticPolicy.forward at 0x7f7105540af0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f7105540b80>", "_predict": "<function ActorCriticPolicy._predict at 0x7f7105540c10>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f7105540ca0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f7105540d30>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f7105540dc0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f710553b9f0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673129259165451862, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAMb3bT60XOm8Z/gDu3pSZDmQtkq+ezYtOgAAgD8AAIA/c06APXuAgLqQym28NZgaNuAoETtCdIu1AACAPwAAgD+aw04+WwC9vOZMgju6Zem5FMklvjfUq7oAAIA/AACAP8Dv271IB5i66gUzu5HIMzX37Kq6U1NNOgAAgD8AAAAARpUmPg/SErz6ZTQ7TKoLuT5ZfL1i31q6AACAPwAAgD8zB6O9XH9Tuk360rqSXlC2hCAcO/3U8TkAAIA/AACAP3qYkD7fz0M/fN9APvocwb5y+V4+8ArnvQAAAAAAAAAAGnbmPa43kbpt7EK7TjH+uJaI+7oLCnY6AACAPwAAgD/mzdc9h78IPkUdaL2Vn4i+6K2WvJUAaD0AAAAAAAAAAKoXzD6ubeY7A9aIOLPcgba0eLa9jUS2twAAgD8AAIA/ABzXvBQakLqS+iK76uEbtrYSDLtxX481AACAPwAAgD9NEk299jxCuuuRdrt15aG2kIhTu3ujjzoAAIA/AACAPzPjdz76xyi9MlErOqtf0DkHYZG+oInTuQAAgD8AAIA/QGTlvT1aMLn7mdE6E3NONhoyBTwbV/m5AACAPwAAAAD2Zrw+AXFgvc5oj7sv+DM44UMfvkI8UrsAAIA/AACAP+YVdr7BUPC8mBxGuqssvrjLclY+YCx/OQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVdhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIpaSHodVJAECUhpRSlIwBbJRL34wBdJRHQLVpnAmReTp1fZQoaAZoCWgPQwgmj6flBzViQJSGlFKUaBVN6ANoFkdAtWnVkDp1R3V9lChoBmgJaA9DCPdXj/vW62JAlIaUUpRoFU3oA2gWR0C1agYcebNKdX2UKGgGaAloD0MIy03U0txHWECUhpRSlGgVTegDaBZHQLVrq7CBPKx1fZQoaAZoCWgPQwhq+BbWjW8iwJSGlFKUaBVL72gWR0C1a//4EfT1dX2UKGgGaAloD0MIV7CNeLKoakCUhpRSlGgVTTcBaBZHQLVwWeGfwql1fZQoaAZoCWgPQwgnaf6Y1mxfQJSGlFKUaBVN0gFoFkdAtXB1HSWqtHV9lChoBmgJaA9DCCqPboRFgF1AlIaUUpRoFU3oA2gWR0C1cKOyquKXdX2UKGgGaAloD0MIC0Pk9PVKYUCUhpRSlGgVTegDaBZHQLVwsuBMBZJ1fZQoaAZoCWgPQwhMpZ9wdmJhQJSGlFKUaBVN6ANoFkdAtXDh2wFC9nV9lChoBmgJaA9DCAFqatlaMV9AlIaUUpRoFU3oA2gWR0C1dnD5CWu6dX2UKGgGaAloD0MItwiM9Q3hXUCUhpRSlGgVTegDaBZHQLV2pwmE5AB1fZQoaAZoCWgPQwg9gbBTLLJlQJSGlFKUaBVN6ANoFkdAtXcoZwXIl3V9lChoBmgJaA9DCOsfRDLkql9AlIaUUpRoFU3oA2gWR0C1d9lVYISldX2UKGgGaAloD0MIVPzfERXVWkCUhpRSlGgVTegDaBZHQLV4MmmtQsR1fZQoaAZoCWgPQwhQjCyZYy5hQJSGlFKUaBVN6ANoFkdAtXiKbH6uXHV9lChoBmgJaA9DCGVtUzwuSgTAlIaUUpRoFUv8aBZHQLV4mTisGPh1fZQoaAZoCWgPQwhDjxg9t2JkQJSGlFKUaBVN6ANoFkdAtXnzFn7HhnV9lChoBmgJaA9DCMbBpWPO51xAlIaUUpRoFU3oA2gWR0C1fArqhUR4dX2UKGgGaAloD0MIQs77/zhcXUCUhpRSlGgVTegDaBZHQLV8LEs8PnV1fZQoaAZoCWgPQwhbsFQX8F5cQJSGlFKUaBVN6ANoFkdAtXyig5BC2XV9lChoBmgJaA9DCI/k8h/SYFTAlIaUUpRoFU2PAWgWR0C1fKcLncL0dX2UKGgGaAloD0MIjnVxG42wYkCUhpRSlGgVTegDaBZHQLV/BeZXuE51fZQoaAZoCWgPQwhkP4ulCLxwwJSGlFKUaBVLk2gWR0C1gWITsY2sdX2UKGgGaAloD0MIMnTsoBLEYkCUhpRSlGgVTegDaBZHQLWD6uWa+ex1fZQoaAZoCWgPQwiAETRmkhRgQJSGlFKUaBVN6ANoFkdAtYQHjHXEqHV9lChoBmgJaA9DCHPVPEfkg2BAlIaUUpRoFU3oA2gWR0C1hDyEHt4SdX2UKGgGaAloD0MI4ng+A2pCZECUhpRSlGgVTegDaBZHQLWEhmGucMF1fZQoaAZoCWgPQwi4dTdPdRBhQJSGlFKUaBVN6ANoFkdAtYo7PKMefnV9lChoBmgJaA9DCNQMqaJ4YV1AlIaUUpRoFU3oA2gWR0C1inw35vcadX2UKGgGaAloD0MIajANw0etYUCUhpRSlGgVTegDaBZHQLWL/1Tzd1x1fZQoaAZoCWgPQwgZxXJLq6RiQJSGlFKUaBVN6ANoFkdAtYxyhg3Lm3V9lChoBmgJaA9DCLcKYqBrNmJAlIaUUpRoFU3oA2gWR0C1jOJwwTM8dX2UKGgGaAloD0MIQq8/ic9oX0CUhpRSlGgVTegDaBZHQLWM9RpDeCV1fZQoaAZoCWgPQwg0SSwpdy5dQJSGlFKUaBVNzwJoFkdAtYz3GxUvPHV9lChoBmgJaA9DCMb4MHvZulfAlIaUUpRoFU1wAWgWR0C1jj1SGahIdX2UKGgGaAloD0MIECVa8njJX0CUhpRSlGgVTegDaBZHQLWOVdxhlUZ1fZQoaAZoCWgPQwiOyeL+I0ZQwJSGlFKUaBVLw2gWR0C1jw/PomojdX2UKGgGaAloD0MIjpJX55gKYUCUhpRSlGgVTegDaBZHQLWQOu9vjwR1fZQoaAZoCWgPQwj1RxgGLOZhQJSGlFKUaBVN6ANoFkdAtZBZRKpT/HV9lChoBmgJaA9DCOXRjbCogVlAlIaUUpRoFU3oA2gWR0C1kMHqRlpXdX2UKGgGaAloD0MI7IUCtoPGYUCUhpRSlGgVTVICaBZHQLWRiDIRywR1fZQoaAZoCWgPQwhe2nBYGmFjQJSGlFKUaBVN6ANoFkdAtZV0FY+0PnV9lChoBmgJaA9DCBsv3SQGz15AlIaUUpRoFU3oA2gWR0C1l/JOzposdX2UKGgGaAloD0MIgjtQpzz6YUCUhpRSlGgVTegDaBZHQLWYj3PAwf11fZQoaAZoCWgPQwhzKhkAqqgqwJSGlFKUaBVLvmgWR0C1mNMnAqNIdX2UKGgGaAloD0MIrIxGPi+AYECUhpRSlGgVTegDaBZHQLWeezBAOax1fZQoaAZoCWgPQwgm/5O/+9ZiQJSGlFKUaBVN6ANoFkdAtZ6+//NqxnV9lChoBmgJaA9DCE4NNJ9zmmFAlIaUUpRoFU3oA2gWR0C1oEISQHRkdX2UKGgGaAloD0MIS1ZFuMmMP8CUhpRSlGgVS8NoFkdAtaCHyBkI5nV9lChoBmgJaA9DCMqIC0CjwGJAlIaUUpRoFU3oA2gWR0C1oR8tkFwDdX2UKGgGaAloD0MIqrab4JvsYECUhpRSlGgVTegDaBZHQLWhMR9PUKB1fZQoaAZoCWgPQwjf/IaJBkxkQJSGlFKUaBVN6ANoFkdAtaEyih37lHV9lChoBmgJaA9DCEBs6dFUmlBAlIaUUpRoFU3oA2gWR0C1omz5TIeYdX2UKGgGaAloD0MIyxMIO8XkYkCUhpRSlGgVTegDaBZHQLWigxb0OEx1fZQoaAZoCWgPQwj0UUZcAO1RQJSGlFKUaBVN6ANoFkdAtaMz6dlNDnV9lChoBmgJaA9DCAgfSrRkqGJAlIaUUpRoFU3oA2gWR0C1pDhXr+o+dX2UKGgGaAloD0MIQ8pPqv2tYUCUhpRSlGgVTegDaBZHQLWkU2WY4Q11fZQoaAZoCWgPQwgcDHVY4TRlQJSGlFKUaBVN6ANoFkdAtaSr5Lytm3V9lChoBmgJaA9DCPiKbr2mDmBAlIaUUpRoFU3oA2gWR0C1pV3uZ1FIdX2UKGgGaAloD0MImNwostagW0CUhpRSlGgVTegDaBZHQLWrxMGHHm11fZQoaAZoCWgPQwi1bK0vEtxgQJSGlFKUaBVN6ANoFkdAtaytw97ngnV9lChoBmgJaA9DCJQzFHc8b2JAlIaUUpRoFU3oA2gWR0C1rXK2F36idX2UKGgGaAloD0MI66nVV1dRYECUhpRSlGgVTegDaBZHQLWyd7cfvF51fZQoaAZoCWgPQwgUl+MViHFiQJSGlFKUaBVN6ANoFkdAtbP6s+3YtnV9lChoBmgJaA9DCHsTQ3KyP2dAlIaUUpRoFU3oA2gWR0C1tEBIz3yqdX2UKGgGaAloD0MIMCx/vi14W0CUhpRSlGgVTegDaBZHQLW00R+SbH91fZQoaAZoCWgPQwip+L8jqk9gQJSGlFKUaBVN6ANoFkdAtbTidZq20HV9lChoBmgJaA9DCJshVRSvE2FAlIaUUpRoFU3oA2gWR0C1tOPvfCQ+dX2UKGgGaAloD0MIcxHfiVn3JUCUhpRSlGgVS8doFkdAtbVZ2dNFjXV9lChoBmgJaA9DCB5ssdtnt1xAlIaUUpRoFU3oA2gWR0C1thmj0tiAdX2UKGgGaAloD0MIg4WTNP+XY0CUhpRSlGgVTegDaBZHQLW2LtqYZ2p1fZQoaAZoCWgPQwgZx0j2CCFeQJSGlFKUaBVN6ANoFkdAtbbMWl/H53V9lChoBmgJaA9DCKimJOtw5FxAlIaUUpRoFU3oA2gWR0C1t8RQ3xWldX2UKGgGaAloD0MIFLAdjFj/YUCUhpRSlGgVTegDaBZHQLW34rFwT/R1fZQoaAZoCWgPQwiCO1CnPBotQJSGlFKUaBVLnGgWR0C1uAq0UoKEdX2UKGgGaAloD0MIxEMYP42wYkCUhpRSlGgVTegDaBZHQLW4PzsyBTZ1fZQoaAZoCWgPQwg6OxkcJVheQJSGlFKUaBVN6ANoFkdAtbkluaWonHV9lChoBmgJaA9DCKRQFr6+Ri5AlIaUUpRoFUu4aBZHQLW69RxLkCF1fZQoaAZoCWgPQwhJE+8Az05uQJSGlFKUaBVNNwFoFkdAtbtuiJwbVHV9lChoBmgJaA9DCItR19p7mWNAlIaUUpRoFU3oA2gWR0C1v2aoybhFdX2UKGgGaAloD0MIOurouJokZ0CUhpRSlGgVTegDaBZHQLXAMq2SdOJ1fZQoaAZoCWgPQwh07na9NMdbQJSGlFKUaBVN6ANoFkdAtcDp1loUSXV9lChoBmgJaA9DCFe1pKOcvWNAlIaUUpRoFU3oA2gWR0C1x0yMHbAUdX2UKGgGaAloD0MIVOQQcXMQXkCUhpRSlGgVTegDaBZHQLXHj5OafBh1fZQoaAZoCWgPQwipF3yaE6tjQJSGlFKUaBVN6ANoFkdAtcgfgiu+y3V9lChoBmgJaA9DCC5zuiymJWBAlIaUUpRoFU3oA2gWR0C1yDF01ZTydX2UKGgGaAloD0MIKzI6IAmyYkCUhpRSlGgVTegDaBZHQLXIMwg1WKd1fZQoaAZoCWgPQwh5IR0ewmRmQJSGlFKUaBVN6ANoFkdAtcixp7CzknV9lChoBmgJaA9DCBw/VBoxMl5AlIaUUpRoFU3oA2gWR0C1yXa3I+4cdX2UKGgGaAloD0MIAhHiylmFbUCUhpRSlGgVTW4BaBZHQLXJ/hc7heh1fZQoaAZoCWgPQwiq8j0jEbY+QJSGlFKUaBVLvmgWR0C1ypIHs1KodX2UKGgGaAloD0MI/mMhOgT+a0CUhpRSlGgVTbIDaBZHQLXLC1AZ88d1fZQoaAZoCWgPQwicwHRaN31gQJSGlFKUaBVN6ANoFkdAtcs/Dbah6HV9lChoBmgJaA9DCKhtwygIJFtAlIaUUpRoFU3oA2gWR0C1y1h7E5yVdX2UKGgGaAloD0MIaCWt+IZiWkCUhpRSlGgVTegDaBZHQLXMb+9alk91fZQoaAZoCWgPQwhwJNBgU3lPQJSGlFKUaBVN6ANoFkdAtc3spZwGW3V9lChoBmgJaA9DCKORzyseI2JAlIaUUpRoFU3oA2gWR0C1zkiOWBz4dX2UKGgGaAloD0MIBz9xAP35W0CUhpRSlGgVTegDaBZHQLXSEORkmQd1fZQoaAZoCWgPQwg2XOSerjBfQJSGlFKUaBVN6ANoFkdAtdOgnZ00WXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.27 #1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f2d00e47ee0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f2d00e47f70>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f2d00e4d040>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f2d00e4d0d0>", "_build": "<function ActorCriticPolicy._build at 0x7f2d00e4d160>", "forward": "<function ActorCriticPolicy.forward at 0x7f2d00e4d1f0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f2d00e4d280>", "_predict": "<function ActorCriticPolicy._predict at 0x7f2d00e4d310>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f2d00e4d3a0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f2d00e4d430>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f2d00e4d4c0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f2d00e483f0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAAAAAAAAAAAlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWViAAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 114688, "_total_timesteps": 100000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673138227964570655, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAALPWHz17DpK6HV8Huh4KDrWnGHS6N9scOQAAgD8AAIA/Zub/vNcVjT/ysYW93OUQvyuIrL2TEs28AAAAAAAAAACNxx++bMkRP8PtNj5e+te+Fl7SvV6Z/j0AAAAAAAAAAADEUT2L9mw/DGuBPX4Z8b7cY/g8Ur//PQAAAAAAAAAAWkobPuUIGz4Yilm+sVZdvhWEyb1rp+08AAAAAAAAAAAaAIM9kl6dPMOy0L2WSna+c1zIO5o2c7wAAAAAAAAAAHNjwb3vVkk/ipPwvD9n2r5naQC+vuFDPQAAAAAAAAAAjaCWvcPqkT+lCaG+HyYfv5g86b1qvg++AAAAAAAAAABytoK+R/UhPzfqiD6hGfu+2o4YvTsjaz4AAAAAAAAAAJpacL1sQIq7x94+Ptfbt70B4VC8P3A5vwAAgD8AAIA/QGHJva7PnrqLFSuzFpCNr1f17Drihs4zAACAPwAAgD96D0G+5tT/Pu3ANT59xcS+z54GvkBCaT4AAAAAAAAAABo5CT1kLVQ/oCjMPVxS7L4T5948pK06vAAAAAAAAAAAM4wTvZaWvj9unom+xFrbPaJf9zvKAsa8AAAAAAAAAADNfwA99vQvupUKwbdAg0Oy2uuWu2pJ4zYAAIA/AACAP03qHr44Rhw/soDePP7OAL8PPK2+U2FfPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.1468799999999999, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVOBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIVMVU+omobkCUhpRSlIwBbJRL+4wBdJRHQIhuZdIGyHF1fZQoaAZoCWgPQwibAMPy56JzQJSGlFKUaBVL+WgWR0CIb6Dr7fpEdX2UKGgGaAloD0MIAHSYL+9JckCUhpRSlGgVS8FoFkdAiHABIvrWy3V9lChoBmgJaA9DCONtpdcmNHFAlIaUUpRoFUv+aBZHQIhwGdwvQF91fZQoaAZoCWgPQwiUwVHyKnZxQJSGlFKUaBVL0GgWR0CIcJdcB2fTdX2UKGgGaAloD0MI+MQ6VX6DckCUhpRSlGgVTQUBaBZHQIhyd8NQTEl1fZQoaAZoCWgPQwhnDHOCtodwQJSGlFKUaBVLz2gWR0CIdM5mRNh3dX2UKGgGaAloD0MIAvBPqRJPbkCUhpRSlGgVS+FoFkdAiHUu5z5oG3V9lChoBmgJaA9DCEIhAg5htXJAlIaUUpRoFUvraBZHQIh2z0rbxmV1fZQoaAZoCWgPQwgK+DWSBB1uQJSGlFKUaBVLz2gWR0CIeCQ7LdN4dX2UKGgGaAloD0MI46WbxCACW0CUhpRSlGgVTegDaBZHQIh4RavA44p1fZQoaAZoCWgPQwijkGRW7xdyQJSGlFKUaBVNFQFoFkdAiHps4DLbH3V9lChoBmgJaA9DCPci2o6ph3BAlIaUUpRoFUvcaBZHQIh6oCZF5Od1fZQoaAZoCWgPQwhFSrN5HH5yQJSGlFKUaBVL8GgWR0CIewh8IAwPdX2UKGgGaAloD0MIytx8IzojcUCUhpRSlGgVTSUBaBZHQIh71weeWfN1fZQoaAZoCWgPQwg9tfrqKu1uQJSGlFKUaBVL52gWR0CIfTRl6JIldX2UKGgGaAloD0MIQ8U4f5OeckCUhpRSlGgVTQgBaBZHQIh9WgWac7R1fZQoaAZoCWgPQwimC7H6o7RyQJSGlFKUaBVNDQFoFkdAiH2dFvybx3V9lChoBmgJaA9DCN+pgHse4HBAlIaUUpRoFUv8aBZHQIh+XfTCtRx1fZQoaAZoCWgPQwi8lLpkHDxzQJSGlFKUaBVL+WgWR0CIfrcrRSgodX2UKGgGaAloD0MIEeFfBI1XU0CUhpRSlGgVS41oFkdAiH/oInjQzHV9lChoBmgJaA9DCGbbaWtEhkxAlIaUUpRoFUuRaBZHQIiAMcU/OdJ1fZQoaAZoCWgPQwhgOxixD6FxQJSGlFKUaBVNNgFoFkdAiIDMC1Z1WHV9lChoBmgJaA9DCOgU5GejeG1AlIaUUpRoFU0AAWgWR0CIgO7q6e5GdX2UKGgGaAloD0MIBMqmXOFTc0CUhpRSlGgVS+poFkdAiII5BTn7pHV9lChoBmgJaA9DCGdiuhCrMHFAlIaUUpRoFU0GAWgWR0CIg0GZeAuqdX2UKGgGaAloD0MI/x8nTNg7c0CUhpRSlGgVS9toFkdAiIX//3nIQ3V9lChoBmgJaA9DCMxjzcig8HFAlIaUUpRoFUvJaBZHQIiGJ5NXYDl1fZQoaAZoCWgPQwjSVbq7TiVxQJSGlFKUaBVNMQFoFkdAiIdgHNX5nHV9lChoBmgJaA9DCNQMqaI4gHFAlIaUUpRoFUv7aBZHQIiIOjua4MF1fZQoaAZoCWgPQwgttd5vdIlzQJSGlFKUaBVL1mgWR0CIiEB06o2odX2UKGgGaAloD0MIX0IFh1fWcUCUhpRSlGgVS+RoFkdAiLKlcIJJG3V9lChoBmgJaA9DCBR6/Un86W9AlIaUUpRoFU0aAWgWR0CIstsWweNldX2UKGgGaAloD0MIy9k7oy16cUCUhpRSlGgVS91oFkdAiLO39aUzK3V9lChoBmgJaA9DCKXZPA6DYXFAlIaUUpRoFUvwaBZHQIi0WSIP9UF1fZQoaAZoCWgPQwi6gm3Ek5VxQJSGlFKUaBVNCAFoFkdAiLTM36yjYnV9lChoBmgJaA9DCGQ+INBZQ3FAlIaUUpRoFUvqaBZHQIi1+OU+s5p1fZQoaAZoCWgPQwjtuyL4X/puQJSGlFKUaBVL6GgWR0CItmF8ohIOdX2UKGgGaAloD0MI/YLdsG2PSECUhpRSlGgVS8JoFkdAiLbt4zJp4HV9lChoBmgJaA9DCPKYgcq4KHNAlIaUUpRoFUv2aBZHQIi3JtrKvFF1fZQoaAZoCWgPQwjfjJqv0o9xQJSGlFKUaBVL5mgWR0CIt5b5dnkDdX2UKGgGaAloD0MIglfLnRnjcUCUhpRSlGgVTSUBaBZHQIi4Wso2GZh1fZQoaAZoCWgPQwjSjEXT2XlyQJSGlFKUaBVL9WgWR0CIvAD4gzP9dX2UKGgGaAloD0MItRZmoR1tbUCUhpRSlGgVS+ZoFkdAiLxrpzLfUHV9lChoBmgJaA9DCLitLTxv2XBAlIaUUpRoFUvsaBZHQIi9mV/tpmF1fZQoaAZoCWgPQwgDP6phf8pwQJSGlFKUaBVL+2gWR0CIvnnAZbY9dX2UKGgGaAloD0MIhT5YxoYyc0CUhpRSlGgVTTABaBZHQIi/PTCtRvZ1fZQoaAZoCWgPQwiHb2HdeCxwQJSGlFKUaBVL9GgWR0CIvzy2hIvrdX2UKGgGaAloD0MINUQV/oyDckCUhpRSlGgVTQIBaBZHQIi/xe9i+cp1fZQoaAZoCWgPQwhE96xrNCZxQJSGlFKUaBVL8GgWR0CIv+xlg+hXdX2UKGgGaAloD0MIMsnIWVgPcUCUhpRSlGgVS+BoFkdAiMAf7rLQonV9lChoBmgJaA9DCPROBdxzgG1AlIaUUpRoFUvraBZHQIjAPD7655J1fZQoaAZoCWgPQwjIW65+7PVyQJSGlFKUaBVL6WgWR0CIwY2bXpW4dX2UKGgGaAloD0MIIxPwa6ROc0CUhpRSlGgVS/doFkdAiMKV14gRsnV9lChoBmgJaA9DCHrDfeTWyHBAlIaUUpRoFUvyaBZHQIjC6khzNll1fZQoaAZoCWgPQwhs6GZ/4L9xQJSGlFKUaBVNAQFoFkdAiMRGOdXkpHV9lChoBmgJaA9DCEUOETfnxnFAlIaUUpRoFUv7aBZHQIjE8FY+0PZ1fZQoaAZoCWgPQwgxXB0A8etuQJSGlFKUaBVNIQFoFkdAiMVtlAeJYXV9lChoBmgJaA9DCOBL4UGzPlVAlIaUUpRoFUuVaBZHQIjHU3qAz551fZQoaAZoCWgPQwj3WtB7I7dxQJSGlFKUaBVL/2gWR0CIyUJcgQpXdX2UKGgGaAloD0MIxLXawx4wckCUhpRSlGgVS/1oFkdAiMmLqD9OynV9lChoBmgJaA9DCNo7o62KeHBAlIaUUpRoFUvbaBZHQIjJreyiVSp1fZQoaAZoCWgPQwjnUIaqmOtsQJSGlFKUaBVL32gWR0CIyp9MK1G9dX2UKGgGaAloD0MI/IwLB0ICcUCUhpRSlGgVTQUBaBZHQIjLHb9If8x1fZQoaAZoCWgPQwjdYROZeV5yQJSGlFKUaBVL3WgWR0CIyzP6be/IdX2UKGgGaAloD0MIeEMaFbilckCUhpRSlGgVS+1oFkdAiMtaZH/cWXV9lChoBmgJaA9DCIhKI2Z2x21AlIaUUpRoFUvzaBZHQIjMY7o0Q9R1fZQoaAZoCWgPQwjdC8wKRY5wQJSGlFKUaBVNBAFoFkdAiMz2uX/o7nV9lChoBmgJaA9DCOGyCpsBKVRAlIaUUpRoFUuxaBZHQIjNtPLxI8R1fZQoaAZoCWgPQwiSkbOwZ+VwQJSGlFKUaBVL3WgWR0CIzhV09yLidX2UKGgGaAloD0MIlPdxNAf+cECUhpRSlGgVS/poFkdAiM5iOearm3V9lChoBmgJaA9DCJs90ArMInFAlIaUUpRoFUvoaBZHQIjO3WFvhqF1fZQoaAZoCWgPQwitS43Qz+FxQJSGlFKUaBVL3mgWR0CI0DsVtXPrdX2UKGgGaAloD0MIARWOIBXNb0CUhpRSlGgVTQUBaBZHQIjSm5c1O0t1fZQoaAZoCWgPQwga+bziqdlIQJSGlFKUaBVLtmgWR0CI0+WLP2PDdX2UKGgGaAloD0MI9l0R/O+qbkCUhpRSlGgVS9xoFkdAiNRmgJ1JUnV9lChoBmgJaA9DCDCeQUP/MHNAlIaUUpRoFU0OAWgWR0CI1SQq7ROUdX2UKGgGaAloD0MIXcE24okLckCUhpRSlGgVS9doFkdAiNXhwEQoTnV9lChoBmgJaA9DCAdBR6ta4m9AlIaUUpRoFUvqaBZHQIjWJwCKaXt1fZQoaAZoCWgPQwhvSQ7YFZBwQJSGlFKUaBVNDQFoFkdAiNb2rfcesHV9lChoBmgJaA9DCPOS/8nfjnBAlIaUUpRoFUvYaBZHQIjXKouPFNt1fZQoaAZoCWgPQwgC2IAIceRyQJSGlFKUaBVL9WgWR0CI1z1XeWOZdX2UKGgGaAloD0MIwyy0c1pdckCUhpRSlGgVTSEBaBZHQIjXuavzOHF1fZQoaAZoCWgPQwiU93E0x1twQJSGlFKUaBVL22gWR0CI2UvTPSlWdX2UKGgGaAloD0MIeQQ3UnbKcUCUhpRSlGgVTQABaBZHQIjZshouf291fZQoaAZoCWgPQwgnvW98rXFzQJSGlFKUaBVL6mgWR0CI2cYKpkwwdX2UKGgGaAloD0MI3UJXItBDb0CUhpRSlGgVS95oFkdAiNoO2y9mH3V9lChoBmgJaA9DCBbcD3ggW3BAlIaUUpRoFUvyaBZHQIjcdQGfPHF1fZQoaAZoCWgPQwiDTZ1HxadJQJSGlFKUaBVLwmgWR0CI3IMn7YTTdX2UKGgGaAloD0MILbDHRIrJcUCUhpRSlGgVTTIBaBZHQIjcz9uP3i91fZQoaAZoCWgPQwjXoC+9/ahyQJSGlFKUaBVL/WgWR0CI4L9P1tfpdX2UKGgGaAloD0MIrg0V47x3c0CUhpRSlGgVS99oFkdAiOFycbzbvnV9lChoBmgJaA9DCBKfO8E+PnNAlIaUUpRoFUvoaBZHQIjhtDF6zE91fZQoaAZoCWgPQwiAuoECbzdxQJSGlFKUaBVL4GgWR0CI4l6hQFcIdX2UKGgGaAloD0MIFymUhS+gbkCUhpRSlGgVS91oFkdAiOJsHKOktXV9lChoBmgJaA9DCA4sR8hAqnJAlIaUUpRoFU0UAWgWR0CI4qfMfRu1dX2UKGgGaAloD0MIcxJKX8jMcUCUhpRSlGgVS+NoFkdAiONM2WIGhXV9lChoBmgJaA9DCEbT2ckg5HBAlIaUUpRoFU0oAWgWR0CI5EhIvrWzdX2UKGgGaAloD0MIKsjPRi6wb0CUhpRSlGgVS9poFkdAiOS8/MW43HV9lChoBmgJaA9DCBbbpKLxP3JAlIaUUpRoFUveaBZHQIjlCCBf8dh1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 444, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.27 #1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2-17K.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6bc8cc2e79b3776353a20d5fea1c5e22c861fdf5f9dfc3defb65fce28cac738a
3
+ size 147262
ppo-LunarLander-v2-17K/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.2
ppo-LunarLander-v2-17K/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f2d00e47ee0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f2d00e47f70>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f2d00e4d040>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f2d00e4d0d0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f2d00e4d160>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f2d00e4d1f0>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f2d00e4d280>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f2d00e4d310>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f2d00e4d3a0>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f2d00e4d430>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f2d00e4d4c0>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f2d00e483f0>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAAAAAAAAAAAlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWViAAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 114688,
46
+ "_total_timesteps": 100000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1673138227964570655,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAALPWHz17DpK6HV8Huh4KDrWnGHS6N9scOQAAgD8AAIA/Zub/vNcVjT/ysYW93OUQvyuIrL2TEs28AAAAAAAAAACNxx++bMkRP8PtNj5e+te+Fl7SvV6Z/j0AAAAAAAAAAADEUT2L9mw/DGuBPX4Z8b7cY/g8Ur//PQAAAAAAAAAAWkobPuUIGz4Yilm+sVZdvhWEyb1rp+08AAAAAAAAAAAaAIM9kl6dPMOy0L2WSna+c1zIO5o2c7wAAAAAAAAAAHNjwb3vVkk/ipPwvD9n2r5naQC+vuFDPQAAAAAAAAAAjaCWvcPqkT+lCaG+HyYfv5g86b1qvg++AAAAAAAAAABytoK+R/UhPzfqiD6hGfu+2o4YvTsjaz4AAAAAAAAAAJpacL1sQIq7x94+Ptfbt70B4VC8P3A5vwAAgD8AAIA/QGHJva7PnrqLFSuzFpCNr1f17Drihs4zAACAPwAAgD96D0G+5tT/Pu3ANT59xcS+z54GvkBCaT4AAAAAAAAAABo5CT1kLVQ/oCjMPVxS7L4T5948pK06vAAAAAAAAAAAM4wTvZaWvj9unom+xFrbPaJf9zvKAsa8AAAAAAAAAADNfwA99vQvupUKwbdAg0Oy2uuWu2pJ4zYAAIA/AACAP03qHr44Rhw/soDePP7OAL8PPK2+U2FfPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.1468799999999999,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVOBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIVMVU+omobkCUhpRSlIwBbJRL+4wBdJRHQIhuZdIGyHF1fZQoaAZoCWgPQwibAMPy56JzQJSGlFKUaBVL+WgWR0CIb6Dr7fpEdX2UKGgGaAloD0MIAHSYL+9JckCUhpRSlGgVS8FoFkdAiHABIvrWy3V9lChoBmgJaA9DCONtpdcmNHFAlIaUUpRoFUv+aBZHQIhwGdwvQF91fZQoaAZoCWgPQwiUwVHyKnZxQJSGlFKUaBVL0GgWR0CIcJdcB2fTdX2UKGgGaAloD0MI+MQ6VX6DckCUhpRSlGgVTQUBaBZHQIhyd8NQTEl1fZQoaAZoCWgPQwhnDHOCtodwQJSGlFKUaBVLz2gWR0CIdM5mRNh3dX2UKGgGaAloD0MIAvBPqRJPbkCUhpRSlGgVS+FoFkdAiHUu5z5oG3V9lChoBmgJaA9DCEIhAg5htXJAlIaUUpRoFUvraBZHQIh2z0rbxmV1fZQoaAZoCWgPQwgK+DWSBB1uQJSGlFKUaBVLz2gWR0CIeCQ7LdN4dX2UKGgGaAloD0MI46WbxCACW0CUhpRSlGgVTegDaBZHQIh4RavA44p1fZQoaAZoCWgPQwijkGRW7xdyQJSGlFKUaBVNFQFoFkdAiHps4DLbH3V9lChoBmgJaA9DCPci2o6ph3BAlIaUUpRoFUvcaBZHQIh6oCZF5Od1fZQoaAZoCWgPQwhFSrN5HH5yQJSGlFKUaBVL8GgWR0CIewh8IAwPdX2UKGgGaAloD0MIytx8IzojcUCUhpRSlGgVTSUBaBZHQIh71weeWfN1fZQoaAZoCWgPQwg9tfrqKu1uQJSGlFKUaBVL52gWR0CIfTRl6JIldX2UKGgGaAloD0MIQ8U4f5OeckCUhpRSlGgVTQgBaBZHQIh9WgWac7R1fZQoaAZoCWgPQwimC7H6o7RyQJSGlFKUaBVNDQFoFkdAiH2dFvybx3V9lChoBmgJaA9DCN+pgHse4HBAlIaUUpRoFUv8aBZHQIh+XfTCtRx1fZQoaAZoCWgPQwi8lLpkHDxzQJSGlFKUaBVL+WgWR0CIfrcrRSgodX2UKGgGaAloD0MIEeFfBI1XU0CUhpRSlGgVS41oFkdAiH/oInjQzHV9lChoBmgJaA9DCGbbaWtEhkxAlIaUUpRoFUuRaBZHQIiAMcU/OdJ1fZQoaAZoCWgPQwhgOxixD6FxQJSGlFKUaBVNNgFoFkdAiIDMC1Z1WHV9lChoBmgJaA9DCOgU5GejeG1AlIaUUpRoFU0AAWgWR0CIgO7q6e5GdX2UKGgGaAloD0MIBMqmXOFTc0CUhpRSlGgVS+poFkdAiII5BTn7pHV9lChoBmgJaA9DCGdiuhCrMHFAlIaUUpRoFU0GAWgWR0CIg0GZeAuqdX2UKGgGaAloD0MI/x8nTNg7c0CUhpRSlGgVS9toFkdAiIX//3nIQ3V9lChoBmgJaA9DCMxjzcig8HFAlIaUUpRoFUvJaBZHQIiGJ5NXYDl1fZQoaAZoCWgPQwjSVbq7TiVxQJSGlFKUaBVNMQFoFkdAiIdgHNX5nHV9lChoBmgJaA9DCNQMqaI4gHFAlIaUUpRoFUv7aBZHQIiIOjua4MF1fZQoaAZoCWgPQwgttd5vdIlzQJSGlFKUaBVL1mgWR0CIiEB06o2odX2UKGgGaAloD0MIX0IFh1fWcUCUhpRSlGgVS+RoFkdAiLKlcIJJG3V9lChoBmgJaA9DCBR6/Un86W9AlIaUUpRoFU0aAWgWR0CIstsWweNldX2UKGgGaAloD0MIy9k7oy16cUCUhpRSlGgVS91oFkdAiLO39aUzK3V9lChoBmgJaA9DCKXZPA6DYXFAlIaUUpRoFUvwaBZHQIi0WSIP9UF1fZQoaAZoCWgPQwi6gm3Ek5VxQJSGlFKUaBVNCAFoFkdAiLTM36yjYnV9lChoBmgJaA9DCGQ+INBZQ3FAlIaUUpRoFUvqaBZHQIi1+OU+s5p1fZQoaAZoCWgPQwjtuyL4X/puQJSGlFKUaBVL6GgWR0CItmF8ohIOdX2UKGgGaAloD0MI/YLdsG2PSECUhpRSlGgVS8JoFkdAiLbt4zJp4HV9lChoBmgJaA9DCPKYgcq4KHNAlIaUUpRoFUv2aBZHQIi3JtrKvFF1fZQoaAZoCWgPQwjfjJqv0o9xQJSGlFKUaBVL5mgWR0CIt5b5dnkDdX2UKGgGaAloD0MIglfLnRnjcUCUhpRSlGgVTSUBaBZHQIi4Wso2GZh1fZQoaAZoCWgPQwjSjEXT2XlyQJSGlFKUaBVL9WgWR0CIvAD4gzP9dX2UKGgGaAloD0MItRZmoR1tbUCUhpRSlGgVS+ZoFkdAiLxrpzLfUHV9lChoBmgJaA9DCLitLTxv2XBAlIaUUpRoFUvsaBZHQIi9mV/tpmF1fZQoaAZoCWgPQwgDP6phf8pwQJSGlFKUaBVL+2gWR0CIvnnAZbY9dX2UKGgGaAloD0MIhT5YxoYyc0CUhpRSlGgVTTABaBZHQIi/PTCtRvZ1fZQoaAZoCWgPQwiHb2HdeCxwQJSGlFKUaBVL9GgWR0CIvzy2hIvrdX2UKGgGaAloD0MINUQV/oyDckCUhpRSlGgVTQIBaBZHQIi/xe9i+cp1fZQoaAZoCWgPQwhE96xrNCZxQJSGlFKUaBVL8GgWR0CIv+xlg+hXdX2UKGgGaAloD0MIMsnIWVgPcUCUhpRSlGgVS+BoFkdAiMAf7rLQonV9lChoBmgJaA9DCPROBdxzgG1AlIaUUpRoFUvraBZHQIjAPD7655J1fZQoaAZoCWgPQwjIW65+7PVyQJSGlFKUaBVL6WgWR0CIwY2bXpW4dX2UKGgGaAloD0MIIxPwa6ROc0CUhpRSlGgVS/doFkdAiMKV14gRsnV9lChoBmgJaA9DCHrDfeTWyHBAlIaUUpRoFUvyaBZHQIjC6khzNll1fZQoaAZoCWgPQwhs6GZ/4L9xQJSGlFKUaBVNAQFoFkdAiMRGOdXkpHV9lChoBmgJaA9DCEUOETfnxnFAlIaUUpRoFUv7aBZHQIjE8FY+0PZ1fZQoaAZoCWgPQwgxXB0A8etuQJSGlFKUaBVNIQFoFkdAiMVtlAeJYXV9lChoBmgJaA9DCOBL4UGzPlVAlIaUUpRoFUuVaBZHQIjHU3qAz551fZQoaAZoCWgPQwj3WtB7I7dxQJSGlFKUaBVL/2gWR0CIyUJcgQpXdX2UKGgGaAloD0MIxLXawx4wckCUhpRSlGgVS/1oFkdAiMmLqD9OynV9lChoBmgJaA9DCNo7o62KeHBAlIaUUpRoFUvbaBZHQIjJreyiVSp1fZQoaAZoCWgPQwjnUIaqmOtsQJSGlFKUaBVL32gWR0CIyp9MK1G9dX2UKGgGaAloD0MI/IwLB0ICcUCUhpRSlGgVTQUBaBZHQIjLHb9If8x1fZQoaAZoCWgPQwjdYROZeV5yQJSGlFKUaBVL3WgWR0CIyzP6be/IdX2UKGgGaAloD0MIeEMaFbilckCUhpRSlGgVS+1oFkdAiMtaZH/cWXV9lChoBmgJaA9DCIhKI2Z2x21AlIaUUpRoFUvzaBZHQIjMY7o0Q9R1fZQoaAZoCWgPQwjdC8wKRY5wQJSGlFKUaBVNBAFoFkdAiMz2uX/o7nV9lChoBmgJaA9DCOGyCpsBKVRAlIaUUpRoFUuxaBZHQIjNtPLxI8R1fZQoaAZoCWgPQwiSkbOwZ+VwQJSGlFKUaBVL3WgWR0CIzhV09yLidX2UKGgGaAloD0MIlPdxNAf+cECUhpRSlGgVS/poFkdAiM5iOearm3V9lChoBmgJaA9DCJs90ArMInFAlIaUUpRoFUvoaBZHQIjO3WFvhqF1fZQoaAZoCWgPQwitS43Qz+FxQJSGlFKUaBVL3mgWR0CI0DsVtXPrdX2UKGgGaAloD0MIARWOIBXNb0CUhpRSlGgVTQUBaBZHQIjSm5c1O0t1fZQoaAZoCWgPQwga+bziqdlIQJSGlFKUaBVLtmgWR0CI0+WLP2PDdX2UKGgGaAloD0MI9l0R/O+qbkCUhpRSlGgVS9xoFkdAiNRmgJ1JUnV9lChoBmgJaA9DCDCeQUP/MHNAlIaUUpRoFU0OAWgWR0CI1SQq7ROUdX2UKGgGaAloD0MIXcE24okLckCUhpRSlGgVS9doFkdAiNXhwEQoTnV9lChoBmgJaA9DCAdBR6ta4m9AlIaUUpRoFUvqaBZHQIjWJwCKaXt1fZQoaAZoCWgPQwhvSQ7YFZBwQJSGlFKUaBVNDQFoFkdAiNb2rfcesHV9lChoBmgJaA9DCPOS/8nfjnBAlIaUUpRoFUvYaBZHQIjXKouPFNt1fZQoaAZoCWgPQwgC2IAIceRyQJSGlFKUaBVL9WgWR0CI1z1XeWOZdX2UKGgGaAloD0MIwyy0c1pdckCUhpRSlGgVTSEBaBZHQIjXuavzOHF1fZQoaAZoCWgPQwiU93E0x1twQJSGlFKUaBVL22gWR0CI2UvTPSlWdX2UKGgGaAloD0MIeQQ3UnbKcUCUhpRSlGgVTQABaBZHQIjZshouf291fZQoaAZoCWgPQwgnvW98rXFzQJSGlFKUaBVL6mgWR0CI2cYKpkwwdX2UKGgGaAloD0MI3UJXItBDb0CUhpRSlGgVS95oFkdAiNoO2y9mH3V9lChoBmgJaA9DCBbcD3ggW3BAlIaUUpRoFUvyaBZHQIjcdQGfPHF1fZQoaAZoCWgPQwiDTZ1HxadJQJSGlFKUaBVLwmgWR0CI3IMn7YTTdX2UKGgGaAloD0MILbDHRIrJcUCUhpRSlGgVTTIBaBZHQIjcz9uP3i91fZQoaAZoCWgPQwjXoC+9/ahyQJSGlFKUaBVL/WgWR0CI4L9P1tfpdX2UKGgGaAloD0MIrg0V47x3c0CUhpRSlGgVS99oFkdAiOFycbzbvnV9lChoBmgJaA9DCBKfO8E+PnNAlIaUUpRoFUvoaBZHQIjhtDF6zE91fZQoaAZoCWgPQwiAuoECbzdxQJSGlFKUaBVL4GgWR0CI4l6hQFcIdX2UKGgGaAloD0MIFymUhS+gbkCUhpRSlGgVS91oFkdAiOJsHKOktXV9lChoBmgJaA9DCA4sR8hAqnJAlIaUUpRoFU0UAWgWR0CI4qfMfRu1dX2UKGgGaAloD0MIcxJKX8jMcUCUhpRSlGgVS+NoFkdAiONM2WIGhXV9lChoBmgJaA9DCEbT2ckg5HBAlIaUUpRoFU0oAWgWR0CI5EhIvrWzdX2UKGgGaAloD0MIKsjPRi6wb0CUhpRSlGgVS9poFkdAiOS8/MW43HV9lChoBmgJaA9DCBbbpKLxP3JAlIaUUpRoFUveaBZHQIjlCCBf8dh1ZS4="
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 444,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
ppo-LunarLander-v2-17K/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:08626da636bfb62f4c23e2cc061c3a8abf13689b2c266d5bf75e3ed857b713ff
3
+ size 88057
ppo-LunarLander-v2-17K/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b4e5c403e6b72105ba7092a45f786c81c78a88263818a648dddfa63eb84760f9
3
+ size 43201
ppo-LunarLander-v2-17K/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2-17K/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.10.147+-x86_64-with-glibc2.27 #1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ Python: 3.8.16
3
+ Stable-Baselines3: 1.6.2
4
+ PyTorch: 1.13.0+cu116
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
 
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 200.2800392920663, "std_reward": 75.60995429916235, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-07T22:39:17.234953"}
 
1
+ {"mean_reward": 271.28963604247, "std_reward": 19.149427622274214, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-08T00:51:32.713980"}