Upload metrics.log with huggingface_hub
Browse files- metrics.log +10 -98
metrics.log
CHANGED
@@ -1,98 +1,10 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
{'m0': 0.3115, 'm1': 0.5722, 'm2': 0.5918, 'm4': 0.479}
|
12 |
-
Mean subset ('m3',) accuracies : 0.488625
|
13 |
-
Subset ('m4',) accuracies
|
14 |
-
{'m0': 0.2541, 'm1': 0.4497, 'm2': 0.4525, 'm3': 0.376}
|
15 |
-
Mean subset ('m4',) accuracies : 0.38307499999999994
|
16 |
-
Subset ('m0', 'm1') accuracies
|
17 |
-
{'m2': 0.7927, 'm3': 0.6348, 'm4': 0.6208}
|
18 |
-
Mean subset ('m0', 'm1') accuracies : 0.6827666666666667
|
19 |
-
Subset ('m0', 'm2') accuracies
|
20 |
-
{'m1': 0.7382, 'm3': 0.6179, 'm4': 0.5872}
|
21 |
-
Mean subset ('m0', 'm2') accuracies : 0.6477666666666667
|
22 |
-
Subset ('m0', 'm3') accuracies
|
23 |
-
{'m1': 0.7221, 'm2': 0.7415, 'm4': 0.5873}
|
24 |
-
Mean subset ('m0', 'm3') accuracies : 0.6836333333333333
|
25 |
-
Subset ('m0', 'm4') accuracies
|
26 |
-
{'m1': 0.628, 'm2': 0.6413, 'm3': 0.5239}
|
27 |
-
Mean subset ('m0', 'm4') accuracies : 0.5977333333333333
|
28 |
-
Subset ('m1', 'm2') accuracies
|
29 |
-
{'m0': 0.4046, 'm3': 0.701, 'm4': 0.6826}
|
30 |
-
Mean subset ('m1', 'm2') accuracies : 0.5960666666666666
|
31 |
-
Subset ('m1', 'm3') accuracies
|
32 |
-
{'m0': 0.4197, 'm2': 0.8389, 'm4': 0.6763}
|
33 |
-
Mean subset ('m1', 'm3') accuracies : 0.6449666666666666
|
34 |
-
Subset ('m1', 'm4') accuracies
|
35 |
-
{'m0': 0.3826, 'm2': 0.7881, 'm3': 0.6287}
|
36 |
-
Mean subset ('m1', 'm4') accuracies : 0.5998
|
37 |
-
Subset ('m2', 'm3') accuracies
|
38 |
-
{'m0': 0.4066, 'm1': 0.7942, 'm4': 0.6528}
|
39 |
-
Mean subset ('m2', 'm3') accuracies : 0.6178666666666667
|
40 |
-
Subset ('m2', 'm4') accuracies
|
41 |
-
{'m0': 0.3764, 'm1': 0.7329, 'm3': 0.6055}
|
42 |
-
Mean subset ('m2', 'm4') accuracies : 0.5716
|
43 |
-
Subset ('m3', 'm4') accuracies
|
44 |
-
{'m0': 0.3775, 'm1': 0.7203, 'm2': 0.7427}
|
45 |
-
Mean subset ('m3', 'm4') accuracies : 0.6135
|
46 |
-
Subset ('m0', 'm1', 'm2') accuracies
|
47 |
-
{'m3': 0.7569, 'm4': 0.702}
|
48 |
-
Mean subset ('m0', 'm1', 'm2') accuracies : 0.7294499999999999
|
49 |
-
Subset ('m0', 'm1', 'm3') accuracies
|
50 |
-
{'m2': 0.8905, 'm4': 0.7066}
|
51 |
-
Mean subset ('m0', 'm1', 'm3') accuracies : 0.79855
|
52 |
-
Subset ('m0', 'm1', 'm4') accuracies
|
53 |
-
{'m2': 0.8456, 'm3': 0.6995}
|
54 |
-
Mean subset ('m0', 'm1', 'm4') accuracies : 0.7725500000000001
|
55 |
-
Subset ('m0', 'm2', 'm3') accuracies
|
56 |
-
{'m1': 0.8563, 'm4': 0.6806}
|
57 |
-
Mean subset ('m0', 'm2', 'm3') accuracies : 0.76845
|
58 |
-
Subset ('m0', 'm2', 'm4') accuracies
|
59 |
-
{'m1': 0.8072, 'm3': 0.6835}
|
60 |
-
Mean subset ('m0', 'm2', 'm4') accuracies : 0.74535
|
61 |
-
Subset ('m0', 'm3', 'm4') accuracies
|
62 |
-
{'m1': 0.8006, 'm2': 0.8226}
|
63 |
-
Mean subset ('m0', 'm3', 'm4') accuracies : 0.8116
|
64 |
-
Subset ('m1', 'm2', 'm3') accuracies
|
65 |
-
{'m0': 0.4451, 'm4': 0.7384}
|
66 |
-
Mean subset ('m1', 'm2', 'm3') accuracies : 0.59175
|
67 |
-
Subset ('m1', 'm2', 'm4') accuracies
|
68 |
-
{'m0': 0.4168, 'm3': 0.7522}
|
69 |
-
Mean subset ('m1', 'm2', 'm4') accuracies : 0.5845
|
70 |
-
Subset ('m1', 'm3', 'm4') accuracies
|
71 |
-
{'m0': 0.429, 'm2': 0.8923}
|
72 |
-
Mean subset ('m1', 'm3', 'm4') accuracies : 0.66065
|
73 |
-
Subset ('m2', 'm3', 'm4') accuracies
|
74 |
-
{'m0': 0.4054, 'm1': 0.8544}
|
75 |
-
Mean subset ('m2', 'm3', 'm4') accuracies : 0.6299
|
76 |
-
Subset ('m0', 'm1', 'm2', 'm3') accuracies
|
77 |
-
{'m4': 0.7376}
|
78 |
-
Mean subset ('m0', 'm1', 'm2', 'm3') accuracies : 0.7376
|
79 |
-
Subset ('m0', 'm1', 'm2', 'm4') accuracies
|
80 |
-
{'m3': 0.7818}
|
81 |
-
Mean subset ('m0', 'm1', 'm2', 'm4') accuracies : 0.7818
|
82 |
-
Subset ('m0', 'm1', 'm3', 'm4') accuracies
|
83 |
-
{'m2': 0.9164}
|
84 |
-
Mean subset ('m0', 'm1', 'm3', 'm4') accuracies : 0.9164
|
85 |
-
Subset ('m0', 'm2', 'm3', 'm4') accuracies
|
86 |
-
{'m1': 0.896}
|
87 |
-
Mean subset ('m0', 'm2', 'm3', 'm4') accuracies : 0.896
|
88 |
-
Subset ('m1', 'm2', 'm3', 'm4') accuracies
|
89 |
-
{'m0': 0.4418}
|
90 |
-
Mean subset ('m1', 'm2', 'm3', 'm4') accuracies : 0.4418
|
91 |
-
Conditional accuracies for 0 modalities : 0.45971499999999993 +- 0.046442455253786916
|
92 |
-
Conditional accuracies for 1 modalities : 0.62557 +- 0.03597073640861107
|
93 |
-
Conditional accuracies for 2 modalities : 0.709275 +- 0.08105552495049304
|
94 |
-
Conditional accuracies for 3 modalities : 0.7547200000000001 +- 0.17032076091892026
|
95 |
-
Joint coherence : 0.00559999980032444
|
96 |
-
Uploading MVTCAE model to asenella/mmnistMVTCAE_config1_ repo in HF hub...
|
97 |
-
Creating mmnistMVTCAE_config1_ in the HF hub since it does not exist...
|
98 |
-
Successfully created mmnistMVTCAE_config1_ in the HF hub!
|
|
|
1 |
+
Start computing FID for modality m0
|
2 |
+
The FD for modality m0 is 106.36369737476707
|
3 |
+
Start computing FID for modality m1
|
4 |
+
The FD for modality m1 is 43.0120659419149
|
5 |
+
Start computing FID for modality m2
|
6 |
+
The FD for modality m2 is 71.99052732125912
|
7 |
+
Start computing FID for modality m3
|
8 |
+
The FD for modality m3 is 110.63167832989902
|
9 |
+
Start computing FID for modality m4
|
10 |
+
The FD for modality m4 is 49.402452587399864
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|