taesiri commited on
Commit
1e18b3b
1 Parent(s): bfc2553

Upload folder using huggingface_hub

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. mixing_strategies/Equal/bugsBunny-v1_1-Llama-3-8B-V-Equal_dataset_10000_repeat_1_epochs_1_GA_2_lora/README.md +202 -0
  2. mixing_strategies/Equal/bugsBunny-v1_1-Llama-3-8B-V-Equal_dataset_10000_repeat_1_epochs_1_GA_2_lora/adapter_config.json +34 -0
  3. mixing_strategies/Equal/bugsBunny-v1_1-Llama-3-8B-V-Equal_dataset_10000_repeat_1_epochs_1_GA_2_lora/adapter_model.safetensors +3 -0
  4. mixing_strategies/Equal/bugsBunny-v1_1-Llama-3-8B-V-Equal_dataset_10000_repeat_1_epochs_1_GA_2_lora/config.json +45 -0
  5. mixing_strategies/Equal/bugsBunny-v1_1-Llama-3-8B-V-Equal_dataset_10000_repeat_1_epochs_1_GA_2_lora/non_lora_trainables.bin +3 -0
  6. mixing_strategies/Equal/bugsBunny-v1_1-Llama-3-8B-V-Equal_dataset_10000_repeat_1_epochs_1_GA_2_lora/trainer_state.json +0 -0
  7. mixing_strategies/Equal/bugsBunny-v1_1-Llama-3-8B-V-Equal_dataset_10000_repeat_1_epochs_1_GA_4_lora/README.md +202 -0
  8. mixing_strategies/Equal/bugsBunny-v1_1-Llama-3-8B-V-Equal_dataset_10000_repeat_1_epochs_1_GA_4_lora/adapter_config.json +34 -0
  9. mixing_strategies/Equal/bugsBunny-v1_1-Llama-3-8B-V-Equal_dataset_10000_repeat_1_epochs_1_GA_4_lora/adapter_model.safetensors +3 -0
  10. mixing_strategies/Equal/bugsBunny-v1_1-Llama-3-8B-V-Equal_dataset_10000_repeat_1_epochs_1_GA_4_lora/config.json +45 -0
  11. mixing_strategies/Equal/bugsBunny-v1_1-Llama-3-8B-V-Equal_dataset_10000_repeat_1_epochs_1_GA_4_lora/non_lora_trainables.bin +3 -0
  12. mixing_strategies/Equal/bugsBunny-v1_1-Llama-3-8B-V-Equal_dataset_10000_repeat_1_epochs_1_GA_4_lora/trainer_state.json +2226 -0
  13. mixing_strategies/Equal/bugsBunny-v1_1-Llama-3-8B-V-Equal_dataset_10000_repeat_2_epochs_1_GA_2_lora/README.md +202 -0
  14. mixing_strategies/Equal/bugsBunny-v1_1-Llama-3-8B-V-Equal_dataset_10000_repeat_2_epochs_1_GA_2_lora/adapter_config.json +34 -0
  15. mixing_strategies/Equal/bugsBunny-v1_1-Llama-3-8B-V-Equal_dataset_10000_repeat_2_epochs_1_GA_2_lora/adapter_model.safetensors +3 -0
  16. mixing_strategies/Equal/bugsBunny-v1_1-Llama-3-8B-V-Equal_dataset_10000_repeat_2_epochs_1_GA_2_lora/config.json +45 -0
  17. mixing_strategies/Equal/bugsBunny-v1_1-Llama-3-8B-V-Equal_dataset_10000_repeat_2_epochs_1_GA_2_lora/non_lora_trainables.bin +3 -0
  18. mixing_strategies/Equal/bugsBunny-v1_1-Llama-3-8B-V-Equal_dataset_10000_repeat_2_epochs_1_GA_2_lora/trainer_state.json +0 -0
  19. mixing_strategies/Equal/bugsBunny-v1_1-Llama-3-8B-V-Equal_dataset_10000_repeat_2_epochs_1_GA_4_lora/README.md +202 -0
  20. mixing_strategies/Equal/bugsBunny-v1_1-Llama-3-8B-V-Equal_dataset_10000_repeat_2_epochs_1_GA_4_lora/adapter_config.json +34 -0
  21. mixing_strategies/Equal/bugsBunny-v1_1-Llama-3-8B-V-Equal_dataset_10000_repeat_2_epochs_1_GA_4_lora/adapter_model.safetensors +3 -0
  22. mixing_strategies/Equal/bugsBunny-v1_1-Llama-3-8B-V-Equal_dataset_10000_repeat_2_epochs_1_GA_4_lora/config.json +45 -0
  23. mixing_strategies/Equal/bugsBunny-v1_1-Llama-3-8B-V-Equal_dataset_10000_repeat_2_epochs_1_GA_4_lora/non_lora_trainables.bin +3 -0
  24. mixing_strategies/Equal/bugsBunny-v1_1-Llama-3-8B-V-Equal_dataset_10000_repeat_2_epochs_1_GA_4_lora/trainer_state.json +2226 -0
  25. mixing_strategies/Equal/bugsBunny-v1_1-Llama-3-8B-V-Equal_dataset_10000_repeat_3_epochs_1_GA_2_lora/README.md +202 -0
  26. mixing_strategies/Equal/bugsBunny-v1_1-Llama-3-8B-V-Equal_dataset_10000_repeat_3_epochs_1_GA_2_lora/adapter_config.json +34 -0
  27. mixing_strategies/Equal/bugsBunny-v1_1-Llama-3-8B-V-Equal_dataset_10000_repeat_3_epochs_1_GA_2_lora/adapter_model.safetensors +3 -0
  28. mixing_strategies/Equal/bugsBunny-v1_1-Llama-3-8B-V-Equal_dataset_10000_repeat_3_epochs_1_GA_2_lora/config.json +45 -0
  29. mixing_strategies/Equal/bugsBunny-v1_1-Llama-3-8B-V-Equal_dataset_10000_repeat_3_epochs_1_GA_2_lora/non_lora_trainables.bin +3 -0
  30. mixing_strategies/Equal/bugsBunny-v1_1-Llama-3-8B-V-Equal_dataset_10000_repeat_3_epochs_1_GA_2_lora/trainer_state.json +0 -0
  31. mixing_strategies/Equal/bugsBunny-v1_1-Llama-3-8B-V-Equal_dataset_10000_repeat_3_epochs_1_GA_4_lora/README.md +202 -0
  32. mixing_strategies/Equal/bugsBunny-v1_1-Llama-3-8B-V-Equal_dataset_10000_repeat_3_epochs_1_GA_4_lora/adapter_config.json +34 -0
  33. mixing_strategies/Equal/bugsBunny-v1_1-Llama-3-8B-V-Equal_dataset_10000_repeat_3_epochs_1_GA_4_lora/adapter_model.safetensors +3 -0
  34. mixing_strategies/Equal/bugsBunny-v1_1-Llama-3-8B-V-Equal_dataset_10000_repeat_3_epochs_1_GA_4_lora/config.json +45 -0
  35. mixing_strategies/Equal/bugsBunny-v1_1-Llama-3-8B-V-Equal_dataset_10000_repeat_3_epochs_1_GA_4_lora/non_lora_trainables.bin +3 -0
  36. mixing_strategies/Equal/bugsBunny-v1_1-Llama-3-8B-V-Equal_dataset_10000_repeat_3_epochs_1_GA_4_lora/trainer_state.json +2226 -0
  37. mixing_strategies/Equal/bugsBunny-v1_1-Llama-3-8B-V-Equal_dataset_20000_repeat_1_epochs_1_GA_2_lora/README.md +202 -0
  38. mixing_strategies/Equal/bugsBunny-v1_1-Llama-3-8B-V-Equal_dataset_20000_repeat_1_epochs_1_GA_2_lora/adapter_config.json +34 -0
  39. mixing_strategies/Equal/bugsBunny-v1_1-Llama-3-8B-V-Equal_dataset_20000_repeat_1_epochs_1_GA_2_lora/adapter_model.safetensors +3 -0
  40. mixing_strategies/Equal/bugsBunny-v1_1-Llama-3-8B-V-Equal_dataset_20000_repeat_1_epochs_1_GA_2_lora/config.json +45 -0
  41. mixing_strategies/Equal/bugsBunny-v1_1-Llama-3-8B-V-Equal_dataset_20000_repeat_1_epochs_1_GA_2_lora/non_lora_trainables.bin +3 -0
  42. mixing_strategies/Equal/bugsBunny-v1_1-Llama-3-8B-V-Equal_dataset_20000_repeat_1_epochs_1_GA_2_lora/trainer_state.json +0 -0
  43. mixing_strategies/Equal/bugsBunny-v1_1-Llama-3-8B-V-Equal_dataset_20000_repeat_2_epochs_1_GA_2_lora/README.md +202 -0
  44. mixing_strategies/Equal/bugsBunny-v1_1-Llama-3-8B-V-Equal_dataset_20000_repeat_2_epochs_1_GA_2_lora/adapter_config.json +34 -0
  45. mixing_strategies/Equal/bugsBunny-v1_1-Llama-3-8B-V-Equal_dataset_20000_repeat_2_epochs_1_GA_2_lora/adapter_model.safetensors +3 -0
  46. mixing_strategies/Equal/bugsBunny-v1_1-Llama-3-8B-V-Equal_dataset_20000_repeat_2_epochs_1_GA_2_lora/config.json +45 -0
  47. mixing_strategies/Equal/bugsBunny-v1_1-Llama-3-8B-V-Equal_dataset_20000_repeat_2_epochs_1_GA_2_lora/non_lora_trainables.bin +3 -0
  48. mixing_strategies/Equal/bugsBunny-v1_1-Llama-3-8B-V-Equal_dataset_20000_repeat_2_epochs_1_GA_2_lora/trainer_state.json +0 -0
  49. mixing_strategies/Equal/bugsBunny-v1_1-Llama-3-8B-V-Equal_dataset_20000_repeat_3_epochs_1_GA_2_lora/README.md +202 -0
  50. mixing_strategies/Equal/bugsBunny-v1_1-Llama-3-8B-V-Equal_dataset_20000_repeat_3_epochs_1_GA_2_lora/adapter_config.json +34 -0
mixing_strategies/Equal/bugsBunny-v1_1-Llama-3-8B-V-Equal_dataset_10000_repeat_1_epochs_1_GA_2_lora/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: ./weights/Bunny-v1_1-Llama-3-8B-V
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.11.1
mixing_strategies/Equal/bugsBunny-v1_1-Llama-3-8B-V-Equal_dataset_10000_repeat_1_epochs_1_GA_2_lora/adapter_config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "./weights/Bunny-v1_1-Llama-3-8B-V",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 256,
14
+ "lora_dropout": 0.1,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 128,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "o_proj",
24
+ "up_proj",
25
+ "gate_proj",
26
+ "down_proj",
27
+ "q_proj",
28
+ "v_proj",
29
+ "k_proj"
30
+ ],
31
+ "task_type": "CAUSAL_LM",
32
+ "use_dora": false,
33
+ "use_rslora": false
34
+ }
mixing_strategies/Equal/bugsBunny-v1_1-Llama-3-8B-V-Equal_dataset_10000_repeat_1_epochs_1_GA_2_lora/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c6471582fd50057e84dfb08f495660314c24a16a94f8ac9426da1edcd17b1603
3
+ size 671150064
mixing_strategies/Equal/bugsBunny-v1_1-Llama-3-8B-V-Equal_dataset_10000_repeat_1_epochs_1_GA_2_lora/config.json ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "./weights/Bunny-v1_1-Llama-3-8B-V",
3
+ "architectures": [
4
+ "BunnyLlamaForCausalLM"
5
+ ],
6
+ "attention_bias": false,
7
+ "attention_dropout": 0.0,
8
+ "auto_map": {
9
+ "AutoConfig": "configuration_bunny_llama.BunnyLlamaConfig",
10
+ "AutoModelForCausalLM": "modeling_bunny_llama.BunnyLlamaForCausalLM"
11
+ },
12
+ "bos_token_id": 128000,
13
+ "continuous_training": false,
14
+ "eos_token_id": 128001,
15
+ "freeze_mm_mlp_adapter": false,
16
+ "hidden_act": "silu",
17
+ "hidden_size": 4096,
18
+ "image_aspect_ratio": "pad",
19
+ "initializer_range": 0.02,
20
+ "intermediate_size": 14336,
21
+ "max_position_embeddings": 8192,
22
+ "mm_hidden_size": 3456,
23
+ "mm_projector_lr": null,
24
+ "mm_projector_type": "mlp2x_gelu",
25
+ "mm_vision_tower": "./weights/siglip-so400m-patch14-384",
26
+ "model_type": "bunny-llama",
27
+ "num_attention_heads": 32,
28
+ "num_hidden_layers": 32,
29
+ "num_key_value_heads": 8,
30
+ "pretraining_tp": 1,
31
+ "rms_norm_eps": 1e-05,
32
+ "rope_scaling": null,
33
+ "rope_theta": 500000.0,
34
+ "tie_word_embeddings": false,
35
+ "tokenizer_model_max_length": 2048,
36
+ "tokenizer_padding_side": "right",
37
+ "torch_dtype": "float16",
38
+ "transformers_version": "4.41.2",
39
+ "tune_mm_mlp_adapter": false,
40
+ "unfreeze_vision_tower": true,
41
+ "use_cache": true,
42
+ "use_mm_proj": true,
43
+ "use_s2": true,
44
+ "vocab_size": 128256
45
+ }
mixing_strategies/Equal/bugsBunny-v1_1-Llama-3-8B-V-Equal_dataset_10000_repeat_1_epochs_1_GA_2_lora/non_lora_trainables.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:582698d24359f6be8e4df167566915dd311ba98e0ec3ef337f6141b3712b3e53
3
+ size 918507402
mixing_strategies/Equal/bugsBunny-v1_1-Llama-3-8B-V-Equal_dataset_10000_repeat_1_epochs_1_GA_2_lora/trainer_state.json ADDED
The diff for this file is too large to render. See raw diff
 
mixing_strategies/Equal/bugsBunny-v1_1-Llama-3-8B-V-Equal_dataset_10000_repeat_1_epochs_1_GA_4_lora/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: ./weights/Bunny-v1_1-Llama-3-8B-V
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.11.1
mixing_strategies/Equal/bugsBunny-v1_1-Llama-3-8B-V-Equal_dataset_10000_repeat_1_epochs_1_GA_4_lora/adapter_config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "./weights/Bunny-v1_1-Llama-3-8B-V",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 256,
14
+ "lora_dropout": 0.1,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 128,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "gate_proj",
24
+ "up_proj",
25
+ "q_proj",
26
+ "k_proj",
27
+ "o_proj",
28
+ "v_proj",
29
+ "down_proj"
30
+ ],
31
+ "task_type": "CAUSAL_LM",
32
+ "use_dora": false,
33
+ "use_rslora": false
34
+ }
mixing_strategies/Equal/bugsBunny-v1_1-Llama-3-8B-V-Equal_dataset_10000_repeat_1_epochs_1_GA_4_lora/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:509f4fe725368c830f31a07e9dfa637e7409475215bca031f12ab92ad28fc1d5
3
+ size 671150064
mixing_strategies/Equal/bugsBunny-v1_1-Llama-3-8B-V-Equal_dataset_10000_repeat_1_epochs_1_GA_4_lora/config.json ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "./weights/Bunny-v1_1-Llama-3-8B-V",
3
+ "architectures": [
4
+ "BunnyLlamaForCausalLM"
5
+ ],
6
+ "attention_bias": false,
7
+ "attention_dropout": 0.0,
8
+ "auto_map": {
9
+ "AutoConfig": "configuration_bunny_llama.BunnyLlamaConfig",
10
+ "AutoModelForCausalLM": "modeling_bunny_llama.BunnyLlamaForCausalLM"
11
+ },
12
+ "bos_token_id": 128000,
13
+ "continuous_training": false,
14
+ "eos_token_id": 128001,
15
+ "freeze_mm_mlp_adapter": false,
16
+ "hidden_act": "silu",
17
+ "hidden_size": 4096,
18
+ "image_aspect_ratio": "pad",
19
+ "initializer_range": 0.02,
20
+ "intermediate_size": 14336,
21
+ "max_position_embeddings": 8192,
22
+ "mm_hidden_size": 3456,
23
+ "mm_projector_lr": null,
24
+ "mm_projector_type": "mlp2x_gelu",
25
+ "mm_vision_tower": "./weights/siglip-so400m-patch14-384",
26
+ "model_type": "bunny-llama",
27
+ "num_attention_heads": 32,
28
+ "num_hidden_layers": 32,
29
+ "num_key_value_heads": 8,
30
+ "pretraining_tp": 1,
31
+ "rms_norm_eps": 1e-05,
32
+ "rope_scaling": null,
33
+ "rope_theta": 500000.0,
34
+ "tie_word_embeddings": false,
35
+ "tokenizer_model_max_length": 2048,
36
+ "tokenizer_padding_side": "right",
37
+ "torch_dtype": "float16",
38
+ "transformers_version": "4.41.2",
39
+ "tune_mm_mlp_adapter": false,
40
+ "unfreeze_vision_tower": true,
41
+ "use_cache": true,
42
+ "use_mm_proj": true,
43
+ "use_s2": true,
44
+ "vocab_size": 128256
45
+ }
mixing_strategies/Equal/bugsBunny-v1_1-Llama-3-8B-V-Equal_dataset_10000_repeat_1_epochs_1_GA_4_lora/non_lora_trainables.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1cfa623b92512d18b2427e22625319dbb311b37891dcfc42a982b687758f3ac6
3
+ size 918507402
mixing_strategies/Equal/bugsBunny-v1_1-Llama-3-8B-V-Equal_dataset_10000_repeat_1_epochs_1_GA_4_lora/trainer_state.json ADDED
@@ -0,0 +1,2226 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.9984,
5
+ "eval_steps": 500,
6
+ "global_step": 312,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.0032,
13
+ "grad_norm": 0.8230906866528206,
14
+ "learning_rate": 2e-05,
15
+ "loss": 1.3718,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.0064,
20
+ "grad_norm": 0.8011482349224612,
21
+ "learning_rate": 4e-05,
22
+ "loss": 1.3884,
23
+ "step": 2
24
+ },
25
+ {
26
+ "epoch": 0.0096,
27
+ "grad_norm": 0.6777465654408708,
28
+ "learning_rate": 6e-05,
29
+ "loss": 1.2942,
30
+ "step": 3
31
+ },
32
+ {
33
+ "epoch": 0.0128,
34
+ "grad_norm": 0.6985842469244755,
35
+ "learning_rate": 8e-05,
36
+ "loss": 1.3011,
37
+ "step": 4
38
+ },
39
+ {
40
+ "epoch": 0.016,
41
+ "grad_norm": 0.6358810285065617,
42
+ "learning_rate": 0.0001,
43
+ "loss": 1.2236,
44
+ "step": 5
45
+ },
46
+ {
47
+ "epoch": 0.0192,
48
+ "grad_norm": 0.8043615850550121,
49
+ "learning_rate": 0.00012,
50
+ "loss": 1.1222,
51
+ "step": 6
52
+ },
53
+ {
54
+ "epoch": 0.0224,
55
+ "grad_norm": 0.8766371190581345,
56
+ "learning_rate": 0.00014,
57
+ "loss": 1.0481,
58
+ "step": 7
59
+ },
60
+ {
61
+ "epoch": 0.0256,
62
+ "grad_norm": 0.5896469063055397,
63
+ "learning_rate": 0.00016,
64
+ "loss": 1.0115,
65
+ "step": 8
66
+ },
67
+ {
68
+ "epoch": 0.0288,
69
+ "grad_norm": 0.5140042859696677,
70
+ "learning_rate": 0.00018,
71
+ "loss": 1.0032,
72
+ "step": 9
73
+ },
74
+ {
75
+ "epoch": 0.032,
76
+ "grad_norm": 0.47047377131530216,
77
+ "learning_rate": 0.0002,
78
+ "loss": 0.9718,
79
+ "step": 10
80
+ },
81
+ {
82
+ "epoch": 0.0352,
83
+ "grad_norm": 0.4689357680369753,
84
+ "learning_rate": 0.00019999458931878073,
85
+ "loss": 1.0164,
86
+ "step": 11
87
+ },
88
+ {
89
+ "epoch": 0.0384,
90
+ "grad_norm": 0.49055471890156765,
91
+ "learning_rate": 0.0001999783578606323,
92
+ "loss": 1.0478,
93
+ "step": 12
94
+ },
95
+ {
96
+ "epoch": 0.0416,
97
+ "grad_norm": 0.48360570699467204,
98
+ "learning_rate": 0.00019995130738201966,
99
+ "loss": 1.0179,
100
+ "step": 13
101
+ },
102
+ {
103
+ "epoch": 0.0448,
104
+ "grad_norm": 0.4385882347361944,
105
+ "learning_rate": 0.0001999134408101731,
106
+ "loss": 0.8839,
107
+ "step": 14
108
+ },
109
+ {
110
+ "epoch": 0.048,
111
+ "grad_norm": 0.5842432990089418,
112
+ "learning_rate": 0.00019986476224277165,
113
+ "loss": 1.0378,
114
+ "step": 15
115
+ },
116
+ {
117
+ "epoch": 0.0512,
118
+ "grad_norm": 0.4798987625762095,
119
+ "learning_rate": 0.00019980527694749952,
120
+ "loss": 0.9014,
121
+ "step": 16
122
+ },
123
+ {
124
+ "epoch": 0.0544,
125
+ "grad_norm": 0.43385099220728984,
126
+ "learning_rate": 0.00019973499136147606,
127
+ "loss": 0.9908,
128
+ "step": 17
129
+ },
130
+ {
131
+ "epoch": 0.0576,
132
+ "grad_norm": 0.4363177117395925,
133
+ "learning_rate": 0.0001996539130905593,
134
+ "loss": 0.9302,
135
+ "step": 18
136
+ },
137
+ {
138
+ "epoch": 0.0608,
139
+ "grad_norm": 0.4184869797333112,
140
+ "learning_rate": 0.0001995620509085228,
141
+ "loss": 0.9156,
142
+ "step": 19
143
+ },
144
+ {
145
+ "epoch": 0.064,
146
+ "grad_norm": 0.4093043649081553,
147
+ "learning_rate": 0.00019945941475610623,
148
+ "loss": 0.9582,
149
+ "step": 20
150
+ },
151
+ {
152
+ "epoch": 0.0672,
153
+ "grad_norm": 0.40265123100906836,
154
+ "learning_rate": 0.0001993460157399396,
155
+ "loss": 0.8491,
156
+ "step": 21
157
+ },
158
+ {
159
+ "epoch": 0.0704,
160
+ "grad_norm": 0.40866258779980846,
161
+ "learning_rate": 0.0001992218661313415,
162
+ "loss": 0.9515,
163
+ "step": 22
164
+ },
165
+ {
166
+ "epoch": 0.0736,
167
+ "grad_norm": 0.47714968174592676,
168
+ "learning_rate": 0.00019908697936499103,
169
+ "loss": 0.983,
170
+ "step": 23
171
+ },
172
+ {
173
+ "epoch": 0.0768,
174
+ "grad_norm": 0.3725347901708648,
175
+ "learning_rate": 0.00019894137003747403,
176
+ "loss": 0.9136,
177
+ "step": 24
178
+ },
179
+ {
180
+ "epoch": 0.08,
181
+ "grad_norm": 0.48768461879424546,
182
+ "learning_rate": 0.00019878505390570362,
183
+ "loss": 0.9486,
184
+ "step": 25
185
+ },
186
+ {
187
+ "epoch": 0.0832,
188
+ "grad_norm": 0.46702127014841616,
189
+ "learning_rate": 0.00019861804788521493,
190
+ "loss": 0.9692,
191
+ "step": 26
192
+ },
193
+ {
194
+ "epoch": 0.0864,
195
+ "grad_norm": 0.39034215128065525,
196
+ "learning_rate": 0.00019844037004833473,
197
+ "loss": 0.8706,
198
+ "step": 27
199
+ },
200
+ {
201
+ "epoch": 0.0896,
202
+ "grad_norm": 0.4730253707882492,
203
+ "learning_rate": 0.00019825203962222572,
204
+ "loss": 0.9078,
205
+ "step": 28
206
+ },
207
+ {
208
+ "epoch": 0.0928,
209
+ "grad_norm": 0.3566887338551931,
210
+ "learning_rate": 0.0001980530769868059,
211
+ "loss": 0.8921,
212
+ "step": 29
213
+ },
214
+ {
215
+ "epoch": 0.096,
216
+ "grad_norm": 0.37413026403570376,
217
+ "learning_rate": 0.00019784350367254322,
218
+ "loss": 0.8723,
219
+ "step": 30
220
+ },
221
+ {
222
+ "epoch": 0.0992,
223
+ "grad_norm": 0.4494091415776092,
224
+ "learning_rate": 0.0001976233423581255,
225
+ "loss": 0.9454,
226
+ "step": 31
227
+ },
228
+ {
229
+ "epoch": 0.1024,
230
+ "grad_norm": 0.4380782092404729,
231
+ "learning_rate": 0.0001973926168680066,
232
+ "loss": 0.9703,
233
+ "step": 32
234
+ },
235
+ {
236
+ "epoch": 0.1056,
237
+ "grad_norm": 0.4024207233737277,
238
+ "learning_rate": 0.00019715135216982798,
239
+ "loss": 0.8925,
240
+ "step": 33
241
+ },
242
+ {
243
+ "epoch": 0.1088,
244
+ "grad_norm": 0.40406197533093235,
245
+ "learning_rate": 0.0001968995743717171,
246
+ "loss": 0.9361,
247
+ "step": 34
248
+ },
249
+ {
250
+ "epoch": 0.112,
251
+ "grad_norm": 0.3618341982376051,
252
+ "learning_rate": 0.00019663731071946206,
253
+ "loss": 0.8614,
254
+ "step": 35
255
+ },
256
+ {
257
+ "epoch": 0.1152,
258
+ "grad_norm": 0.3658614124884964,
259
+ "learning_rate": 0.00019636458959356316,
260
+ "loss": 0.8498,
261
+ "step": 36
262
+ },
263
+ {
264
+ "epoch": 0.1184,
265
+ "grad_norm": 0.5573838774300858,
266
+ "learning_rate": 0.0001960814405061619,
267
+ "loss": 0.8736,
268
+ "step": 37
269
+ },
270
+ {
271
+ "epoch": 0.1216,
272
+ "grad_norm": 0.38557296694847226,
273
+ "learning_rate": 0.00019578789409784727,
274
+ "loss": 0.8929,
275
+ "step": 38
276
+ },
277
+ {
278
+ "epoch": 0.1248,
279
+ "grad_norm": 0.40079642763917983,
280
+ "learning_rate": 0.00019548398213434007,
281
+ "loss": 0.8423,
282
+ "step": 39
283
+ },
284
+ {
285
+ "epoch": 0.128,
286
+ "grad_norm": 0.38961763082023404,
287
+ "learning_rate": 0.00019516973750305532,
288
+ "loss": 0.8835,
289
+ "step": 40
290
+ },
291
+ {
292
+ "epoch": 0.1312,
293
+ "grad_norm": 0.4099214309122936,
294
+ "learning_rate": 0.00019484519420954354,
295
+ "loss": 0.9405,
296
+ "step": 41
297
+ },
298
+ {
299
+ "epoch": 0.1344,
300
+ "grad_norm": 0.39275472621957447,
301
+ "learning_rate": 0.00019451038737381077,
302
+ "loss": 0.8549,
303
+ "step": 42
304
+ },
305
+ {
306
+ "epoch": 0.1376,
307
+ "grad_norm": 0.37890491998796727,
308
+ "learning_rate": 0.00019416535322651818,
309
+ "loss": 0.9153,
310
+ "step": 43
311
+ },
312
+ {
313
+ "epoch": 0.1408,
314
+ "grad_norm": 0.3677543896244243,
315
+ "learning_rate": 0.00019381012910506146,
316
+ "loss": 0.8453,
317
+ "step": 44
318
+ },
319
+ {
320
+ "epoch": 0.144,
321
+ "grad_norm": 0.3798879355149729,
322
+ "learning_rate": 0.00019344475344953012,
323
+ "loss": 0.8136,
324
+ "step": 45
325
+ },
326
+ {
327
+ "epoch": 0.1472,
328
+ "grad_norm": 0.39541256509109524,
329
+ "learning_rate": 0.00019306926579854821,
330
+ "loss": 0.8917,
331
+ "step": 46
332
+ },
333
+ {
334
+ "epoch": 0.1504,
335
+ "grad_norm": 0.3933918528877009,
336
+ "learning_rate": 0.00019268370678499533,
337
+ "loss": 0.8155,
338
+ "step": 47
339
+ },
340
+ {
341
+ "epoch": 0.1536,
342
+ "grad_norm": 0.40698599023324944,
343
+ "learning_rate": 0.0001922881181316097,
344
+ "loss": 0.8666,
345
+ "step": 48
346
+ },
347
+ {
348
+ "epoch": 0.1568,
349
+ "grad_norm": 0.40042005946240466,
350
+ "learning_rate": 0.00019188254264647337,
351
+ "loss": 0.8412,
352
+ "step": 49
353
+ },
354
+ {
355
+ "epoch": 0.16,
356
+ "grad_norm": 0.4607168760067279,
357
+ "learning_rate": 0.0001914670242183795,
358
+ "loss": 0.8868,
359
+ "step": 50
360
+ },
361
+ {
362
+ "epoch": 0.1632,
363
+ "grad_norm": 0.39972125720735685,
364
+ "learning_rate": 0.0001910416078120832,
365
+ "loss": 0.8918,
366
+ "step": 51
367
+ },
368
+ {
369
+ "epoch": 0.1664,
370
+ "grad_norm": 0.4188280311405362,
371
+ "learning_rate": 0.0001906063394634356,
372
+ "loss": 0.902,
373
+ "step": 52
374
+ },
375
+ {
376
+ "epoch": 0.1696,
377
+ "grad_norm": 0.42940697765165986,
378
+ "learning_rate": 0.00019016126627440237,
379
+ "loss": 0.8641,
380
+ "step": 53
381
+ },
382
+ {
383
+ "epoch": 0.1728,
384
+ "grad_norm": 0.3545329739920464,
385
+ "learning_rate": 0.00018970643640796642,
386
+ "loss": 0.8735,
387
+ "step": 54
388
+ },
389
+ {
390
+ "epoch": 0.176,
391
+ "grad_norm": 0.39694907744821073,
392
+ "learning_rate": 0.000189241899082916,
393
+ "loss": 0.7712,
394
+ "step": 55
395
+ },
396
+ {
397
+ "epoch": 0.1792,
398
+ "grad_norm": 0.3873462097880066,
399
+ "learning_rate": 0.00018876770456851877,
400
+ "loss": 0.8613,
401
+ "step": 56
402
+ },
403
+ {
404
+ "epoch": 0.1824,
405
+ "grad_norm": 0.39944251069469355,
406
+ "learning_rate": 0.0001882839041790818,
407
+ "loss": 0.8342,
408
+ "step": 57
409
+ },
410
+ {
411
+ "epoch": 0.1856,
412
+ "grad_norm": 0.38873644333253415,
413
+ "learning_rate": 0.00018779055026839868,
414
+ "loss": 0.8602,
415
+ "step": 58
416
+ },
417
+ {
418
+ "epoch": 0.1888,
419
+ "grad_norm": 0.41970967893409644,
420
+ "learning_rate": 0.00018728769622408423,
421
+ "loss": 0.8577,
422
+ "step": 59
423
+ },
424
+ {
425
+ "epoch": 0.192,
426
+ "grad_norm": 0.3660391396843375,
427
+ "learning_rate": 0.00018677539646179707,
428
+ "loss": 0.8452,
429
+ "step": 60
430
+ },
431
+ {
432
+ "epoch": 0.1952,
433
+ "grad_norm": 0.4567680983316884,
434
+ "learning_rate": 0.00018625370641935129,
435
+ "loss": 0.9641,
436
+ "step": 61
437
+ },
438
+ {
439
+ "epoch": 0.1984,
440
+ "grad_norm": 0.4347858356915908,
441
+ "learning_rate": 0.00018572268255071718,
442
+ "loss": 0.9423,
443
+ "step": 62
444
+ },
445
+ {
446
+ "epoch": 0.2016,
447
+ "grad_norm": 0.3337070071383876,
448
+ "learning_rate": 0.00018518238231991218,
449
+ "loss": 0.8076,
450
+ "step": 63
451
+ },
452
+ {
453
+ "epoch": 0.2048,
454
+ "grad_norm": 0.4286830947909843,
455
+ "learning_rate": 0.00018463286419478255,
456
+ "loss": 0.9527,
457
+ "step": 64
458
+ },
459
+ {
460
+ "epoch": 0.208,
461
+ "grad_norm": 0.35295999710631726,
462
+ "learning_rate": 0.00018407418764067627,
463
+ "loss": 0.8146,
464
+ "step": 65
465
+ },
466
+ {
467
+ "epoch": 0.2112,
468
+ "grad_norm": 0.40069838158976223,
469
+ "learning_rate": 0.00018350641311400812,
470
+ "loss": 0.9182,
471
+ "step": 66
472
+ },
473
+ {
474
+ "epoch": 0.2144,
475
+ "grad_norm": 0.428778831044889,
476
+ "learning_rate": 0.0001829296020557174,
477
+ "loss": 0.9332,
478
+ "step": 67
479
+ },
480
+ {
481
+ "epoch": 0.2176,
482
+ "grad_norm": 0.35155177053946185,
483
+ "learning_rate": 0.00018234381688461942,
484
+ "loss": 0.8472,
485
+ "step": 68
486
+ },
487
+ {
488
+ "epoch": 0.2208,
489
+ "grad_norm": 0.3393523853315711,
490
+ "learning_rate": 0.0001817491209906506,
491
+ "loss": 0.8116,
492
+ "step": 69
493
+ },
494
+ {
495
+ "epoch": 0.224,
496
+ "grad_norm": 0.39467587805954535,
497
+ "learning_rate": 0.00018114557872800905,
498
+ "loss": 0.8882,
499
+ "step": 70
500
+ },
501
+ {
502
+ "epoch": 0.2272,
503
+ "grad_norm": 0.45738467437649594,
504
+ "learning_rate": 0.00018053325540819045,
505
+ "loss": 0.9899,
506
+ "step": 71
507
+ },
508
+ {
509
+ "epoch": 0.2304,
510
+ "grad_norm": 0.40860575562909096,
511
+ "learning_rate": 0.0001799122172929206,
512
+ "loss": 0.8518,
513
+ "step": 72
514
+ },
515
+ {
516
+ "epoch": 0.2336,
517
+ "grad_norm": 0.37358375585659853,
518
+ "learning_rate": 0.00017928253158698473,
519
+ "loss": 0.8671,
520
+ "step": 73
521
+ },
522
+ {
523
+ "epoch": 0.2368,
524
+ "grad_norm": 0.3614438681293151,
525
+ "learning_rate": 0.0001786442664309554,
526
+ "loss": 0.7581,
527
+ "step": 74
528
+ },
529
+ {
530
+ "epoch": 0.24,
531
+ "grad_norm": 0.39185167616797406,
532
+ "learning_rate": 0.0001779974908938184,
533
+ "loss": 0.8273,
534
+ "step": 75
535
+ },
536
+ {
537
+ "epoch": 0.2432,
538
+ "grad_norm": 0.3725033489438709,
539
+ "learning_rate": 0.0001773422749654988,
540
+ "loss": 0.7593,
541
+ "step": 76
542
+ },
543
+ {
544
+ "epoch": 0.2464,
545
+ "grad_norm": 0.3879109255323267,
546
+ "learning_rate": 0.00017667868954928694,
547
+ "loss": 0.8456,
548
+ "step": 77
549
+ },
550
+ {
551
+ "epoch": 0.2496,
552
+ "grad_norm": 0.3449533879291914,
553
+ "learning_rate": 0.00017600680645416583,
554
+ "loss": 0.8246,
555
+ "step": 78
556
+ },
557
+ {
558
+ "epoch": 0.2528,
559
+ "grad_norm": 0.3557304717641571,
560
+ "learning_rate": 0.00017532669838704035,
561
+ "loss": 0.8002,
562
+ "step": 79
563
+ },
564
+ {
565
+ "epoch": 0.256,
566
+ "grad_norm": 0.39624711741320795,
567
+ "learning_rate": 0.00017463843894486937,
568
+ "loss": 0.845,
569
+ "step": 80
570
+ },
571
+ {
572
+ "epoch": 0.2592,
573
+ "grad_norm": 0.4040277144139735,
574
+ "learning_rate": 0.0001739421026067017,
575
+ "loss": 0.9255,
576
+ "step": 81
577
+ },
578
+ {
579
+ "epoch": 0.2624,
580
+ "grad_norm": 0.3573834496881195,
581
+ "learning_rate": 0.00017323776472561627,
582
+ "loss": 0.8664,
583
+ "step": 82
584
+ },
585
+ {
586
+ "epoch": 0.2656,
587
+ "grad_norm": 0.39861349237455607,
588
+ "learning_rate": 0.00017252550152056795,
589
+ "loss": 0.869,
590
+ "step": 83
591
+ },
592
+ {
593
+ "epoch": 0.2688,
594
+ "grad_norm": 0.4122338593577007,
595
+ "learning_rate": 0.0001718053900681397,
596
+ "loss": 0.8542,
597
+ "step": 84
598
+ },
599
+ {
600
+ "epoch": 0.272,
601
+ "grad_norm": 0.38711562232847824,
602
+ "learning_rate": 0.00017107750829420176,
603
+ "loss": 0.8265,
604
+ "step": 85
605
+ },
606
+ {
607
+ "epoch": 0.2752,
608
+ "grad_norm": 0.39947214892388133,
609
+ "learning_rate": 0.00017034193496547902,
610
+ "loss": 0.9227,
611
+ "step": 86
612
+ },
613
+ {
614
+ "epoch": 0.2784,
615
+ "grad_norm": 0.36818193645695974,
616
+ "learning_rate": 0.00016959874968102735,
617
+ "loss": 0.8025,
618
+ "step": 87
619
+ },
620
+ {
621
+ "epoch": 0.2816,
622
+ "grad_norm": 0.3563867965150087,
623
+ "learning_rate": 0.00016884803286362,
624
+ "loss": 0.799,
625
+ "step": 88
626
+ },
627
+ {
628
+ "epoch": 0.2848,
629
+ "grad_norm": 0.3863926930438656,
630
+ "learning_rate": 0.00016808986575104465,
631
+ "loss": 0.9039,
632
+ "step": 89
633
+ },
634
+ {
635
+ "epoch": 0.288,
636
+ "grad_norm": 0.35592980299837496,
637
+ "learning_rate": 0.00016732433038731242,
638
+ "loss": 0.8311,
639
+ "step": 90
640
+ },
641
+ {
642
+ "epoch": 0.2912,
643
+ "grad_norm": 0.4204313739806602,
644
+ "learning_rate": 0.0001665515096137797,
645
+ "loss": 0.9226,
646
+ "step": 91
647
+ },
648
+ {
649
+ "epoch": 0.2944,
650
+ "grad_norm": 0.3723535694546385,
651
+ "learning_rate": 0.00016577148706018328,
652
+ "loss": 0.8311,
653
+ "step": 92
654
+ },
655
+ {
656
+ "epoch": 0.2976,
657
+ "grad_norm": 0.41234782362203953,
658
+ "learning_rate": 0.00016498434713559088,
659
+ "loss": 0.8979,
660
+ "step": 93
661
+ },
662
+ {
663
+ "epoch": 0.3008,
664
+ "grad_norm": 0.4053425895286585,
665
+ "learning_rate": 0.00016419017501926656,
666
+ "loss": 0.8344,
667
+ "step": 94
668
+ },
669
+ {
670
+ "epoch": 0.304,
671
+ "grad_norm": 0.36505412209597476,
672
+ "learning_rate": 0.0001633890566514535,
673
+ "loss": 0.8345,
674
+ "step": 95
675
+ },
676
+ {
677
+ "epoch": 0.3072,
678
+ "grad_norm": 0.382611792068928,
679
+ "learning_rate": 0.00016258107872407375,
680
+ "loss": 0.8749,
681
+ "step": 96
682
+ },
683
+ {
684
+ "epoch": 0.3104,
685
+ "grad_norm": 0.37741695374713863,
686
+ "learning_rate": 0.0001617663286713474,
687
+ "loss": 0.8493,
688
+ "step": 97
689
+ },
690
+ {
691
+ "epoch": 0.3136,
692
+ "grad_norm": 0.4676602590760305,
693
+ "learning_rate": 0.00016094489466033043,
694
+ "loss": 0.8432,
695
+ "step": 98
696
+ },
697
+ {
698
+ "epoch": 0.3168,
699
+ "grad_norm": 0.34327944895308454,
700
+ "learning_rate": 0.00016011686558137448,
701
+ "loss": 0.7974,
702
+ "step": 99
703
+ },
704
+ {
705
+ "epoch": 0.32,
706
+ "grad_norm": 0.3556557830313786,
707
+ "learning_rate": 0.0001592823310385073,
708
+ "loss": 0.8677,
709
+ "step": 100
710
+ },
711
+ {
712
+ "epoch": 0.3232,
713
+ "grad_norm": 0.4186166790777886,
714
+ "learning_rate": 0.0001584413813397364,
715
+ "loss": 0.8586,
716
+ "step": 101
717
+ },
718
+ {
719
+ "epoch": 0.3264,
720
+ "grad_norm": 0.37112136732584244,
721
+ "learning_rate": 0.00015759410748727662,
722
+ "loss": 0.8209,
723
+ "step": 102
724
+ },
725
+ {
726
+ "epoch": 0.3296,
727
+ "grad_norm": 0.38959686649650355,
728
+ "learning_rate": 0.00015674060116770236,
729
+ "loss": 0.8077,
730
+ "step": 103
731
+ },
732
+ {
733
+ "epoch": 0.3328,
734
+ "grad_norm": 0.36221559570247797,
735
+ "learning_rate": 0.00015588095474202595,
736
+ "loss": 0.8142,
737
+ "step": 104
738
+ },
739
+ {
740
+ "epoch": 0.336,
741
+ "grad_norm": 0.3408395021986205,
742
+ "learning_rate": 0.00015501526123570277,
743
+ "loss": 0.825,
744
+ "step": 105
745
+ },
746
+ {
747
+ "epoch": 0.3392,
748
+ "grad_norm": 0.46256890237184806,
749
+ "learning_rate": 0.00015414361432856475,
750
+ "loss": 0.9299,
751
+ "step": 106
752
+ },
753
+ {
754
+ "epoch": 0.3424,
755
+ "grad_norm": 0.4279687120096611,
756
+ "learning_rate": 0.0001532661083446829,
757
+ "loss": 0.9313,
758
+ "step": 107
759
+ },
760
+ {
761
+ "epoch": 0.3456,
762
+ "grad_norm": 0.499080817408835,
763
+ "learning_rate": 0.00015238283824216015,
764
+ "loss": 0.9257,
765
+ "step": 108
766
+ },
767
+ {
768
+ "epoch": 0.3488,
769
+ "grad_norm": 0.3677888976110564,
770
+ "learning_rate": 0.00015149389960285558,
771
+ "loss": 0.8234,
772
+ "step": 109
773
+ },
774
+ {
775
+ "epoch": 0.352,
776
+ "grad_norm": 0.40300933145036566,
777
+ "learning_rate": 0.00015059938862204127,
778
+ "loss": 0.8661,
779
+ "step": 110
780
+ },
781
+ {
782
+ "epoch": 0.3552,
783
+ "grad_norm": 0.35272019193019816,
784
+ "learning_rate": 0.00014969940209799248,
785
+ "loss": 0.7685,
786
+ "step": 111
787
+ },
788
+ {
789
+ "epoch": 0.3584,
790
+ "grad_norm": 0.42072850665932426,
791
+ "learning_rate": 0.00014879403742151283,
792
+ "loss": 0.838,
793
+ "step": 112
794
+ },
795
+ {
796
+ "epoch": 0.3616,
797
+ "grad_norm": 0.3843947444096128,
798
+ "learning_rate": 0.00014788339256539544,
799
+ "loss": 0.7295,
800
+ "step": 113
801
+ },
802
+ {
803
+ "epoch": 0.3648,
804
+ "grad_norm": 0.43191105712976785,
805
+ "learning_rate": 0.0001469675660738206,
806
+ "loss": 0.8535,
807
+ "step": 114
808
+ },
809
+ {
810
+ "epoch": 0.368,
811
+ "grad_norm": 0.3584146254614676,
812
+ "learning_rate": 0.00014604665705169237,
813
+ "loss": 0.8303,
814
+ "step": 115
815
+ },
816
+ {
817
+ "epoch": 0.3712,
818
+ "grad_norm": 0.4020587727121328,
819
+ "learning_rate": 0.00014512076515391375,
820
+ "loss": 0.8827,
821
+ "step": 116
822
+ },
823
+ {
824
+ "epoch": 0.3744,
825
+ "grad_norm": 0.42244806005338637,
826
+ "learning_rate": 0.00014418999057460276,
827
+ "loss": 0.8637,
828
+ "step": 117
829
+ },
830
+ {
831
+ "epoch": 0.3776,
832
+ "grad_norm": 0.3490560388254176,
833
+ "learning_rate": 0.0001432544340362501,
834
+ "loss": 0.7685,
835
+ "step": 118
836
+ },
837
+ {
838
+ "epoch": 0.3808,
839
+ "grad_norm": 0.3610932978019899,
840
+ "learning_rate": 0.00014231419677881966,
841
+ "loss": 0.7689,
842
+ "step": 119
843
+ },
844
+ {
845
+ "epoch": 0.384,
846
+ "grad_norm": 0.35696651622274633,
847
+ "learning_rate": 0.00014136938054879283,
848
+ "loss": 0.8692,
849
+ "step": 120
850
+ },
851
+ {
852
+ "epoch": 0.3872,
853
+ "grad_norm": 0.37982273980822234,
854
+ "learning_rate": 0.00014042008758815818,
855
+ "loss": 0.8633,
856
+ "step": 121
857
+ },
858
+ {
859
+ "epoch": 0.3904,
860
+ "grad_norm": 0.49338348781038344,
861
+ "learning_rate": 0.00013946642062334766,
862
+ "loss": 0.7882,
863
+ "step": 122
864
+ },
865
+ {
866
+ "epoch": 0.3936,
867
+ "grad_norm": 0.41407314429068576,
868
+ "learning_rate": 0.00013850848285411994,
869
+ "loss": 0.8352,
870
+ "step": 123
871
+ },
872
+ {
873
+ "epoch": 0.3968,
874
+ "grad_norm": 0.35863668034543733,
875
+ "learning_rate": 0.000137546377942393,
876
+ "loss": 0.824,
877
+ "step": 124
878
+ },
879
+ {
880
+ "epoch": 0.4,
881
+ "grad_norm": 0.34638170296412163,
882
+ "learning_rate": 0.00013658021000102636,
883
+ "loss": 0.7332,
884
+ "step": 125
885
+ },
886
+ {
887
+ "epoch": 0.4032,
888
+ "grad_norm": 0.33192770455483456,
889
+ "learning_rate": 0.00013561008358255468,
890
+ "loss": 0.8012,
891
+ "step": 126
892
+ },
893
+ {
894
+ "epoch": 0.4064,
895
+ "grad_norm": 0.4018840350246986,
896
+ "learning_rate": 0.00013463610366787392,
897
+ "loss": 0.8274,
898
+ "step": 127
899
+ },
900
+ {
901
+ "epoch": 0.4096,
902
+ "grad_norm": 0.46935625670519754,
903
+ "learning_rate": 0.00013365837565488064,
904
+ "loss": 0.9137,
905
+ "step": 128
906
+ },
907
+ {
908
+ "epoch": 0.4128,
909
+ "grad_norm": 0.3467457829185042,
910
+ "learning_rate": 0.0001326770053470668,
911
+ "loss": 0.8057,
912
+ "step": 129
913
+ },
914
+ {
915
+ "epoch": 0.416,
916
+ "grad_norm": 0.3713608562339026,
917
+ "learning_rate": 0.0001316920989420703,
918
+ "loss": 0.778,
919
+ "step": 130
920
+ },
921
+ {
922
+ "epoch": 0.4192,
923
+ "grad_norm": 0.2953063312947437,
924
+ "learning_rate": 0.00013070376302018287,
925
+ "loss": 0.7741,
926
+ "step": 131
927
+ },
928
+ {
929
+ "epoch": 0.4224,
930
+ "grad_norm": 0.315778283756295,
931
+ "learning_rate": 0.00012971210453281674,
932
+ "loss": 0.7968,
933
+ "step": 132
934
+ },
935
+ {
936
+ "epoch": 0.4256,
937
+ "grad_norm": 0.3777293731399955,
938
+ "learning_rate": 0.000128717230790931,
939
+ "loss": 0.8476,
940
+ "step": 133
941
+ },
942
+ {
943
+ "epoch": 0.4288,
944
+ "grad_norm": 0.36565481085206214,
945
+ "learning_rate": 0.00012771924945341906,
946
+ "loss": 0.7424,
947
+ "step": 134
948
+ },
949
+ {
950
+ "epoch": 0.432,
951
+ "grad_norm": 0.40097648303660766,
952
+ "learning_rate": 0.00012671826851545851,
953
+ "loss": 0.8961,
954
+ "step": 135
955
+ },
956
+ {
957
+ "epoch": 0.4352,
958
+ "grad_norm": 0.4335469508570514,
959
+ "learning_rate": 0.0001257143962968246,
960
+ "loss": 0.9337,
961
+ "step": 136
962
+ },
963
+ {
964
+ "epoch": 0.4384,
965
+ "grad_norm": 0.3571253000150674,
966
+ "learning_rate": 0.00012470774143016853,
967
+ "loss": 0.7772,
968
+ "step": 137
969
+ },
970
+ {
971
+ "epoch": 0.4416,
972
+ "grad_norm": 0.4175995621863514,
973
+ "learning_rate": 0.00012369841284926188,
974
+ "loss": 0.7899,
975
+ "step": 138
976
+ },
977
+ {
978
+ "epoch": 0.4448,
979
+ "grad_norm": 0.3555584844534414,
980
+ "learning_rate": 0.00012268651977720866,
981
+ "loss": 0.8058,
982
+ "step": 139
983
+ },
984
+ {
985
+ "epoch": 0.448,
986
+ "grad_norm": 0.4478506698284743,
987
+ "learning_rate": 0.00012167217171462566,
988
+ "loss": 0.8602,
989
+ "step": 140
990
+ },
991
+ {
992
+ "epoch": 0.4512,
993
+ "grad_norm": 0.3924154628163152,
994
+ "learning_rate": 0.0001206554784277931,
995
+ "loss": 0.8566,
996
+ "step": 141
997
+ },
998
+ {
999
+ "epoch": 0.4544,
1000
+ "grad_norm": 0.3413680221828951,
1001
+ "learning_rate": 0.00011963654993677645,
1002
+ "loss": 0.8442,
1003
+ "step": 142
1004
+ },
1005
+ {
1006
+ "epoch": 0.4576,
1007
+ "grad_norm": 0.37597687671024504,
1008
+ "learning_rate": 0.00011861549650352069,
1009
+ "loss": 0.7896,
1010
+ "step": 143
1011
+ },
1012
+ {
1013
+ "epoch": 0.4608,
1014
+ "grad_norm": 0.35508126757199976,
1015
+ "learning_rate": 0.00011759242861991855,
1016
+ "loss": 0.7702,
1017
+ "step": 144
1018
+ },
1019
+ {
1020
+ "epoch": 0.464,
1021
+ "grad_norm": 0.35676098581829857,
1022
+ "learning_rate": 0.00011656745699585371,
1023
+ "loss": 0.7463,
1024
+ "step": 145
1025
+ },
1026
+ {
1027
+ "epoch": 0.4672,
1028
+ "grad_norm": 0.34262057715324995,
1029
+ "learning_rate": 0.00011554069254722051,
1030
+ "loss": 0.8023,
1031
+ "step": 146
1032
+ },
1033
+ {
1034
+ "epoch": 0.4704,
1035
+ "grad_norm": 0.3160775424152765,
1036
+ "learning_rate": 0.00011451224638392129,
1037
+ "loss": 0.753,
1038
+ "step": 147
1039
+ },
1040
+ {
1041
+ "epoch": 0.4736,
1042
+ "grad_norm": 0.41408430747051145,
1043
+ "learning_rate": 0.00011348222979784289,
1044
+ "loss": 0.8722,
1045
+ "step": 148
1046
+ },
1047
+ {
1048
+ "epoch": 0.4768,
1049
+ "grad_norm": 0.3807991104363706,
1050
+ "learning_rate": 0.00011245075425081328,
1051
+ "loss": 0.7902,
1052
+ "step": 149
1053
+ },
1054
+ {
1055
+ "epoch": 0.48,
1056
+ "grad_norm": 0.3444267731692557,
1057
+ "learning_rate": 0.00011141793136253986,
1058
+ "loss": 0.7729,
1059
+ "step": 150
1060
+ },
1061
+ {
1062
+ "epoch": 0.4832,
1063
+ "grad_norm": 0.3198788705719864,
1064
+ "learning_rate": 0.0001103838728985307,
1065
+ "loss": 0.7863,
1066
+ "step": 151
1067
+ },
1068
+ {
1069
+ "epoch": 0.4864,
1070
+ "grad_norm": 0.41645947104870057,
1071
+ "learning_rate": 0.000109348690758,
1072
+ "loss": 0.8442,
1073
+ "step": 152
1074
+ },
1075
+ {
1076
+ "epoch": 0.4896,
1077
+ "grad_norm": 0.3473642274949473,
1078
+ "learning_rate": 0.00010831249696175918,
1079
+ "loss": 0.7755,
1080
+ "step": 153
1081
+ },
1082
+ {
1083
+ "epoch": 0.4928,
1084
+ "grad_norm": 0.351233087536269,
1085
+ "learning_rate": 0.0001072754036400944,
1086
+ "loss": 0.7799,
1087
+ "step": 154
1088
+ },
1089
+ {
1090
+ "epoch": 0.496,
1091
+ "grad_norm": 0.39062438800982935,
1092
+ "learning_rate": 0.00010623752302063283,
1093
+ "loss": 0.8262,
1094
+ "step": 155
1095
+ },
1096
+ {
1097
+ "epoch": 0.4992,
1098
+ "grad_norm": 0.4661216475962772,
1099
+ "learning_rate": 0.00010519896741619803,
1100
+ "loss": 0.8754,
1101
+ "step": 156
1102
+ },
1103
+ {
1104
+ "epoch": 0.5024,
1105
+ "grad_norm": 0.3680543907349618,
1106
+ "learning_rate": 0.00010415984921265609,
1107
+ "loss": 0.8511,
1108
+ "step": 157
1109
+ },
1110
+ {
1111
+ "epoch": 0.5056,
1112
+ "grad_norm": 0.3554554750391017,
1113
+ "learning_rate": 0.00010312028085675391,
1114
+ "loss": 0.7905,
1115
+ "step": 158
1116
+ },
1117
+ {
1118
+ "epoch": 0.5088,
1119
+ "grad_norm": 0.34003331830378203,
1120
+ "learning_rate": 0.00010208037484395114,
1121
+ "loss": 0.8518,
1122
+ "step": 159
1123
+ },
1124
+ {
1125
+ "epoch": 0.512,
1126
+ "grad_norm": 0.35691497758794416,
1127
+ "learning_rate": 0.00010104024370624644,
1128
+ "loss": 0.8042,
1129
+ "step": 160
1130
+ },
1131
+ {
1132
+ "epoch": 0.5152,
1133
+ "grad_norm": 0.3680532317532297,
1134
+ "learning_rate": 0.0001,
1135
+ "loss": 0.826,
1136
+ "step": 161
1137
+ },
1138
+ {
1139
+ "epoch": 0.5184,
1140
+ "grad_norm": 0.4306874440922751,
1141
+ "learning_rate": 9.895975629375359e-05,
1142
+ "loss": 0.8114,
1143
+ "step": 162
1144
+ },
1145
+ {
1146
+ "epoch": 0.5216,
1147
+ "grad_norm": 0.3927827556296759,
1148
+ "learning_rate": 9.791962515604887e-05,
1149
+ "loss": 0.8477,
1150
+ "step": 163
1151
+ },
1152
+ {
1153
+ "epoch": 0.5248,
1154
+ "grad_norm": 0.3688233147013582,
1155
+ "learning_rate": 9.687971914324607e-05,
1156
+ "loss": 0.787,
1157
+ "step": 164
1158
+ },
1159
+ {
1160
+ "epoch": 0.528,
1161
+ "grad_norm": 0.3460381638988584,
1162
+ "learning_rate": 9.584015078734395e-05,
1163
+ "loss": 0.7861,
1164
+ "step": 165
1165
+ },
1166
+ {
1167
+ "epoch": 0.5312,
1168
+ "grad_norm": 0.3293873896538617,
1169
+ "learning_rate": 9.480103258380198e-05,
1170
+ "loss": 0.7599,
1171
+ "step": 166
1172
+ },
1173
+ {
1174
+ "epoch": 0.5344,
1175
+ "grad_norm": 0.33067678398241424,
1176
+ "learning_rate": 9.376247697936719e-05,
1177
+ "loss": 0.7788,
1178
+ "step": 167
1179
+ },
1180
+ {
1181
+ "epoch": 0.5376,
1182
+ "grad_norm": 0.30272346196435956,
1183
+ "learning_rate": 9.272459635990562e-05,
1184
+ "loss": 0.7594,
1185
+ "step": 168
1186
+ },
1187
+ {
1188
+ "epoch": 0.5408,
1189
+ "grad_norm": 0.35694173144440655,
1190
+ "learning_rate": 9.168750303824084e-05,
1191
+ "loss": 0.8066,
1192
+ "step": 169
1193
+ },
1194
+ {
1195
+ "epoch": 0.544,
1196
+ "grad_norm": 0.36394962483417836,
1197
+ "learning_rate": 9.065130924199998e-05,
1198
+ "loss": 0.6855,
1199
+ "step": 170
1200
+ },
1201
+ {
1202
+ "epoch": 0.5472,
1203
+ "grad_norm": 0.4052142574936814,
1204
+ "learning_rate": 8.961612710146934e-05,
1205
+ "loss": 0.8238,
1206
+ "step": 171
1207
+ },
1208
+ {
1209
+ "epoch": 0.5504,
1210
+ "grad_norm": 0.4466361193230218,
1211
+ "learning_rate": 8.858206863746018e-05,
1212
+ "loss": 0.7949,
1213
+ "step": 172
1214
+ },
1215
+ {
1216
+ "epoch": 0.5536,
1217
+ "grad_norm": 0.3691146825930911,
1218
+ "learning_rate": 8.754924574918675e-05,
1219
+ "loss": 0.7591,
1220
+ "step": 173
1221
+ },
1222
+ {
1223
+ "epoch": 0.5568,
1224
+ "grad_norm": 0.3884324905017403,
1225
+ "learning_rate": 8.651777020215712e-05,
1226
+ "loss": 0.7671,
1227
+ "step": 174
1228
+ },
1229
+ {
1230
+ "epoch": 0.56,
1231
+ "grad_norm": 0.37235345511558177,
1232
+ "learning_rate": 8.548775361607872e-05,
1233
+ "loss": 0.7954,
1234
+ "step": 175
1235
+ },
1236
+ {
1237
+ "epoch": 0.5632,
1238
+ "grad_norm": 0.43342144747289674,
1239
+ "learning_rate": 8.445930745277953e-05,
1240
+ "loss": 0.7674,
1241
+ "step": 176
1242
+ },
1243
+ {
1244
+ "epoch": 0.5664,
1245
+ "grad_norm": 0.3601056959148259,
1246
+ "learning_rate": 8.343254300414628e-05,
1247
+ "loss": 0.6814,
1248
+ "step": 177
1249
+ },
1250
+ {
1251
+ "epoch": 0.5696,
1252
+ "grad_norm": 0.34765672643846884,
1253
+ "learning_rate": 8.240757138008149e-05,
1254
+ "loss": 0.8115,
1255
+ "step": 178
1256
+ },
1257
+ {
1258
+ "epoch": 0.5728,
1259
+ "grad_norm": 0.3542918688839561,
1260
+ "learning_rate": 8.138450349647936e-05,
1261
+ "loss": 0.7751,
1262
+ "step": 179
1263
+ },
1264
+ {
1265
+ "epoch": 0.576,
1266
+ "grad_norm": 0.43405703341062163,
1267
+ "learning_rate": 8.036345006322359e-05,
1268
+ "loss": 0.883,
1269
+ "step": 180
1270
+ },
1271
+ {
1272
+ "epoch": 0.5792,
1273
+ "grad_norm": 0.35990538609349737,
1274
+ "learning_rate": 7.934452157220694e-05,
1275
+ "loss": 0.8274,
1276
+ "step": 181
1277
+ },
1278
+ {
1279
+ "epoch": 0.5824,
1280
+ "grad_norm": 0.36566849513888866,
1281
+ "learning_rate": 7.832782828537437e-05,
1282
+ "loss": 0.8316,
1283
+ "step": 182
1284
+ },
1285
+ {
1286
+ "epoch": 0.5856,
1287
+ "grad_norm": 0.3880712586476513,
1288
+ "learning_rate": 7.731348022279134e-05,
1289
+ "loss": 0.7823,
1290
+ "step": 183
1291
+ },
1292
+ {
1293
+ "epoch": 0.5888,
1294
+ "grad_norm": 0.40070345592700185,
1295
+ "learning_rate": 7.630158715073813e-05,
1296
+ "loss": 0.8682,
1297
+ "step": 184
1298
+ },
1299
+ {
1300
+ "epoch": 0.592,
1301
+ "grad_norm": 0.452126500075801,
1302
+ "learning_rate": 7.52922585698315e-05,
1303
+ "loss": 0.7349,
1304
+ "step": 185
1305
+ },
1306
+ {
1307
+ "epoch": 0.5952,
1308
+ "grad_norm": 0.39133686156881714,
1309
+ "learning_rate": 7.428560370317542e-05,
1310
+ "loss": 0.8166,
1311
+ "step": 186
1312
+ },
1313
+ {
1314
+ "epoch": 0.5984,
1315
+ "grad_norm": 0.30433046880932474,
1316
+ "learning_rate": 7.328173148454151e-05,
1317
+ "loss": 0.7799,
1318
+ "step": 187
1319
+ },
1320
+ {
1321
+ "epoch": 0.6016,
1322
+ "grad_norm": 0.38912324970709505,
1323
+ "learning_rate": 7.228075054658096e-05,
1324
+ "loss": 0.874,
1325
+ "step": 188
1326
+ },
1327
+ {
1328
+ "epoch": 0.6048,
1329
+ "grad_norm": 0.34571755403615634,
1330
+ "learning_rate": 7.1282769209069e-05,
1331
+ "loss": 0.7972,
1332
+ "step": 189
1333
+ },
1334
+ {
1335
+ "epoch": 0.608,
1336
+ "grad_norm": 0.3759979893898139,
1337
+ "learning_rate": 7.028789546718326e-05,
1338
+ "loss": 0.7436,
1339
+ "step": 190
1340
+ },
1341
+ {
1342
+ "epoch": 0.6112,
1343
+ "grad_norm": 0.3396623833976361,
1344
+ "learning_rate": 6.929623697981718e-05,
1345
+ "loss": 0.771,
1346
+ "step": 191
1347
+ },
1348
+ {
1349
+ "epoch": 0.6144,
1350
+ "grad_norm": 0.3930329153264238,
1351
+ "learning_rate": 6.830790105792973e-05,
1352
+ "loss": 0.7294,
1353
+ "step": 192
1354
+ },
1355
+ {
1356
+ "epoch": 0.6176,
1357
+ "grad_norm": 0.384939784498545,
1358
+ "learning_rate": 6.732299465293322e-05,
1359
+ "loss": 0.8072,
1360
+ "step": 193
1361
+ },
1362
+ {
1363
+ "epoch": 0.6208,
1364
+ "grad_norm": 0.3670712491930503,
1365
+ "learning_rate": 6.63416243451194e-05,
1366
+ "loss": 0.8139,
1367
+ "step": 194
1368
+ },
1369
+ {
1370
+ "epoch": 0.624,
1371
+ "grad_norm": 0.37471193485584176,
1372
+ "learning_rate": 6.536389633212609e-05,
1373
+ "loss": 0.8026,
1374
+ "step": 195
1375
+ },
1376
+ {
1377
+ "epoch": 0.6272,
1378
+ "grad_norm": 0.3466481941938704,
1379
+ "learning_rate": 6.43899164174453e-05,
1380
+ "loss": 0.7856,
1381
+ "step": 196
1382
+ },
1383
+ {
1384
+ "epoch": 0.6304,
1385
+ "grad_norm": 0.334681278560714,
1386
+ "learning_rate": 6.341978999897365e-05,
1387
+ "loss": 0.7457,
1388
+ "step": 197
1389
+ },
1390
+ {
1391
+ "epoch": 0.6336,
1392
+ "grad_norm": 0.3580934295092547,
1393
+ "learning_rate": 6.245362205760704e-05,
1394
+ "loss": 0.8062,
1395
+ "step": 198
1396
+ },
1397
+ {
1398
+ "epoch": 0.6368,
1399
+ "grad_norm": 0.41942104569534644,
1400
+ "learning_rate": 6.149151714588009e-05,
1401
+ "loss": 0.8307,
1402
+ "step": 199
1403
+ },
1404
+ {
1405
+ "epoch": 0.64,
1406
+ "grad_norm": 0.3044902604615677,
1407
+ "learning_rate": 6.053357937665237e-05,
1408
+ "loss": 0.6707,
1409
+ "step": 200
1410
+ },
1411
+ {
1412
+ "epoch": 0.6432,
1413
+ "grad_norm": 0.37144444775815594,
1414
+ "learning_rate": 5.957991241184184e-05,
1415
+ "loss": 0.7813,
1416
+ "step": 201
1417
+ },
1418
+ {
1419
+ "epoch": 0.6464,
1420
+ "grad_norm": 0.34248491706444256,
1421
+ "learning_rate": 5.863061945120719e-05,
1422
+ "loss": 0.8051,
1423
+ "step": 202
1424
+ },
1425
+ {
1426
+ "epoch": 0.6496,
1427
+ "grad_norm": 0.34748171044370163,
1428
+ "learning_rate": 5.768580322118034e-05,
1429
+ "loss": 0.7627,
1430
+ "step": 203
1431
+ },
1432
+ {
1433
+ "epoch": 0.6528,
1434
+ "grad_norm": 0.38512453359767645,
1435
+ "learning_rate": 5.6745565963749925e-05,
1436
+ "loss": 0.8318,
1437
+ "step": 204
1438
+ },
1439
+ {
1440
+ "epoch": 0.656,
1441
+ "grad_norm": 0.36707414698679175,
1442
+ "learning_rate": 5.5810009425397294e-05,
1443
+ "loss": 0.8305,
1444
+ "step": 205
1445
+ },
1446
+ {
1447
+ "epoch": 0.6592,
1448
+ "grad_norm": 0.48217984342912773,
1449
+ "learning_rate": 5.487923484608629e-05,
1450
+ "loss": 0.9014,
1451
+ "step": 206
1452
+ },
1453
+ {
1454
+ "epoch": 0.6624,
1455
+ "grad_norm": 0.38863801931906744,
1456
+ "learning_rate": 5.395334294830765e-05,
1457
+ "loss": 0.8525,
1458
+ "step": 207
1459
+ },
1460
+ {
1461
+ "epoch": 0.6656,
1462
+ "grad_norm": 0.35518873432323794,
1463
+ "learning_rate": 5.3032433926179395e-05,
1464
+ "loss": 0.7778,
1465
+ "step": 208
1466
+ },
1467
+ {
1468
+ "epoch": 0.6688,
1469
+ "grad_norm": 0.34123260040379993,
1470
+ "learning_rate": 5.211660743460458e-05,
1471
+ "loss": 0.775,
1472
+ "step": 209
1473
+ },
1474
+ {
1475
+ "epoch": 0.672,
1476
+ "grad_norm": 0.4001757666899788,
1477
+ "learning_rate": 5.1205962578487155e-05,
1478
+ "loss": 0.7731,
1479
+ "step": 210
1480
+ },
1481
+ {
1482
+ "epoch": 0.6752,
1483
+ "grad_norm": 0.3315496723721597,
1484
+ "learning_rate": 5.030059790200756e-05,
1485
+ "loss": 0.7922,
1486
+ "step": 211
1487
+ },
1488
+ {
1489
+ "epoch": 0.6784,
1490
+ "grad_norm": 0.3258037685568246,
1491
+ "learning_rate": 4.940061137795876e-05,
1492
+ "loss": 0.699,
1493
+ "step": 212
1494
+ },
1495
+ {
1496
+ "epoch": 0.6816,
1497
+ "grad_norm": 0.3884518590202934,
1498
+ "learning_rate": 4.850610039714444e-05,
1499
+ "loss": 0.7866,
1500
+ "step": 213
1501
+ },
1502
+ {
1503
+ "epoch": 0.6848,
1504
+ "grad_norm": 0.7104627436824442,
1505
+ "learning_rate": 4.761716175783989e-05,
1506
+ "loss": 0.8089,
1507
+ "step": 214
1508
+ },
1509
+ {
1510
+ "epoch": 0.688,
1511
+ "grad_norm": 0.3013941102836104,
1512
+ "learning_rate": 4.673389165531714e-05,
1513
+ "loss": 0.7054,
1514
+ "step": 215
1515
+ },
1516
+ {
1517
+ "epoch": 0.6912,
1518
+ "grad_norm": 0.3731169801442719,
1519
+ "learning_rate": 4.585638567143529e-05,
1520
+ "loss": 0.7737,
1521
+ "step": 216
1522
+ },
1523
+ {
1524
+ "epoch": 0.6944,
1525
+ "grad_norm": 0.30263267234838137,
1526
+ "learning_rate": 4.498473876429726e-05,
1527
+ "loss": 0.7029,
1528
+ "step": 217
1529
+ },
1530
+ {
1531
+ "epoch": 0.6976,
1532
+ "grad_norm": 0.3659751206161679,
1533
+ "learning_rate": 4.411904525797408e-05,
1534
+ "loss": 0.8146,
1535
+ "step": 218
1536
+ },
1537
+ {
1538
+ "epoch": 0.7008,
1539
+ "grad_norm": 0.36421909907458466,
1540
+ "learning_rate": 4.325939883229766e-05,
1541
+ "loss": 0.7769,
1542
+ "step": 219
1543
+ },
1544
+ {
1545
+ "epoch": 0.704,
1546
+ "grad_norm": 0.3403495561782968,
1547
+ "learning_rate": 4.240589251272342e-05,
1548
+ "loss": 0.8074,
1549
+ "step": 220
1550
+ },
1551
+ {
1552
+ "epoch": 0.7072,
1553
+ "grad_norm": 0.4116298314841219,
1554
+ "learning_rate": 4.155861866026364e-05,
1555
+ "loss": 0.7561,
1556
+ "step": 221
1557
+ },
1558
+ {
1559
+ "epoch": 0.7104,
1560
+ "grad_norm": 0.4017877316418641,
1561
+ "learning_rate": 4.071766896149273e-05,
1562
+ "loss": 0.7802,
1563
+ "step": 222
1564
+ },
1565
+ {
1566
+ "epoch": 0.7136,
1567
+ "grad_norm": 0.3933048903616485,
1568
+ "learning_rate": 3.988313441862553e-05,
1569
+ "loss": 0.8302,
1570
+ "step": 223
1571
+ },
1572
+ {
1573
+ "epoch": 0.7168,
1574
+ "grad_norm": 0.4053820034136759,
1575
+ "learning_rate": 3.9055105339669595e-05,
1576
+ "loss": 0.7537,
1577
+ "step": 224
1578
+ },
1579
+ {
1580
+ "epoch": 0.72,
1581
+ "grad_norm": 0.3422570001344906,
1582
+ "learning_rate": 3.823367132865265e-05,
1583
+ "loss": 0.7513,
1584
+ "step": 225
1585
+ },
1586
+ {
1587
+ "epoch": 0.7232,
1588
+ "grad_norm": 0.3672321719467038,
1589
+ "learning_rate": 3.741892127592625e-05,
1590
+ "loss": 0.7552,
1591
+ "step": 226
1592
+ },
1593
+ {
1594
+ "epoch": 0.7264,
1595
+ "grad_norm": 0.38655052693729053,
1596
+ "learning_rate": 3.6610943348546526e-05,
1597
+ "loss": 0.8076,
1598
+ "step": 227
1599
+ },
1600
+ {
1601
+ "epoch": 0.7296,
1602
+ "grad_norm": 0.32046006517959386,
1603
+ "learning_rate": 3.580982498073344e-05,
1604
+ "loss": 0.7549,
1605
+ "step": 228
1606
+ },
1607
+ {
1608
+ "epoch": 0.7328,
1609
+ "grad_norm": 0.45524335147940526,
1610
+ "learning_rate": 3.501565286440914e-05,
1611
+ "loss": 0.8619,
1612
+ "step": 229
1613
+ },
1614
+ {
1615
+ "epoch": 0.736,
1616
+ "grad_norm": 0.29405543478538154,
1617
+ "learning_rate": 3.422851293981676e-05,
1618
+ "loss": 0.7585,
1619
+ "step": 230
1620
+ },
1621
+ {
1622
+ "epoch": 0.7392,
1623
+ "grad_norm": 0.38285886702055727,
1624
+ "learning_rate": 3.3448490386220355e-05,
1625
+ "loss": 0.8357,
1626
+ "step": 231
1627
+ },
1628
+ {
1629
+ "epoch": 0.7424,
1630
+ "grad_norm": 0.3801889952884557,
1631
+ "learning_rate": 3.2675669612687565e-05,
1632
+ "loss": 0.8901,
1633
+ "step": 232
1634
+ },
1635
+ {
1636
+ "epoch": 0.7456,
1637
+ "grad_norm": 0.35279011141194516,
1638
+ "learning_rate": 3.191013424895536e-05,
1639
+ "loss": 0.7481,
1640
+ "step": 233
1641
+ },
1642
+ {
1643
+ "epoch": 0.7488,
1644
+ "grad_norm": 0.3471907142593491,
1645
+ "learning_rate": 3.115196713638e-05,
1646
+ "loss": 0.7855,
1647
+ "step": 234
1648
+ },
1649
+ {
1650
+ "epoch": 0.752,
1651
+ "grad_norm": 0.36619187308979667,
1652
+ "learning_rate": 3.040125031897264e-05,
1653
+ "loss": 0.7625,
1654
+ "step": 235
1655
+ },
1656
+ {
1657
+ "epoch": 0.7552,
1658
+ "grad_norm": 0.3762428412156853,
1659
+ "learning_rate": 2.9658065034520978e-05,
1660
+ "loss": 0.8157,
1661
+ "step": 236
1662
+ },
1663
+ {
1664
+ "epoch": 0.7584,
1665
+ "grad_norm": 0.3171161168873978,
1666
+ "learning_rate": 2.892249170579826e-05,
1667
+ "loss": 0.7799,
1668
+ "step": 237
1669
+ },
1670
+ {
1671
+ "epoch": 0.7616,
1672
+ "grad_norm": 0.3592730455514312,
1673
+ "learning_rate": 2.8194609931860316e-05,
1674
+ "loss": 0.7478,
1675
+ "step": 238
1676
+ },
1677
+ {
1678
+ "epoch": 0.7648,
1679
+ "grad_norm": 0.4134931519699558,
1680
+ "learning_rate": 2.7474498479432087e-05,
1681
+ "loss": 0.8437,
1682
+ "step": 239
1683
+ },
1684
+ {
1685
+ "epoch": 0.768,
1686
+ "grad_norm": 0.30546020641842614,
1687
+ "learning_rate": 2.6762235274383772e-05,
1688
+ "loss": 0.7224,
1689
+ "step": 240
1690
+ },
1691
+ {
1692
+ "epoch": 0.7712,
1693
+ "grad_norm": 0.3454408457555957,
1694
+ "learning_rate": 2.6057897393298324e-05,
1695
+ "loss": 0.7727,
1696
+ "step": 241
1697
+ },
1698
+ {
1699
+ "epoch": 0.7744,
1700
+ "grad_norm": 0.3680677506255253,
1701
+ "learning_rate": 2.536156105513062e-05,
1702
+ "loss": 0.7745,
1703
+ "step": 242
1704
+ },
1705
+ {
1706
+ "epoch": 0.7776,
1707
+ "grad_norm": 0.36274461235683025,
1708
+ "learning_rate": 2.4673301612959654e-05,
1709
+ "loss": 0.8305,
1710
+ "step": 243
1711
+ },
1712
+ {
1713
+ "epoch": 0.7808,
1714
+ "grad_norm": 0.4459754472676995,
1715
+ "learning_rate": 2.399319354583418e-05,
1716
+ "loss": 0.8917,
1717
+ "step": 244
1718
+ },
1719
+ {
1720
+ "epoch": 0.784,
1721
+ "grad_norm": 0.34453176080889125,
1722
+ "learning_rate": 2.3321310450713062e-05,
1723
+ "loss": 0.7476,
1724
+ "step": 245
1725
+ },
1726
+ {
1727
+ "epoch": 0.7872,
1728
+ "grad_norm": 0.31196539201987367,
1729
+ "learning_rate": 2.265772503450122e-05,
1730
+ "loss": 0.7468,
1731
+ "step": 246
1732
+ },
1733
+ {
1734
+ "epoch": 0.7904,
1735
+ "grad_norm": 0.3184608885787424,
1736
+ "learning_rate": 2.2002509106181624e-05,
1737
+ "loss": 0.7402,
1738
+ "step": 247
1739
+ },
1740
+ {
1741
+ "epoch": 0.7936,
1742
+ "grad_norm": 0.36443373379957883,
1743
+ "learning_rate": 2.1355733569044635e-05,
1744
+ "loss": 0.7567,
1745
+ "step": 248
1746
+ },
1747
+ {
1748
+ "epoch": 0.7968,
1749
+ "grad_norm": 0.4417924711660864,
1750
+ "learning_rate": 2.0717468413015283e-05,
1751
+ "loss": 0.823,
1752
+ "step": 249
1753
+ },
1754
+ {
1755
+ "epoch": 0.8,
1756
+ "grad_norm": 0.3236759284366048,
1757
+ "learning_rate": 2.008778270707944e-05,
1758
+ "loss": 0.6885,
1759
+ "step": 250
1760
+ },
1761
+ {
1762
+ "epoch": 0.8032,
1763
+ "grad_norm": 0.39242767874833534,
1764
+ "learning_rate": 1.946674459180955e-05,
1765
+ "loss": 0.9275,
1766
+ "step": 251
1767
+ },
1768
+ {
1769
+ "epoch": 0.8064,
1770
+ "grad_norm": 0.3427482665469463,
1771
+ "learning_rate": 1.8854421271990964e-05,
1772
+ "loss": 0.7372,
1773
+ "step": 252
1774
+ },
1775
+ {
1776
+ "epoch": 0.8096,
1777
+ "grad_norm": 0.3626863241157415,
1778
+ "learning_rate": 1.8250879009349398e-05,
1779
+ "loss": 0.8017,
1780
+ "step": 253
1781
+ },
1782
+ {
1783
+ "epoch": 0.8128,
1784
+ "grad_norm": 0.34605782828987924,
1785
+ "learning_rate": 1.7656183115380577e-05,
1786
+ "loss": 0.8484,
1787
+ "step": 254
1788
+ },
1789
+ {
1790
+ "epoch": 0.816,
1791
+ "grad_norm": 0.4383327443511539,
1792
+ "learning_rate": 1.707039794428259e-05,
1793
+ "loss": 0.8186,
1794
+ "step": 255
1795
+ },
1796
+ {
1797
+ "epoch": 0.8192,
1798
+ "grad_norm": 0.3447222581311919,
1799
+ "learning_rate": 1.649358688599191e-05,
1800
+ "loss": 0.7213,
1801
+ "step": 256
1802
+ },
1803
+ {
1804
+ "epoch": 0.8224,
1805
+ "grad_norm": 0.31970536995245263,
1806
+ "learning_rate": 1.5925812359323745e-05,
1807
+ "loss": 0.7434,
1808
+ "step": 257
1809
+ },
1810
+ {
1811
+ "epoch": 0.8256,
1812
+ "grad_norm": 0.3656450810361097,
1813
+ "learning_rate": 1.5367135805217458e-05,
1814
+ "loss": 0.7676,
1815
+ "step": 258
1816
+ },
1817
+ {
1818
+ "epoch": 0.8288,
1819
+ "grad_norm": 0.36298269369872477,
1820
+ "learning_rate": 1.4817617680087825e-05,
1821
+ "loss": 0.7487,
1822
+ "step": 259
1823
+ },
1824
+ {
1825
+ "epoch": 0.832,
1826
+ "grad_norm": 0.42152653173895593,
1827
+ "learning_rate": 1.4277317449282834e-05,
1828
+ "loss": 0.8926,
1829
+ "step": 260
1830
+ },
1831
+ {
1832
+ "epoch": 0.8352,
1833
+ "grad_norm": 0.38946242385235036,
1834
+ "learning_rate": 1.3746293580648717e-05,
1835
+ "loss": 0.8176,
1836
+ "step": 261
1837
+ },
1838
+ {
1839
+ "epoch": 0.8384,
1840
+ "grad_norm": 0.41804903127540954,
1841
+ "learning_rate": 1.3224603538202929e-05,
1842
+ "loss": 0.7996,
1843
+ "step": 262
1844
+ },
1845
+ {
1846
+ "epoch": 0.8416,
1847
+ "grad_norm": 0.31093486947817817,
1848
+ "learning_rate": 1.2712303775915802e-05,
1849
+ "loss": 0.7247,
1850
+ "step": 263
1851
+ },
1852
+ {
1853
+ "epoch": 0.8448,
1854
+ "grad_norm": 0.3187140163567531,
1855
+ "learning_rate": 1.220944973160133e-05,
1856
+ "loss": 0.7473,
1857
+ "step": 264
1858
+ },
1859
+ {
1860
+ "epoch": 0.848,
1861
+ "grad_norm": 0.3872254324451249,
1862
+ "learning_rate": 1.1716095820918216e-05,
1863
+ "loss": 0.8821,
1864
+ "step": 265
1865
+ },
1866
+ {
1867
+ "epoch": 0.8512,
1868
+ "grad_norm": 0.4051984951107359,
1869
+ "learning_rate": 1.1232295431481222e-05,
1870
+ "loss": 0.7603,
1871
+ "step": 266
1872
+ },
1873
+ {
1874
+ "epoch": 0.8544,
1875
+ "grad_norm": 0.40122800893302063,
1876
+ "learning_rate": 1.0758100917083991e-05,
1877
+ "loss": 0.8414,
1878
+ "step": 267
1879
+ },
1880
+ {
1881
+ "epoch": 0.8576,
1882
+ "grad_norm": 0.35538652933955217,
1883
+ "learning_rate": 1.0293563592033595e-05,
1884
+ "loss": 0.7676,
1885
+ "step": 268
1886
+ },
1887
+ {
1888
+ "epoch": 0.8608,
1889
+ "grad_norm": 0.3137491139738254,
1890
+ "learning_rate": 9.838733725597615e-06,
1891
+ "loss": 0.7501,
1892
+ "step": 269
1893
+ },
1894
+ {
1895
+ "epoch": 0.864,
1896
+ "grad_norm": 0.45963025353581044,
1897
+ "learning_rate": 9.393660536564408e-06,
1898
+ "loss": 0.7936,
1899
+ "step": 270
1900
+ },
1901
+ {
1902
+ "epoch": 0.8672,
1903
+ "grad_norm": 0.3348526950988372,
1904
+ "learning_rate": 8.958392187916841e-06,
1905
+ "loss": 0.736,
1906
+ "step": 271
1907
+ },
1908
+ {
1909
+ "epoch": 0.8704,
1910
+ "grad_norm": 0.39896905950270944,
1911
+ "learning_rate": 8.532975781620512e-06,
1912
+ "loss": 0.7654,
1913
+ "step": 272
1914
+ },
1915
+ {
1916
+ "epoch": 0.8736,
1917
+ "grad_norm": 0.37722430967890513,
1918
+ "learning_rate": 8.117457353526625e-06,
1919
+ "loss": 0.7327,
1920
+ "step": 273
1921
+ },
1922
+ {
1923
+ "epoch": 0.8768,
1924
+ "grad_norm": 0.31478006761399024,
1925
+ "learning_rate": 7.711881868390291e-06,
1926
+ "loss": 0.7615,
1927
+ "step": 274
1928
+ },
1929
+ {
1930
+ "epoch": 0.88,
1931
+ "grad_norm": 0.4188263703262344,
1932
+ "learning_rate": 7.3162932150046885e-06,
1933
+ "loss": 0.8783,
1934
+ "step": 275
1935
+ },
1936
+ {
1937
+ "epoch": 0.8832,
1938
+ "grad_norm": 0.31942616334359136,
1939
+ "learning_rate": 6.930734201451816e-06,
1940
+ "loss": 0.725,
1941
+ "step": 276
1942
+ },
1943
+ {
1944
+ "epoch": 0.8864,
1945
+ "grad_norm": 0.2997679274265762,
1946
+ "learning_rate": 6.555246550469907e-06,
1947
+ "loss": 0.7615,
1948
+ "step": 277
1949
+ },
1950
+ {
1951
+ "epoch": 0.8896,
1952
+ "grad_norm": 0.36551094625988517,
1953
+ "learning_rate": 6.189870894938587e-06,
1954
+ "loss": 0.7969,
1955
+ "step": 278
1956
+ },
1957
+ {
1958
+ "epoch": 0.8928,
1959
+ "grad_norm": 0.34379292762124014,
1960
+ "learning_rate": 5.834646773481811e-06,
1961
+ "loss": 0.8058,
1962
+ "step": 279
1963
+ },
1964
+ {
1965
+ "epoch": 0.896,
1966
+ "grad_norm": 0.35790166821440883,
1967
+ "learning_rate": 5.489612626189245e-06,
1968
+ "loss": 0.7782,
1969
+ "step": 280
1970
+ },
1971
+ {
1972
+ "epoch": 0.8992,
1973
+ "grad_norm": 0.33879760718838586,
1974
+ "learning_rate": 5.154805790456485e-06,
1975
+ "loss": 0.7636,
1976
+ "step": 281
1977
+ },
1978
+ {
1979
+ "epoch": 0.9024,
1980
+ "grad_norm": 0.31407783216446544,
1981
+ "learning_rate": 4.830262496944693e-06,
1982
+ "loss": 0.7323,
1983
+ "step": 282
1984
+ },
1985
+ {
1986
+ "epoch": 0.9056,
1987
+ "grad_norm": 0.38757334898188933,
1988
+ "learning_rate": 4.516017865659949e-06,
1989
+ "loss": 0.8443,
1990
+ "step": 283
1991
+ },
1992
+ {
1993
+ "epoch": 0.9088,
1994
+ "grad_norm": 0.39258218690616686,
1995
+ "learning_rate": 4.21210590215273e-06,
1996
+ "loss": 0.8223,
1997
+ "step": 284
1998
+ },
1999
+ {
2000
+ "epoch": 0.912,
2001
+ "grad_norm": 0.3313155165113673,
2002
+ "learning_rate": 3.918559493838114e-06,
2003
+ "loss": 0.7951,
2004
+ "step": 285
2005
+ },
2006
+ {
2007
+ "epoch": 0.9152,
2008
+ "grad_norm": 0.32605323503196637,
2009
+ "learning_rate": 3.6354104064368566e-06,
2010
+ "loss": 0.799,
2011
+ "step": 286
2012
+ },
2013
+ {
2014
+ "epoch": 0.9184,
2015
+ "grad_norm": 0.393570523991794,
2016
+ "learning_rate": 3.3626892805379562e-06,
2017
+ "loss": 0.741,
2018
+ "step": 287
2019
+ },
2020
+ {
2021
+ "epoch": 0.9216,
2022
+ "grad_norm": 0.37378520088314604,
2023
+ "learning_rate": 3.100425628282899e-06,
2024
+ "loss": 0.7429,
2025
+ "step": 288
2026
+ },
2027
+ {
2028
+ "epoch": 0.9248,
2029
+ "grad_norm": 0.3179898573134195,
2030
+ "learning_rate": 2.848647830172024e-06,
2031
+ "loss": 0.7852,
2032
+ "step": 289
2033
+ },
2034
+ {
2035
+ "epoch": 0.928,
2036
+ "grad_norm": 0.33638562625723384,
2037
+ "learning_rate": 2.607383131993424e-06,
2038
+ "loss": 0.7518,
2039
+ "step": 290
2040
+ },
2041
+ {
2042
+ "epoch": 0.9312,
2043
+ "grad_norm": 0.36906155605346674,
2044
+ "learning_rate": 2.3766576418745022e-06,
2045
+ "loss": 0.7948,
2046
+ "step": 291
2047
+ },
2048
+ {
2049
+ "epoch": 0.9344,
2050
+ "grad_norm": 0.5865294985065448,
2051
+ "learning_rate": 2.1564963274568027e-06,
2052
+ "loss": 0.7865,
2053
+ "step": 292
2054
+ },
2055
+ {
2056
+ "epoch": 0.9376,
2057
+ "grad_norm": 0.3357869205531904,
2058
+ "learning_rate": 1.9469230131940907e-06,
2059
+ "loss": 0.8067,
2060
+ "step": 293
2061
+ },
2062
+ {
2063
+ "epoch": 0.9408,
2064
+ "grad_norm": 0.3214550435563662,
2065
+ "learning_rate": 1.7479603777742938e-06,
2066
+ "loss": 0.7578,
2067
+ "step": 294
2068
+ },
2069
+ {
2070
+ "epoch": 0.944,
2071
+ "grad_norm": 0.3617697253780003,
2072
+ "learning_rate": 1.559629951665298e-06,
2073
+ "loss": 0.7783,
2074
+ "step": 295
2075
+ },
2076
+ {
2077
+ "epoch": 0.9472,
2078
+ "grad_norm": 0.3851342510588961,
2079
+ "learning_rate": 1.3819521147851123e-06,
2080
+ "loss": 0.7932,
2081
+ "step": 296
2082
+ },
2083
+ {
2084
+ "epoch": 0.9504,
2085
+ "grad_norm": 0.34426702777854773,
2086
+ "learning_rate": 1.2149460942964098e-06,
2087
+ "loss": 0.7609,
2088
+ "step": 297
2089
+ },
2090
+ {
2091
+ "epoch": 0.9536,
2092
+ "grad_norm": 0.36253585088408663,
2093
+ "learning_rate": 1.05862996252597e-06,
2094
+ "loss": 0.7984,
2095
+ "step": 298
2096
+ },
2097
+ {
2098
+ "epoch": 0.9568,
2099
+ "grad_norm": 0.4054570274935403,
2100
+ "learning_rate": 9.130206350089765e-07,
2101
+ "loss": 0.8,
2102
+ "step": 299
2103
+ },
2104
+ {
2105
+ "epoch": 0.96,
2106
+ "grad_norm": 0.34938837916613863,
2107
+ "learning_rate": 7.781338686584927e-07,
2108
+ "loss": 0.8201,
2109
+ "step": 300
2110
+ },
2111
+ {
2112
+ "epoch": 0.9632,
2113
+ "grad_norm": 0.37777115892854124,
2114
+ "learning_rate": 6.539842600603918e-07,
2115
+ "loss": 0.8213,
2116
+ "step": 301
2117
+ },
2118
+ {
2119
+ "epoch": 0.9664,
2120
+ "grad_norm": 0.37766797195751295,
2121
+ "learning_rate": 5.405852438937764e-07,
2122
+ "loss": 0.7736,
2123
+ "step": 302
2124
+ },
2125
+ {
2126
+ "epoch": 0.9696,
2127
+ "grad_norm": 0.34012917606966536,
2128
+ "learning_rate": 4.3794909147720773e-07,
2129
+ "loss": 0.7852,
2130
+ "step": 303
2131
+ },
2132
+ {
2133
+ "epoch": 0.9728,
2134
+ "grad_norm": 0.39195816403535333,
2135
+ "learning_rate": 3.4608690944071263e-07,
2136
+ "loss": 0.7284,
2137
+ "step": 304
2138
+ },
2139
+ {
2140
+ "epoch": 0.976,
2141
+ "grad_norm": 0.38813789832520107,
2142
+ "learning_rate": 2.6500863852395584e-07,
2143
+ "loss": 0.8645,
2144
+ "step": 305
2145
+ },
2146
+ {
2147
+ "epoch": 0.9792,
2148
+ "grad_norm": 0.32915922567617034,
2149
+ "learning_rate": 1.947230525005006e-07,
2150
+ "loss": 0.7437,
2151
+ "step": 306
2152
+ },
2153
+ {
2154
+ "epoch": 0.9824,
2155
+ "grad_norm": 0.3351156902277233,
2156
+ "learning_rate": 1.3523775722834587e-07,
2157
+ "loss": 0.7069,
2158
+ "step": 307
2159
+ },
2160
+ {
2161
+ "epoch": 0.9856,
2162
+ "grad_norm": 0.32461016981926744,
2163
+ "learning_rate": 8.655918982689581e-08,
2164
+ "loss": 0.7698,
2165
+ "step": 308
2166
+ },
2167
+ {
2168
+ "epoch": 0.9888,
2169
+ "grad_norm": 0.34243368327755425,
2170
+ "learning_rate": 4.8692617980350406e-08,
2171
+ "loss": 0.8092,
2172
+ "step": 309
2173
+ },
2174
+ {
2175
+ "epoch": 0.992,
2176
+ "grad_norm": 0.35449923757603197,
2177
+ "learning_rate": 2.164213936770576e-08,
2178
+ "loss": 0.7537,
2179
+ "step": 310
2180
+ },
2181
+ {
2182
+ "epoch": 0.9952,
2183
+ "grad_norm": 0.37595905935200546,
2184
+ "learning_rate": 5.410681219286673e-09,
2185
+ "loss": 0.7974,
2186
+ "step": 311
2187
+ },
2188
+ {
2189
+ "epoch": 0.9984,
2190
+ "grad_norm": 0.3296041419119035,
2191
+ "learning_rate": 0.0,
2192
+ "loss": 0.7362,
2193
+ "step": 312
2194
+ },
2195
+ {
2196
+ "epoch": 0.9984,
2197
+ "step": 312,
2198
+ "total_flos": 730661894488064.0,
2199
+ "train_loss": 0.8330854674180349,
2200
+ "train_runtime": 9213.2243,
2201
+ "train_samples_per_second": 1.085,
2202
+ "train_steps_per_second": 0.034
2203
+ }
2204
+ ],
2205
+ "logging_steps": 1.0,
2206
+ "max_steps": 312,
2207
+ "num_input_tokens_seen": 0,
2208
+ "num_train_epochs": 1,
2209
+ "save_steps": 500,
2210
+ "stateful_callbacks": {
2211
+ "TrainerControl": {
2212
+ "args": {
2213
+ "should_epoch_stop": false,
2214
+ "should_evaluate": false,
2215
+ "should_log": false,
2216
+ "should_save": false,
2217
+ "should_training_stop": false
2218
+ },
2219
+ "attributes": {}
2220
+ }
2221
+ },
2222
+ "total_flos": 730661894488064.0,
2223
+ "train_batch_size": 8,
2224
+ "trial_name": null,
2225
+ "trial_params": null
2226
+ }
mixing_strategies/Equal/bugsBunny-v1_1-Llama-3-8B-V-Equal_dataset_10000_repeat_2_epochs_1_GA_2_lora/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: ./weights/Bunny-v1_1-Llama-3-8B-V
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.11.1
mixing_strategies/Equal/bugsBunny-v1_1-Llama-3-8B-V-Equal_dataset_10000_repeat_2_epochs_1_GA_2_lora/adapter_config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "./weights/Bunny-v1_1-Llama-3-8B-V",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 256,
14
+ "lora_dropout": 0.1,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 128,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "up_proj",
24
+ "o_proj",
25
+ "q_proj",
26
+ "down_proj",
27
+ "v_proj",
28
+ "k_proj",
29
+ "gate_proj"
30
+ ],
31
+ "task_type": "CAUSAL_LM",
32
+ "use_dora": false,
33
+ "use_rslora": false
34
+ }
mixing_strategies/Equal/bugsBunny-v1_1-Llama-3-8B-V-Equal_dataset_10000_repeat_2_epochs_1_GA_2_lora/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bb223c3820e4d3ba11a4de32d2e8233430f8ee290e3539d12aefaa3e3db8d9e5
3
+ size 671150064
mixing_strategies/Equal/bugsBunny-v1_1-Llama-3-8B-V-Equal_dataset_10000_repeat_2_epochs_1_GA_2_lora/config.json ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "./weights/Bunny-v1_1-Llama-3-8B-V",
3
+ "architectures": [
4
+ "BunnyLlamaForCausalLM"
5
+ ],
6
+ "attention_bias": false,
7
+ "attention_dropout": 0.0,
8
+ "auto_map": {
9
+ "AutoConfig": "configuration_bunny_llama.BunnyLlamaConfig",
10
+ "AutoModelForCausalLM": "modeling_bunny_llama.BunnyLlamaForCausalLM"
11
+ },
12
+ "bos_token_id": 128000,
13
+ "continuous_training": false,
14
+ "eos_token_id": 128001,
15
+ "freeze_mm_mlp_adapter": false,
16
+ "hidden_act": "silu",
17
+ "hidden_size": 4096,
18
+ "image_aspect_ratio": "pad",
19
+ "initializer_range": 0.02,
20
+ "intermediate_size": 14336,
21
+ "max_position_embeddings": 8192,
22
+ "mm_hidden_size": 3456,
23
+ "mm_projector_lr": null,
24
+ "mm_projector_type": "mlp2x_gelu",
25
+ "mm_vision_tower": "./weights/siglip-so400m-patch14-384",
26
+ "model_type": "bunny-llama",
27
+ "num_attention_heads": 32,
28
+ "num_hidden_layers": 32,
29
+ "num_key_value_heads": 8,
30
+ "pretraining_tp": 1,
31
+ "rms_norm_eps": 1e-05,
32
+ "rope_scaling": null,
33
+ "rope_theta": 500000.0,
34
+ "tie_word_embeddings": false,
35
+ "tokenizer_model_max_length": 2048,
36
+ "tokenizer_padding_side": "right",
37
+ "torch_dtype": "float16",
38
+ "transformers_version": "4.41.2",
39
+ "tune_mm_mlp_adapter": false,
40
+ "unfreeze_vision_tower": true,
41
+ "use_cache": true,
42
+ "use_mm_proj": true,
43
+ "use_s2": true,
44
+ "vocab_size": 128256
45
+ }
mixing_strategies/Equal/bugsBunny-v1_1-Llama-3-8B-V-Equal_dataset_10000_repeat_2_epochs_1_GA_2_lora/non_lora_trainables.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7a0dab0cefd97719e632dbe34186b207b24721cd439d644851337f06d4b9e2aa
3
+ size 918507402
mixing_strategies/Equal/bugsBunny-v1_1-Llama-3-8B-V-Equal_dataset_10000_repeat_2_epochs_1_GA_2_lora/trainer_state.json ADDED
The diff for this file is too large to render. See raw diff
 
mixing_strategies/Equal/bugsBunny-v1_1-Llama-3-8B-V-Equal_dataset_10000_repeat_2_epochs_1_GA_4_lora/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: ./weights/Bunny-v1_1-Llama-3-8B-V
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.11.1
mixing_strategies/Equal/bugsBunny-v1_1-Llama-3-8B-V-Equal_dataset_10000_repeat_2_epochs_1_GA_4_lora/adapter_config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "./weights/Bunny-v1_1-Llama-3-8B-V",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 256,
14
+ "lora_dropout": 0.1,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 128,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "q_proj",
24
+ "up_proj",
25
+ "k_proj",
26
+ "o_proj",
27
+ "v_proj",
28
+ "down_proj",
29
+ "gate_proj"
30
+ ],
31
+ "task_type": "CAUSAL_LM",
32
+ "use_dora": false,
33
+ "use_rslora": false
34
+ }
mixing_strategies/Equal/bugsBunny-v1_1-Llama-3-8B-V-Equal_dataset_10000_repeat_2_epochs_1_GA_4_lora/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b97c5d7de491d336dcc2b1c913eec57bc2ade51a9e0214178292b044b106f4bf
3
+ size 671150064
mixing_strategies/Equal/bugsBunny-v1_1-Llama-3-8B-V-Equal_dataset_10000_repeat_2_epochs_1_GA_4_lora/config.json ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "./weights/Bunny-v1_1-Llama-3-8B-V",
3
+ "architectures": [
4
+ "BunnyLlamaForCausalLM"
5
+ ],
6
+ "attention_bias": false,
7
+ "attention_dropout": 0.0,
8
+ "auto_map": {
9
+ "AutoConfig": "configuration_bunny_llama.BunnyLlamaConfig",
10
+ "AutoModelForCausalLM": "modeling_bunny_llama.BunnyLlamaForCausalLM"
11
+ },
12
+ "bos_token_id": 128000,
13
+ "continuous_training": false,
14
+ "eos_token_id": 128001,
15
+ "freeze_mm_mlp_adapter": false,
16
+ "hidden_act": "silu",
17
+ "hidden_size": 4096,
18
+ "image_aspect_ratio": "pad",
19
+ "initializer_range": 0.02,
20
+ "intermediate_size": 14336,
21
+ "max_position_embeddings": 8192,
22
+ "mm_hidden_size": 3456,
23
+ "mm_projector_lr": null,
24
+ "mm_projector_type": "mlp2x_gelu",
25
+ "mm_vision_tower": "./weights/siglip-so400m-patch14-384",
26
+ "model_type": "bunny-llama",
27
+ "num_attention_heads": 32,
28
+ "num_hidden_layers": 32,
29
+ "num_key_value_heads": 8,
30
+ "pretraining_tp": 1,
31
+ "rms_norm_eps": 1e-05,
32
+ "rope_scaling": null,
33
+ "rope_theta": 500000.0,
34
+ "tie_word_embeddings": false,
35
+ "tokenizer_model_max_length": 2048,
36
+ "tokenizer_padding_side": "right",
37
+ "torch_dtype": "float16",
38
+ "transformers_version": "4.41.2",
39
+ "tune_mm_mlp_adapter": false,
40
+ "unfreeze_vision_tower": true,
41
+ "use_cache": true,
42
+ "use_mm_proj": true,
43
+ "use_s2": true,
44
+ "vocab_size": 128256
45
+ }
mixing_strategies/Equal/bugsBunny-v1_1-Llama-3-8B-V-Equal_dataset_10000_repeat_2_epochs_1_GA_4_lora/non_lora_trainables.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:510b7354cbdb44580b8fcff4c0cba0358329aad7b5f7e48dcb45928b558fe28f
3
+ size 918507402
mixing_strategies/Equal/bugsBunny-v1_1-Llama-3-8B-V-Equal_dataset_10000_repeat_2_epochs_1_GA_4_lora/trainer_state.json ADDED
@@ -0,0 +1,2226 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.9984,
5
+ "eval_steps": 500,
6
+ "global_step": 312,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.0032,
13
+ "grad_norm": 0.8210982159609682,
14
+ "learning_rate": 2e-05,
15
+ "loss": 1.3329,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.0064,
20
+ "grad_norm": 0.7751787218518346,
21
+ "learning_rate": 4e-05,
22
+ "loss": 1.3721,
23
+ "step": 2
24
+ },
25
+ {
26
+ "epoch": 0.0096,
27
+ "grad_norm": 0.6646539221769208,
28
+ "learning_rate": 6e-05,
29
+ "loss": 1.3088,
30
+ "step": 3
31
+ },
32
+ {
33
+ "epoch": 0.0128,
34
+ "grad_norm": 0.7036195246304789,
35
+ "learning_rate": 8e-05,
36
+ "loss": 1.3377,
37
+ "step": 4
38
+ },
39
+ {
40
+ "epoch": 0.016,
41
+ "grad_norm": 0.6168233543536914,
42
+ "learning_rate": 0.0001,
43
+ "loss": 1.1919,
44
+ "step": 5
45
+ },
46
+ {
47
+ "epoch": 0.0192,
48
+ "grad_norm": 0.8492868526153039,
49
+ "learning_rate": 0.00012,
50
+ "loss": 1.2512,
51
+ "step": 6
52
+ },
53
+ {
54
+ "epoch": 0.0224,
55
+ "grad_norm": 0.7936611575617178,
56
+ "learning_rate": 0.00014,
57
+ "loss": 1.0697,
58
+ "step": 7
59
+ },
60
+ {
61
+ "epoch": 0.0256,
62
+ "grad_norm": 0.5862560941923312,
63
+ "learning_rate": 0.00016,
64
+ "loss": 1.0911,
65
+ "step": 8
66
+ },
67
+ {
68
+ "epoch": 0.0288,
69
+ "grad_norm": 0.49328071163938675,
70
+ "learning_rate": 0.00018,
71
+ "loss": 0.9762,
72
+ "step": 9
73
+ },
74
+ {
75
+ "epoch": 0.032,
76
+ "grad_norm": 0.4796953108328627,
77
+ "learning_rate": 0.0002,
78
+ "loss": 0.9269,
79
+ "step": 10
80
+ },
81
+ {
82
+ "epoch": 0.0352,
83
+ "grad_norm": 0.47431010608538954,
84
+ "learning_rate": 0.00019999458931878073,
85
+ "loss": 1.032,
86
+ "step": 11
87
+ },
88
+ {
89
+ "epoch": 0.0384,
90
+ "grad_norm": 0.4707062597281157,
91
+ "learning_rate": 0.0001999783578606323,
92
+ "loss": 0.9748,
93
+ "step": 12
94
+ },
95
+ {
96
+ "epoch": 0.0416,
97
+ "grad_norm": 0.4880961566615289,
98
+ "learning_rate": 0.00019995130738201966,
99
+ "loss": 0.9767,
100
+ "step": 13
101
+ },
102
+ {
103
+ "epoch": 0.0448,
104
+ "grad_norm": 0.4658440438656818,
105
+ "learning_rate": 0.0001999134408101731,
106
+ "loss": 0.9179,
107
+ "step": 14
108
+ },
109
+ {
110
+ "epoch": 0.048,
111
+ "grad_norm": 0.5344941086238363,
112
+ "learning_rate": 0.00019986476224277165,
113
+ "loss": 1.0129,
114
+ "step": 15
115
+ },
116
+ {
117
+ "epoch": 0.0512,
118
+ "grad_norm": 0.5007192463357719,
119
+ "learning_rate": 0.00019980527694749952,
120
+ "loss": 0.9953,
121
+ "step": 16
122
+ },
123
+ {
124
+ "epoch": 0.0544,
125
+ "grad_norm": 0.44861347739015633,
126
+ "learning_rate": 0.00019973499136147606,
127
+ "loss": 0.8987,
128
+ "step": 17
129
+ },
130
+ {
131
+ "epoch": 0.0576,
132
+ "grad_norm": 0.40432515099975497,
133
+ "learning_rate": 0.0001996539130905593,
134
+ "loss": 0.9949,
135
+ "step": 18
136
+ },
137
+ {
138
+ "epoch": 0.0608,
139
+ "grad_norm": 0.42728242685352247,
140
+ "learning_rate": 0.0001995620509085228,
141
+ "loss": 0.9649,
142
+ "step": 19
143
+ },
144
+ {
145
+ "epoch": 0.064,
146
+ "grad_norm": 0.4641229091681979,
147
+ "learning_rate": 0.00019945941475610623,
148
+ "loss": 0.9609,
149
+ "step": 20
150
+ },
151
+ {
152
+ "epoch": 0.0672,
153
+ "grad_norm": 0.3913009193318844,
154
+ "learning_rate": 0.0001993460157399396,
155
+ "loss": 0.8997,
156
+ "step": 21
157
+ },
158
+ {
159
+ "epoch": 0.0704,
160
+ "grad_norm": 0.3960221279711468,
161
+ "learning_rate": 0.0001992218661313415,
162
+ "loss": 0.9046,
163
+ "step": 22
164
+ },
165
+ {
166
+ "epoch": 0.0736,
167
+ "grad_norm": 0.4893549306818581,
168
+ "learning_rate": 0.00019908697936499103,
169
+ "loss": 0.9538,
170
+ "step": 23
171
+ },
172
+ {
173
+ "epoch": 0.0768,
174
+ "grad_norm": 0.3943436800759236,
175
+ "learning_rate": 0.00019894137003747403,
176
+ "loss": 0.85,
177
+ "step": 24
178
+ },
179
+ {
180
+ "epoch": 0.08,
181
+ "grad_norm": 0.49281687959276665,
182
+ "learning_rate": 0.00019878505390570362,
183
+ "loss": 0.8904,
184
+ "step": 25
185
+ },
186
+ {
187
+ "epoch": 0.0832,
188
+ "grad_norm": 0.45164645594942804,
189
+ "learning_rate": 0.00019861804788521493,
190
+ "loss": 0.9793,
191
+ "step": 26
192
+ },
193
+ {
194
+ "epoch": 0.0864,
195
+ "grad_norm": 0.3884822532677797,
196
+ "learning_rate": 0.00019844037004833473,
197
+ "loss": 0.8047,
198
+ "step": 27
199
+ },
200
+ {
201
+ "epoch": 0.0896,
202
+ "grad_norm": 0.41101776336511836,
203
+ "learning_rate": 0.00019825203962222572,
204
+ "loss": 0.9077,
205
+ "step": 28
206
+ },
207
+ {
208
+ "epoch": 0.0928,
209
+ "grad_norm": 1.3086028478450786,
210
+ "learning_rate": 0.0001980530769868059,
211
+ "loss": 0.9363,
212
+ "step": 29
213
+ },
214
+ {
215
+ "epoch": 0.096,
216
+ "grad_norm": 0.3375555003941169,
217
+ "learning_rate": 0.00019784350367254322,
218
+ "loss": 0.8523,
219
+ "step": 30
220
+ },
221
+ {
222
+ "epoch": 0.0992,
223
+ "grad_norm": 0.4356929720245981,
224
+ "learning_rate": 0.0001976233423581255,
225
+ "loss": 0.9504,
226
+ "step": 31
227
+ },
228
+ {
229
+ "epoch": 0.1024,
230
+ "grad_norm": 0.4558256010915256,
231
+ "learning_rate": 0.0001973926168680066,
232
+ "loss": 0.9619,
233
+ "step": 32
234
+ },
235
+ {
236
+ "epoch": 0.1056,
237
+ "grad_norm": 0.4182066475020067,
238
+ "learning_rate": 0.00019715135216982798,
239
+ "loss": 0.853,
240
+ "step": 33
241
+ },
242
+ {
243
+ "epoch": 0.1088,
244
+ "grad_norm": 0.42581671871982196,
245
+ "learning_rate": 0.0001968995743717171,
246
+ "loss": 0.9528,
247
+ "step": 34
248
+ },
249
+ {
250
+ "epoch": 0.112,
251
+ "grad_norm": 0.39591765873363666,
252
+ "learning_rate": 0.00019663731071946206,
253
+ "loss": 0.9005,
254
+ "step": 35
255
+ },
256
+ {
257
+ "epoch": 0.1152,
258
+ "grad_norm": 0.39119354380322896,
259
+ "learning_rate": 0.00019636458959356316,
260
+ "loss": 0.8988,
261
+ "step": 36
262
+ },
263
+ {
264
+ "epoch": 0.1184,
265
+ "grad_norm": 0.40090914965423335,
266
+ "learning_rate": 0.0001960814405061619,
267
+ "loss": 0.8758,
268
+ "step": 37
269
+ },
270
+ {
271
+ "epoch": 0.1216,
272
+ "grad_norm": 0.3945361491838484,
273
+ "learning_rate": 0.00019578789409784727,
274
+ "loss": 0.9393,
275
+ "step": 38
276
+ },
277
+ {
278
+ "epoch": 0.1248,
279
+ "grad_norm": 0.4394341724704068,
280
+ "learning_rate": 0.00019548398213434007,
281
+ "loss": 0.9428,
282
+ "step": 39
283
+ },
284
+ {
285
+ "epoch": 0.128,
286
+ "grad_norm": 0.3727456121947463,
287
+ "learning_rate": 0.00019516973750305532,
288
+ "loss": 0.8748,
289
+ "step": 40
290
+ },
291
+ {
292
+ "epoch": 0.1312,
293
+ "grad_norm": 0.37234199586270694,
294
+ "learning_rate": 0.00019484519420954354,
295
+ "loss": 0.8736,
296
+ "step": 41
297
+ },
298
+ {
299
+ "epoch": 0.1344,
300
+ "grad_norm": 0.39842513634466276,
301
+ "learning_rate": 0.00019451038737381077,
302
+ "loss": 0.9022,
303
+ "step": 42
304
+ },
305
+ {
306
+ "epoch": 0.1376,
307
+ "grad_norm": 0.38128602501461806,
308
+ "learning_rate": 0.00019416535322651818,
309
+ "loss": 0.8208,
310
+ "step": 43
311
+ },
312
+ {
313
+ "epoch": 0.1408,
314
+ "grad_norm": 0.38025302062603994,
315
+ "learning_rate": 0.00019381012910506146,
316
+ "loss": 0.8832,
317
+ "step": 44
318
+ },
319
+ {
320
+ "epoch": 0.144,
321
+ "grad_norm": 0.34279246176384087,
322
+ "learning_rate": 0.00019344475344953012,
323
+ "loss": 0.79,
324
+ "step": 45
325
+ },
326
+ {
327
+ "epoch": 0.1472,
328
+ "grad_norm": 0.39891015144038994,
329
+ "learning_rate": 0.00019306926579854821,
330
+ "loss": 0.8637,
331
+ "step": 46
332
+ },
333
+ {
334
+ "epoch": 0.1504,
335
+ "grad_norm": 0.33599563185761405,
336
+ "learning_rate": 0.00019268370678499533,
337
+ "loss": 0.7904,
338
+ "step": 47
339
+ },
340
+ {
341
+ "epoch": 0.1536,
342
+ "grad_norm": 0.405639307195739,
343
+ "learning_rate": 0.0001922881181316097,
344
+ "loss": 0.8904,
345
+ "step": 48
346
+ },
347
+ {
348
+ "epoch": 0.1568,
349
+ "grad_norm": 0.347008173492179,
350
+ "learning_rate": 0.00019188254264647337,
351
+ "loss": 0.8188,
352
+ "step": 49
353
+ },
354
+ {
355
+ "epoch": 0.16,
356
+ "grad_norm": 0.4053373760955314,
357
+ "learning_rate": 0.0001914670242183795,
358
+ "loss": 0.8767,
359
+ "step": 50
360
+ },
361
+ {
362
+ "epoch": 0.1632,
363
+ "grad_norm": 0.4071076068532092,
364
+ "learning_rate": 0.0001910416078120832,
365
+ "loss": 0.8753,
366
+ "step": 51
367
+ },
368
+ {
369
+ "epoch": 0.1664,
370
+ "grad_norm": 0.3947573279192353,
371
+ "learning_rate": 0.0001906063394634356,
372
+ "loss": 0.9461,
373
+ "step": 52
374
+ },
375
+ {
376
+ "epoch": 0.1696,
377
+ "grad_norm": 0.41593394777293125,
378
+ "learning_rate": 0.00019016126627440237,
379
+ "loss": 0.8543,
380
+ "step": 53
381
+ },
382
+ {
383
+ "epoch": 0.1728,
384
+ "grad_norm": 0.34556265770047007,
385
+ "learning_rate": 0.00018970643640796642,
386
+ "loss": 0.8457,
387
+ "step": 54
388
+ },
389
+ {
390
+ "epoch": 0.176,
391
+ "grad_norm": 0.4135992491712443,
392
+ "learning_rate": 0.000189241899082916,
393
+ "loss": 0.8471,
394
+ "step": 55
395
+ },
396
+ {
397
+ "epoch": 0.1792,
398
+ "grad_norm": 0.36656186910259925,
399
+ "learning_rate": 0.00018876770456851877,
400
+ "loss": 0.8315,
401
+ "step": 56
402
+ },
403
+ {
404
+ "epoch": 0.1824,
405
+ "grad_norm": 0.41888747530592474,
406
+ "learning_rate": 0.0001882839041790818,
407
+ "loss": 0.9118,
408
+ "step": 57
409
+ },
410
+ {
411
+ "epoch": 0.1856,
412
+ "grad_norm": 0.36251863953206737,
413
+ "learning_rate": 0.00018779055026839868,
414
+ "loss": 0.8626,
415
+ "step": 58
416
+ },
417
+ {
418
+ "epoch": 0.1888,
419
+ "grad_norm": 0.3748079918860433,
420
+ "learning_rate": 0.00018728769622408423,
421
+ "loss": 0.9207,
422
+ "step": 59
423
+ },
424
+ {
425
+ "epoch": 0.192,
426
+ "grad_norm": 0.34699582513061866,
427
+ "learning_rate": 0.00018677539646179707,
428
+ "loss": 0.7823,
429
+ "step": 60
430
+ },
431
+ {
432
+ "epoch": 0.1952,
433
+ "grad_norm": 0.4324436996517203,
434
+ "learning_rate": 0.00018625370641935129,
435
+ "loss": 0.9012,
436
+ "step": 61
437
+ },
438
+ {
439
+ "epoch": 0.1984,
440
+ "grad_norm": 0.40830183945729825,
441
+ "learning_rate": 0.00018572268255071718,
442
+ "loss": 0.8866,
443
+ "step": 62
444
+ },
445
+ {
446
+ "epoch": 0.2016,
447
+ "grad_norm": 0.35645475792133624,
448
+ "learning_rate": 0.00018518238231991218,
449
+ "loss": 0.8246,
450
+ "step": 63
451
+ },
452
+ {
453
+ "epoch": 0.2048,
454
+ "grad_norm": 0.39501413519318324,
455
+ "learning_rate": 0.00018463286419478255,
456
+ "loss": 0.8903,
457
+ "step": 64
458
+ },
459
+ {
460
+ "epoch": 0.208,
461
+ "grad_norm": 0.3403250694314037,
462
+ "learning_rate": 0.00018407418764067627,
463
+ "loss": 0.8002,
464
+ "step": 65
465
+ },
466
+ {
467
+ "epoch": 0.2112,
468
+ "grad_norm": 0.38578492015884985,
469
+ "learning_rate": 0.00018350641311400812,
470
+ "loss": 0.8823,
471
+ "step": 66
472
+ },
473
+ {
474
+ "epoch": 0.2144,
475
+ "grad_norm": 0.42912996214481597,
476
+ "learning_rate": 0.0001829296020557174,
477
+ "loss": 0.9337,
478
+ "step": 67
479
+ },
480
+ {
481
+ "epoch": 0.2176,
482
+ "grad_norm": 0.33840309416398107,
483
+ "learning_rate": 0.00018234381688461942,
484
+ "loss": 0.8152,
485
+ "step": 68
486
+ },
487
+ {
488
+ "epoch": 0.2208,
489
+ "grad_norm": 0.36261675945692257,
490
+ "learning_rate": 0.0001817491209906506,
491
+ "loss": 0.8119,
492
+ "step": 69
493
+ },
494
+ {
495
+ "epoch": 0.224,
496
+ "grad_norm": 0.3978630764800173,
497
+ "learning_rate": 0.00018114557872800905,
498
+ "loss": 0.8884,
499
+ "step": 70
500
+ },
501
+ {
502
+ "epoch": 0.2272,
503
+ "grad_norm": 0.4067690308983075,
504
+ "learning_rate": 0.00018053325540819045,
505
+ "loss": 0.888,
506
+ "step": 71
507
+ },
508
+ {
509
+ "epoch": 0.2304,
510
+ "grad_norm": 0.39761946908218565,
511
+ "learning_rate": 0.0001799122172929206,
512
+ "loss": 0.8734,
513
+ "step": 72
514
+ },
515
+ {
516
+ "epoch": 0.2336,
517
+ "grad_norm": 0.416514669804446,
518
+ "learning_rate": 0.00017928253158698473,
519
+ "loss": 0.8813,
520
+ "step": 73
521
+ },
522
+ {
523
+ "epoch": 0.2368,
524
+ "grad_norm": 0.3831820092966067,
525
+ "learning_rate": 0.0001786442664309554,
526
+ "loss": 0.8015,
527
+ "step": 74
528
+ },
529
+ {
530
+ "epoch": 0.24,
531
+ "grad_norm": 0.40531349166429315,
532
+ "learning_rate": 0.0001779974908938184,
533
+ "loss": 0.8021,
534
+ "step": 75
535
+ },
536
+ {
537
+ "epoch": 0.2432,
538
+ "grad_norm": 0.3757725806826467,
539
+ "learning_rate": 0.0001773422749654988,
540
+ "loss": 0.7819,
541
+ "step": 76
542
+ },
543
+ {
544
+ "epoch": 0.2464,
545
+ "grad_norm": 0.3973182683957758,
546
+ "learning_rate": 0.00017667868954928694,
547
+ "loss": 0.8807,
548
+ "step": 77
549
+ },
550
+ {
551
+ "epoch": 0.2496,
552
+ "grad_norm": 0.3251584668348043,
553
+ "learning_rate": 0.00017600680645416583,
554
+ "loss": 0.7627,
555
+ "step": 78
556
+ },
557
+ {
558
+ "epoch": 0.2528,
559
+ "grad_norm": 0.41127123846488717,
560
+ "learning_rate": 0.00017532669838704035,
561
+ "loss": 0.8387,
562
+ "step": 79
563
+ },
564
+ {
565
+ "epoch": 0.256,
566
+ "grad_norm": 0.37661663005517965,
567
+ "learning_rate": 0.00017463843894486937,
568
+ "loss": 0.8423,
569
+ "step": 80
570
+ },
571
+ {
572
+ "epoch": 0.2592,
573
+ "grad_norm": 0.5786386678521719,
574
+ "learning_rate": 0.0001739421026067017,
575
+ "loss": 0.8949,
576
+ "step": 81
577
+ },
578
+ {
579
+ "epoch": 0.2624,
580
+ "grad_norm": 0.362252109033277,
581
+ "learning_rate": 0.00017323776472561627,
582
+ "loss": 0.8644,
583
+ "step": 82
584
+ },
585
+ {
586
+ "epoch": 0.2656,
587
+ "grad_norm": 0.3786074251460458,
588
+ "learning_rate": 0.00017252550152056795,
589
+ "loss": 0.8161,
590
+ "step": 83
591
+ },
592
+ {
593
+ "epoch": 0.2688,
594
+ "grad_norm": 0.38704773419959004,
595
+ "learning_rate": 0.0001718053900681397,
596
+ "loss": 0.8054,
597
+ "step": 84
598
+ },
599
+ {
600
+ "epoch": 0.272,
601
+ "grad_norm": 0.36687924172159914,
602
+ "learning_rate": 0.00017107750829420176,
603
+ "loss": 0.8053,
604
+ "step": 85
605
+ },
606
+ {
607
+ "epoch": 0.2752,
608
+ "grad_norm": 0.4532905914552837,
609
+ "learning_rate": 0.00017034193496547902,
610
+ "loss": 0.8496,
611
+ "step": 86
612
+ },
613
+ {
614
+ "epoch": 0.2784,
615
+ "grad_norm": 0.3868107415971005,
616
+ "learning_rate": 0.00016959874968102735,
617
+ "loss": 0.8292,
618
+ "step": 87
619
+ },
620
+ {
621
+ "epoch": 0.2816,
622
+ "grad_norm": 0.45004745878752395,
623
+ "learning_rate": 0.00016884803286362,
624
+ "loss": 0.8386,
625
+ "step": 88
626
+ },
627
+ {
628
+ "epoch": 0.2848,
629
+ "grad_norm": 0.3601950439013075,
630
+ "learning_rate": 0.00016808986575104465,
631
+ "loss": 0.8144,
632
+ "step": 89
633
+ },
634
+ {
635
+ "epoch": 0.288,
636
+ "grad_norm": 0.39414164051104805,
637
+ "learning_rate": 0.00016732433038731242,
638
+ "loss": 0.7563,
639
+ "step": 90
640
+ },
641
+ {
642
+ "epoch": 0.2912,
643
+ "grad_norm": 0.4162252396854745,
644
+ "learning_rate": 0.0001665515096137797,
645
+ "loss": 0.79,
646
+ "step": 91
647
+ },
648
+ {
649
+ "epoch": 0.2944,
650
+ "grad_norm": 0.37960017989400824,
651
+ "learning_rate": 0.00016577148706018328,
652
+ "loss": 0.8201,
653
+ "step": 92
654
+ },
655
+ {
656
+ "epoch": 0.2976,
657
+ "grad_norm": 0.3838649671026415,
658
+ "learning_rate": 0.00016498434713559088,
659
+ "loss": 0.8362,
660
+ "step": 93
661
+ },
662
+ {
663
+ "epoch": 0.3008,
664
+ "grad_norm": 0.43789279418131016,
665
+ "learning_rate": 0.00016419017501926656,
666
+ "loss": 0.8057,
667
+ "step": 94
668
+ },
669
+ {
670
+ "epoch": 0.304,
671
+ "grad_norm": 0.33824523290379066,
672
+ "learning_rate": 0.0001633890566514535,
673
+ "loss": 0.7832,
674
+ "step": 95
675
+ },
676
+ {
677
+ "epoch": 0.3072,
678
+ "grad_norm": 0.38508464229871187,
679
+ "learning_rate": 0.00016258107872407375,
680
+ "loss": 0.8825,
681
+ "step": 96
682
+ },
683
+ {
684
+ "epoch": 0.3104,
685
+ "grad_norm": 0.3872280278580832,
686
+ "learning_rate": 0.0001617663286713474,
687
+ "loss": 0.8568,
688
+ "step": 97
689
+ },
690
+ {
691
+ "epoch": 0.3136,
692
+ "grad_norm": 0.3710845404668928,
693
+ "learning_rate": 0.00016094489466033043,
694
+ "loss": 0.8433,
695
+ "step": 98
696
+ },
697
+ {
698
+ "epoch": 0.3168,
699
+ "grad_norm": 0.3601850097818311,
700
+ "learning_rate": 0.00016011686558137448,
701
+ "loss": 0.8426,
702
+ "step": 99
703
+ },
704
+ {
705
+ "epoch": 0.32,
706
+ "grad_norm": 0.36336268281281814,
707
+ "learning_rate": 0.0001592823310385073,
708
+ "loss": 0.8459,
709
+ "step": 100
710
+ },
711
+ {
712
+ "epoch": 0.3232,
713
+ "grad_norm": 0.4007311050026622,
714
+ "learning_rate": 0.0001584413813397364,
715
+ "loss": 0.8332,
716
+ "step": 101
717
+ },
718
+ {
719
+ "epoch": 0.3264,
720
+ "grad_norm": 0.3279742689663737,
721
+ "learning_rate": 0.00015759410748727662,
722
+ "loss": 0.7898,
723
+ "step": 102
724
+ },
725
+ {
726
+ "epoch": 0.3296,
727
+ "grad_norm": 0.3937884919475543,
728
+ "learning_rate": 0.00015674060116770236,
729
+ "loss": 0.8439,
730
+ "step": 103
731
+ },
732
+ {
733
+ "epoch": 0.3328,
734
+ "grad_norm": 0.4143083432212905,
735
+ "learning_rate": 0.00015588095474202595,
736
+ "loss": 0.8246,
737
+ "step": 104
738
+ },
739
+ {
740
+ "epoch": 0.336,
741
+ "grad_norm": 0.35676836384855826,
742
+ "learning_rate": 0.00015501526123570277,
743
+ "loss": 0.8377,
744
+ "step": 105
745
+ },
746
+ {
747
+ "epoch": 0.3392,
748
+ "grad_norm": 0.4418839450505997,
749
+ "learning_rate": 0.00015414361432856475,
750
+ "loss": 0.8546,
751
+ "step": 106
752
+ },
753
+ {
754
+ "epoch": 0.3424,
755
+ "grad_norm": 0.38722861928111846,
756
+ "learning_rate": 0.0001532661083446829,
757
+ "loss": 0.8938,
758
+ "step": 107
759
+ },
760
+ {
761
+ "epoch": 0.3456,
762
+ "grad_norm": 0.4798810748731012,
763
+ "learning_rate": 0.00015238283824216015,
764
+ "loss": 0.933,
765
+ "step": 108
766
+ },
767
+ {
768
+ "epoch": 0.3488,
769
+ "grad_norm": 0.4192610184794806,
770
+ "learning_rate": 0.00015149389960285558,
771
+ "loss": 0.8314,
772
+ "step": 109
773
+ },
774
+ {
775
+ "epoch": 0.352,
776
+ "grad_norm": 0.37992908787234797,
777
+ "learning_rate": 0.00015059938862204127,
778
+ "loss": 0.8502,
779
+ "step": 110
780
+ },
781
+ {
782
+ "epoch": 0.3552,
783
+ "grad_norm": 0.3537079585046425,
784
+ "learning_rate": 0.00014969940209799248,
785
+ "loss": 0.837,
786
+ "step": 111
787
+ },
788
+ {
789
+ "epoch": 0.3584,
790
+ "grad_norm": 0.4947879619869325,
791
+ "learning_rate": 0.00014879403742151283,
792
+ "loss": 0.8655,
793
+ "step": 112
794
+ },
795
+ {
796
+ "epoch": 0.3616,
797
+ "grad_norm": 0.4144273342987794,
798
+ "learning_rate": 0.00014788339256539544,
799
+ "loss": 0.8024,
800
+ "step": 113
801
+ },
802
+ {
803
+ "epoch": 0.3648,
804
+ "grad_norm": 0.42810201253462243,
805
+ "learning_rate": 0.0001469675660738206,
806
+ "loss": 0.8646,
807
+ "step": 114
808
+ },
809
+ {
810
+ "epoch": 0.368,
811
+ "grad_norm": 0.43495581513946346,
812
+ "learning_rate": 0.00014604665705169237,
813
+ "loss": 0.8019,
814
+ "step": 115
815
+ },
816
+ {
817
+ "epoch": 0.3712,
818
+ "grad_norm": 0.40514388555481956,
819
+ "learning_rate": 0.00014512076515391375,
820
+ "loss": 0.8307,
821
+ "step": 116
822
+ },
823
+ {
824
+ "epoch": 0.3744,
825
+ "grad_norm": 0.5344793506502119,
826
+ "learning_rate": 0.00014418999057460276,
827
+ "loss": 0.8583,
828
+ "step": 117
829
+ },
830
+ {
831
+ "epoch": 0.3776,
832
+ "grad_norm": 0.3591362856868415,
833
+ "learning_rate": 0.0001432544340362501,
834
+ "loss": 0.8422,
835
+ "step": 118
836
+ },
837
+ {
838
+ "epoch": 0.3808,
839
+ "grad_norm": 0.43800340514585073,
840
+ "learning_rate": 0.00014231419677881966,
841
+ "loss": 0.829,
842
+ "step": 119
843
+ },
844
+ {
845
+ "epoch": 0.384,
846
+ "grad_norm": 0.3546231000833001,
847
+ "learning_rate": 0.00014136938054879283,
848
+ "loss": 0.8502,
849
+ "step": 120
850
+ },
851
+ {
852
+ "epoch": 0.3872,
853
+ "grad_norm": 0.3824038358260862,
854
+ "learning_rate": 0.00014042008758815818,
855
+ "loss": 0.8601,
856
+ "step": 121
857
+ },
858
+ {
859
+ "epoch": 0.3904,
860
+ "grad_norm": 0.3773025369439645,
861
+ "learning_rate": 0.00013946642062334766,
862
+ "loss": 0.7483,
863
+ "step": 122
864
+ },
865
+ {
866
+ "epoch": 0.3936,
867
+ "grad_norm": 0.40841295198664107,
868
+ "learning_rate": 0.00013850848285411994,
869
+ "loss": 0.8981,
870
+ "step": 123
871
+ },
872
+ {
873
+ "epoch": 0.3968,
874
+ "grad_norm": 0.32297152126914114,
875
+ "learning_rate": 0.000137546377942393,
876
+ "loss": 0.7604,
877
+ "step": 124
878
+ },
879
+ {
880
+ "epoch": 0.4,
881
+ "grad_norm": 0.38908595736780166,
882
+ "learning_rate": 0.00013658021000102636,
883
+ "loss": 0.8377,
884
+ "step": 125
885
+ },
886
+ {
887
+ "epoch": 0.4032,
888
+ "grad_norm": 0.30749072492921053,
889
+ "learning_rate": 0.00013561008358255468,
890
+ "loss": 0.6953,
891
+ "step": 126
892
+ },
893
+ {
894
+ "epoch": 0.4064,
895
+ "grad_norm": 0.42279066677539,
896
+ "learning_rate": 0.00013463610366787392,
897
+ "loss": 0.8381,
898
+ "step": 127
899
+ },
900
+ {
901
+ "epoch": 0.4096,
902
+ "grad_norm": 0.46835688525644387,
903
+ "learning_rate": 0.00013365837565488064,
904
+ "loss": 0.8801,
905
+ "step": 128
906
+ },
907
+ {
908
+ "epoch": 0.4128,
909
+ "grad_norm": 0.38170959986063163,
910
+ "learning_rate": 0.0001326770053470668,
911
+ "loss": 0.8177,
912
+ "step": 129
913
+ },
914
+ {
915
+ "epoch": 0.416,
916
+ "grad_norm": 0.3748992249270009,
917
+ "learning_rate": 0.0001316920989420703,
918
+ "loss": 0.7318,
919
+ "step": 130
920
+ },
921
+ {
922
+ "epoch": 0.4192,
923
+ "grad_norm": 0.32117252663093104,
924
+ "learning_rate": 0.00013070376302018287,
925
+ "loss": 0.7911,
926
+ "step": 131
927
+ },
928
+ {
929
+ "epoch": 0.4224,
930
+ "grad_norm": 0.32643252918835663,
931
+ "learning_rate": 0.00012971210453281674,
932
+ "loss": 0.7565,
933
+ "step": 132
934
+ },
935
+ {
936
+ "epoch": 0.4256,
937
+ "grad_norm": 0.34707082290937796,
938
+ "learning_rate": 0.000128717230790931,
939
+ "loss": 0.8179,
940
+ "step": 133
941
+ },
942
+ {
943
+ "epoch": 0.4288,
944
+ "grad_norm": 0.37747643787259155,
945
+ "learning_rate": 0.00012771924945341906,
946
+ "loss": 0.7647,
947
+ "step": 134
948
+ },
949
+ {
950
+ "epoch": 0.432,
951
+ "grad_norm": 0.4042549495002011,
952
+ "learning_rate": 0.00012671826851545851,
953
+ "loss": 0.8638,
954
+ "step": 135
955
+ },
956
+ {
957
+ "epoch": 0.4352,
958
+ "grad_norm": 0.40682592869078416,
959
+ "learning_rate": 0.0001257143962968246,
960
+ "loss": 0.9235,
961
+ "step": 136
962
+ },
963
+ {
964
+ "epoch": 0.4384,
965
+ "grad_norm": 0.3394181019470551,
966
+ "learning_rate": 0.00012470774143016853,
967
+ "loss": 0.8029,
968
+ "step": 137
969
+ },
970
+ {
971
+ "epoch": 0.4416,
972
+ "grad_norm": 0.37379683333378905,
973
+ "learning_rate": 0.00012369841284926188,
974
+ "loss": 0.8183,
975
+ "step": 138
976
+ },
977
+ {
978
+ "epoch": 0.4448,
979
+ "grad_norm": 0.37760782532653564,
980
+ "learning_rate": 0.00012268651977720866,
981
+ "loss": 0.732,
982
+ "step": 139
983
+ },
984
+ {
985
+ "epoch": 0.448,
986
+ "grad_norm": 0.42926915905667945,
987
+ "learning_rate": 0.00012167217171462566,
988
+ "loss": 0.8645,
989
+ "step": 140
990
+ },
991
+ {
992
+ "epoch": 0.4512,
993
+ "grad_norm": 0.3353578654728262,
994
+ "learning_rate": 0.0001206554784277931,
995
+ "loss": 0.7573,
996
+ "step": 141
997
+ },
998
+ {
999
+ "epoch": 0.4544,
1000
+ "grad_norm": 0.36702732140537525,
1001
+ "learning_rate": 0.00011963654993677645,
1002
+ "loss": 0.7855,
1003
+ "step": 142
1004
+ },
1005
+ {
1006
+ "epoch": 0.4576,
1007
+ "grad_norm": 0.3945829288474564,
1008
+ "learning_rate": 0.00011861549650352069,
1009
+ "loss": 0.9015,
1010
+ "step": 143
1011
+ },
1012
+ {
1013
+ "epoch": 0.4608,
1014
+ "grad_norm": 0.3384991496539021,
1015
+ "learning_rate": 0.00011759242861991855,
1016
+ "loss": 0.7672,
1017
+ "step": 144
1018
+ },
1019
+ {
1020
+ "epoch": 0.464,
1021
+ "grad_norm": 0.36235446616831335,
1022
+ "learning_rate": 0.00011656745699585371,
1023
+ "loss": 0.7298,
1024
+ "step": 145
1025
+ },
1026
+ {
1027
+ "epoch": 0.4672,
1028
+ "grad_norm": 0.37275162386027966,
1029
+ "learning_rate": 0.00011554069254722051,
1030
+ "loss": 0.8231,
1031
+ "step": 146
1032
+ },
1033
+ {
1034
+ "epoch": 0.4704,
1035
+ "grad_norm": 0.3351601172488379,
1036
+ "learning_rate": 0.00011451224638392129,
1037
+ "loss": 0.78,
1038
+ "step": 147
1039
+ },
1040
+ {
1041
+ "epoch": 0.4736,
1042
+ "grad_norm": 0.4177215304468739,
1043
+ "learning_rate": 0.00011348222979784289,
1044
+ "loss": 0.8148,
1045
+ "step": 148
1046
+ },
1047
+ {
1048
+ "epoch": 0.4768,
1049
+ "grad_norm": 0.31882281813401364,
1050
+ "learning_rate": 0.00011245075425081328,
1051
+ "loss": 0.8256,
1052
+ "step": 149
1053
+ },
1054
+ {
1055
+ "epoch": 0.48,
1056
+ "grad_norm": 0.34927524739208016,
1057
+ "learning_rate": 0.00011141793136253986,
1058
+ "loss": 0.7206,
1059
+ "step": 150
1060
+ },
1061
+ {
1062
+ "epoch": 0.4832,
1063
+ "grad_norm": 0.3272143865687314,
1064
+ "learning_rate": 0.0001103838728985307,
1065
+ "loss": 0.8422,
1066
+ "step": 151
1067
+ },
1068
+ {
1069
+ "epoch": 0.4864,
1070
+ "grad_norm": 0.38082561425167516,
1071
+ "learning_rate": 0.000109348690758,
1072
+ "loss": 0.801,
1073
+ "step": 152
1074
+ },
1075
+ {
1076
+ "epoch": 0.4896,
1077
+ "grad_norm": 0.3683618334975772,
1078
+ "learning_rate": 0.00010831249696175918,
1079
+ "loss": 0.754,
1080
+ "step": 153
1081
+ },
1082
+ {
1083
+ "epoch": 0.4928,
1084
+ "grad_norm": 0.3460529686559446,
1085
+ "learning_rate": 0.0001072754036400944,
1086
+ "loss": 0.7703,
1087
+ "step": 154
1088
+ },
1089
+ {
1090
+ "epoch": 0.496,
1091
+ "grad_norm": 0.3906059155144969,
1092
+ "learning_rate": 0.00010623752302063283,
1093
+ "loss": 0.8635,
1094
+ "step": 155
1095
+ },
1096
+ {
1097
+ "epoch": 0.4992,
1098
+ "grad_norm": 0.4498300529094466,
1099
+ "learning_rate": 0.00010519896741619803,
1100
+ "loss": 0.887,
1101
+ "step": 156
1102
+ },
1103
+ {
1104
+ "epoch": 0.5024,
1105
+ "grad_norm": 0.34890284462378934,
1106
+ "learning_rate": 0.00010415984921265609,
1107
+ "loss": 0.8415,
1108
+ "step": 157
1109
+ },
1110
+ {
1111
+ "epoch": 0.5056,
1112
+ "grad_norm": 0.35283761184137985,
1113
+ "learning_rate": 0.00010312028085675391,
1114
+ "loss": 0.7897,
1115
+ "step": 158
1116
+ },
1117
+ {
1118
+ "epoch": 0.5088,
1119
+ "grad_norm": 0.3383893586354043,
1120
+ "learning_rate": 0.00010208037484395114,
1121
+ "loss": 0.7699,
1122
+ "step": 159
1123
+ },
1124
+ {
1125
+ "epoch": 0.512,
1126
+ "grad_norm": 0.37944587951981884,
1127
+ "learning_rate": 0.00010104024370624644,
1128
+ "loss": 0.8168,
1129
+ "step": 160
1130
+ },
1131
+ {
1132
+ "epoch": 0.5152,
1133
+ "grad_norm": 0.35361574612426283,
1134
+ "learning_rate": 0.0001,
1135
+ "loss": 0.8237,
1136
+ "step": 161
1137
+ },
1138
+ {
1139
+ "epoch": 0.5184,
1140
+ "grad_norm": 0.49601519414630724,
1141
+ "learning_rate": 9.895975629375359e-05,
1142
+ "loss": 0.8944,
1143
+ "step": 162
1144
+ },
1145
+ {
1146
+ "epoch": 0.5216,
1147
+ "grad_norm": 0.4329854234900553,
1148
+ "learning_rate": 9.791962515604887e-05,
1149
+ "loss": 0.8409,
1150
+ "step": 163
1151
+ },
1152
+ {
1153
+ "epoch": 0.5248,
1154
+ "grad_norm": 0.33753405466010045,
1155
+ "learning_rate": 9.687971914324607e-05,
1156
+ "loss": 0.6823,
1157
+ "step": 164
1158
+ },
1159
+ {
1160
+ "epoch": 0.528,
1161
+ "grad_norm": 0.3641968735452542,
1162
+ "learning_rate": 9.584015078734395e-05,
1163
+ "loss": 0.7999,
1164
+ "step": 165
1165
+ },
1166
+ {
1167
+ "epoch": 0.5312,
1168
+ "grad_norm": 0.3412252144703986,
1169
+ "learning_rate": 9.480103258380198e-05,
1170
+ "loss": 0.7485,
1171
+ "step": 166
1172
+ },
1173
+ {
1174
+ "epoch": 0.5344,
1175
+ "grad_norm": 0.36557961816073514,
1176
+ "learning_rate": 9.376247697936719e-05,
1177
+ "loss": 0.8047,
1178
+ "step": 167
1179
+ },
1180
+ {
1181
+ "epoch": 0.5376,
1182
+ "grad_norm": 0.3143242351094908,
1183
+ "learning_rate": 9.272459635990562e-05,
1184
+ "loss": 0.7417,
1185
+ "step": 168
1186
+ },
1187
+ {
1188
+ "epoch": 0.5408,
1189
+ "grad_norm": 0.37740381793108085,
1190
+ "learning_rate": 9.168750303824084e-05,
1191
+ "loss": 0.7847,
1192
+ "step": 169
1193
+ },
1194
+ {
1195
+ "epoch": 0.544,
1196
+ "grad_norm": 0.3756001432572221,
1197
+ "learning_rate": 9.065130924199998e-05,
1198
+ "loss": 0.8045,
1199
+ "step": 170
1200
+ },
1201
+ {
1202
+ "epoch": 0.5472,
1203
+ "grad_norm": 0.3886531783560117,
1204
+ "learning_rate": 8.961612710146934e-05,
1205
+ "loss": 0.7739,
1206
+ "step": 171
1207
+ },
1208
+ {
1209
+ "epoch": 0.5504,
1210
+ "grad_norm": 0.35961818663851197,
1211
+ "learning_rate": 8.858206863746018e-05,
1212
+ "loss": 0.7682,
1213
+ "step": 172
1214
+ },
1215
+ {
1216
+ "epoch": 0.5536,
1217
+ "grad_norm": 0.34291998146787495,
1218
+ "learning_rate": 8.754924574918675e-05,
1219
+ "loss": 0.8154,
1220
+ "step": 173
1221
+ },
1222
+ {
1223
+ "epoch": 0.5568,
1224
+ "grad_norm": 0.365623213677616,
1225
+ "learning_rate": 8.651777020215712e-05,
1226
+ "loss": 0.7723,
1227
+ "step": 174
1228
+ },
1229
+ {
1230
+ "epoch": 0.56,
1231
+ "grad_norm": 0.4154693198085254,
1232
+ "learning_rate": 8.548775361607872e-05,
1233
+ "loss": 0.8059,
1234
+ "step": 175
1235
+ },
1236
+ {
1237
+ "epoch": 0.5632,
1238
+ "grad_norm": 0.41853675355977066,
1239
+ "learning_rate": 8.445930745277953e-05,
1240
+ "loss": 0.7936,
1241
+ "step": 176
1242
+ },
1243
+ {
1244
+ "epoch": 0.5664,
1245
+ "grad_norm": 0.3029988536971098,
1246
+ "learning_rate": 8.343254300414628e-05,
1247
+ "loss": 0.7538,
1248
+ "step": 177
1249
+ },
1250
+ {
1251
+ "epoch": 0.5696,
1252
+ "grad_norm": 0.35015284331125907,
1253
+ "learning_rate": 8.240757138008149e-05,
1254
+ "loss": 0.784,
1255
+ "step": 178
1256
+ },
1257
+ {
1258
+ "epoch": 0.5728,
1259
+ "grad_norm": 0.36899119805196373,
1260
+ "learning_rate": 8.138450349647936e-05,
1261
+ "loss": 0.7712,
1262
+ "step": 179
1263
+ },
1264
+ {
1265
+ "epoch": 0.576,
1266
+ "grad_norm": 0.4635909482238713,
1267
+ "learning_rate": 8.036345006322359e-05,
1268
+ "loss": 0.8151,
1269
+ "step": 180
1270
+ },
1271
+ {
1272
+ "epoch": 0.5792,
1273
+ "grad_norm": 0.39324815381124656,
1274
+ "learning_rate": 7.934452157220694e-05,
1275
+ "loss": 0.8479,
1276
+ "step": 181
1277
+ },
1278
+ {
1279
+ "epoch": 0.5824,
1280
+ "grad_norm": 0.3790446343866871,
1281
+ "learning_rate": 7.832782828537437e-05,
1282
+ "loss": 0.7849,
1283
+ "step": 182
1284
+ },
1285
+ {
1286
+ "epoch": 0.5856,
1287
+ "grad_norm": 0.38585647860183997,
1288
+ "learning_rate": 7.731348022279134e-05,
1289
+ "loss": 0.8062,
1290
+ "step": 183
1291
+ },
1292
+ {
1293
+ "epoch": 0.5888,
1294
+ "grad_norm": 0.3851371620272845,
1295
+ "learning_rate": 7.630158715073813e-05,
1296
+ "loss": 0.8341,
1297
+ "step": 184
1298
+ },
1299
+ {
1300
+ "epoch": 0.592,
1301
+ "grad_norm": 0.33007054542330805,
1302
+ "learning_rate": 7.52922585698315e-05,
1303
+ "loss": 0.7197,
1304
+ "step": 185
1305
+ },
1306
+ {
1307
+ "epoch": 0.5952,
1308
+ "grad_norm": 0.42174584227102946,
1309
+ "learning_rate": 7.428560370317542e-05,
1310
+ "loss": 0.8017,
1311
+ "step": 186
1312
+ },
1313
+ {
1314
+ "epoch": 0.5984,
1315
+ "grad_norm": 0.33067818645649066,
1316
+ "learning_rate": 7.328173148454151e-05,
1317
+ "loss": 0.7886,
1318
+ "step": 187
1319
+ },
1320
+ {
1321
+ "epoch": 0.6016,
1322
+ "grad_norm": 0.42265554001971417,
1323
+ "learning_rate": 7.228075054658096e-05,
1324
+ "loss": 0.8238,
1325
+ "step": 188
1326
+ },
1327
+ {
1328
+ "epoch": 0.6048,
1329
+ "grad_norm": 0.34908037692220767,
1330
+ "learning_rate": 7.1282769209069e-05,
1331
+ "loss": 0.7928,
1332
+ "step": 189
1333
+ },
1334
+ {
1335
+ "epoch": 0.608,
1336
+ "grad_norm": 0.3700495310823468,
1337
+ "learning_rate": 7.028789546718326e-05,
1338
+ "loss": 0.7491,
1339
+ "step": 190
1340
+ },
1341
+ {
1342
+ "epoch": 0.6112,
1343
+ "grad_norm": 0.3535456489525407,
1344
+ "learning_rate": 6.929623697981718e-05,
1345
+ "loss": 0.8094,
1346
+ "step": 191
1347
+ },
1348
+ {
1349
+ "epoch": 0.6144,
1350
+ "grad_norm": 0.35992816828147584,
1351
+ "learning_rate": 6.830790105792973e-05,
1352
+ "loss": 0.747,
1353
+ "step": 192
1354
+ },
1355
+ {
1356
+ "epoch": 0.6176,
1357
+ "grad_norm": 0.34357552011988995,
1358
+ "learning_rate": 6.732299465293322e-05,
1359
+ "loss": 0.7329,
1360
+ "step": 193
1361
+ },
1362
+ {
1363
+ "epoch": 0.6208,
1364
+ "grad_norm": 0.4017091190478587,
1365
+ "learning_rate": 6.63416243451194e-05,
1366
+ "loss": 0.807,
1367
+ "step": 194
1368
+ },
1369
+ {
1370
+ "epoch": 0.624,
1371
+ "grad_norm": 0.3092472351482309,
1372
+ "learning_rate": 6.536389633212609e-05,
1373
+ "loss": 0.7309,
1374
+ "step": 195
1375
+ },
1376
+ {
1377
+ "epoch": 0.6272,
1378
+ "grad_norm": 0.3737027071808558,
1379
+ "learning_rate": 6.43899164174453e-05,
1380
+ "loss": 0.8191,
1381
+ "step": 196
1382
+ },
1383
+ {
1384
+ "epoch": 0.6304,
1385
+ "grad_norm": 0.36607238095868505,
1386
+ "learning_rate": 6.341978999897365e-05,
1387
+ "loss": 0.7998,
1388
+ "step": 197
1389
+ },
1390
+ {
1391
+ "epoch": 0.6336,
1392
+ "grad_norm": 0.4042496034179054,
1393
+ "learning_rate": 6.245362205760704e-05,
1394
+ "loss": 0.773,
1395
+ "step": 198
1396
+ },
1397
+ {
1398
+ "epoch": 0.6368,
1399
+ "grad_norm": 0.37764639494375285,
1400
+ "learning_rate": 6.149151714588009e-05,
1401
+ "loss": 0.8055,
1402
+ "step": 199
1403
+ },
1404
+ {
1405
+ "epoch": 0.64,
1406
+ "grad_norm": 0.3348761239337774,
1407
+ "learning_rate": 6.053357937665237e-05,
1408
+ "loss": 0.7443,
1409
+ "step": 200
1410
+ },
1411
+ {
1412
+ "epoch": 0.6432,
1413
+ "grad_norm": 0.37626992146366794,
1414
+ "learning_rate": 5.957991241184184e-05,
1415
+ "loss": 0.7826,
1416
+ "step": 201
1417
+ },
1418
+ {
1419
+ "epoch": 0.6464,
1420
+ "grad_norm": 0.3665662199313722,
1421
+ "learning_rate": 5.863061945120719e-05,
1422
+ "loss": 0.8335,
1423
+ "step": 202
1424
+ },
1425
+ {
1426
+ "epoch": 0.6496,
1427
+ "grad_norm": 0.33785931924439677,
1428
+ "learning_rate": 5.768580322118034e-05,
1429
+ "loss": 0.7972,
1430
+ "step": 203
1431
+ },
1432
+ {
1433
+ "epoch": 0.6528,
1434
+ "grad_norm": 0.3880113242436853,
1435
+ "learning_rate": 5.6745565963749925e-05,
1436
+ "loss": 0.8896,
1437
+ "step": 204
1438
+ },
1439
+ {
1440
+ "epoch": 0.656,
1441
+ "grad_norm": 0.3721493819848271,
1442
+ "learning_rate": 5.5810009425397294e-05,
1443
+ "loss": 0.8183,
1444
+ "step": 205
1445
+ },
1446
+ {
1447
+ "epoch": 0.6592,
1448
+ "grad_norm": 0.5198646512996709,
1449
+ "learning_rate": 5.487923484608629e-05,
1450
+ "loss": 0.8566,
1451
+ "step": 206
1452
+ },
1453
+ {
1454
+ "epoch": 0.6624,
1455
+ "grad_norm": 0.4065329950447661,
1456
+ "learning_rate": 5.395334294830765e-05,
1457
+ "loss": 0.9147,
1458
+ "step": 207
1459
+ },
1460
+ {
1461
+ "epoch": 0.6656,
1462
+ "grad_norm": 0.37859745509497567,
1463
+ "learning_rate": 5.3032433926179395e-05,
1464
+ "loss": 0.8042,
1465
+ "step": 208
1466
+ },
1467
+ {
1468
+ "epoch": 0.6688,
1469
+ "grad_norm": 0.3607765773764099,
1470
+ "learning_rate": 5.211660743460458e-05,
1471
+ "loss": 0.7938,
1472
+ "step": 209
1473
+ },
1474
+ {
1475
+ "epoch": 0.672,
1476
+ "grad_norm": 0.4092950714526401,
1477
+ "learning_rate": 5.1205962578487155e-05,
1478
+ "loss": 0.806,
1479
+ "step": 210
1480
+ },
1481
+ {
1482
+ "epoch": 0.6752,
1483
+ "grad_norm": 0.30432228901089703,
1484
+ "learning_rate": 5.030059790200756e-05,
1485
+ "loss": 0.7262,
1486
+ "step": 211
1487
+ },
1488
+ {
1489
+ "epoch": 0.6784,
1490
+ "grad_norm": 0.37088903131596684,
1491
+ "learning_rate": 4.940061137795876e-05,
1492
+ "loss": 0.7169,
1493
+ "step": 212
1494
+ },
1495
+ {
1496
+ "epoch": 0.6816,
1497
+ "grad_norm": 0.3904681317398879,
1498
+ "learning_rate": 4.850610039714444e-05,
1499
+ "loss": 0.8104,
1500
+ "step": 213
1501
+ },
1502
+ {
1503
+ "epoch": 0.6848,
1504
+ "grad_norm": 0.46898322895625755,
1505
+ "learning_rate": 4.761716175783989e-05,
1506
+ "loss": 0.8688,
1507
+ "step": 214
1508
+ },
1509
+ {
1510
+ "epoch": 0.688,
1511
+ "grad_norm": 0.3006038153490141,
1512
+ "learning_rate": 4.673389165531714e-05,
1513
+ "loss": 0.7169,
1514
+ "step": 215
1515
+ },
1516
+ {
1517
+ "epoch": 0.6912,
1518
+ "grad_norm": 0.37810250308131216,
1519
+ "learning_rate": 4.585638567143529e-05,
1520
+ "loss": 0.789,
1521
+ "step": 216
1522
+ },
1523
+ {
1524
+ "epoch": 0.6944,
1525
+ "grad_norm": 0.2989111481815409,
1526
+ "learning_rate": 4.498473876429726e-05,
1527
+ "loss": 0.7303,
1528
+ "step": 217
1529
+ },
1530
+ {
1531
+ "epoch": 0.6976,
1532
+ "grad_norm": 0.32911143249763547,
1533
+ "learning_rate": 4.411904525797408e-05,
1534
+ "loss": 0.7592,
1535
+ "step": 218
1536
+ },
1537
+ {
1538
+ "epoch": 0.7008,
1539
+ "grad_norm": 0.35549746840897417,
1540
+ "learning_rate": 4.325939883229766e-05,
1541
+ "loss": 0.8175,
1542
+ "step": 219
1543
+ },
1544
+ {
1545
+ "epoch": 0.704,
1546
+ "grad_norm": 0.31577828848903333,
1547
+ "learning_rate": 4.240589251272342e-05,
1548
+ "loss": 0.7581,
1549
+ "step": 220
1550
+ },
1551
+ {
1552
+ "epoch": 0.7072,
1553
+ "grad_norm": 0.38150936709065336,
1554
+ "learning_rate": 4.155861866026364e-05,
1555
+ "loss": 0.7383,
1556
+ "step": 221
1557
+ },
1558
+ {
1559
+ "epoch": 0.7104,
1560
+ "grad_norm": 0.352873952674236,
1561
+ "learning_rate": 4.071766896149273e-05,
1562
+ "loss": 0.7899,
1563
+ "step": 222
1564
+ },
1565
+ {
1566
+ "epoch": 0.7136,
1567
+ "grad_norm": 0.3729395002008322,
1568
+ "learning_rate": 3.988313441862553e-05,
1569
+ "loss": 0.8267,
1570
+ "step": 223
1571
+ },
1572
+ {
1573
+ "epoch": 0.7168,
1574
+ "grad_norm": 0.38612103435747785,
1575
+ "learning_rate": 3.9055105339669595e-05,
1576
+ "loss": 0.8438,
1577
+ "step": 224
1578
+ },
1579
+ {
1580
+ "epoch": 0.72,
1581
+ "grad_norm": 0.3343773300394658,
1582
+ "learning_rate": 3.823367132865265e-05,
1583
+ "loss": 0.7766,
1584
+ "step": 225
1585
+ },
1586
+ {
1587
+ "epoch": 0.7232,
1588
+ "grad_norm": 0.34821484213233017,
1589
+ "learning_rate": 3.741892127592625e-05,
1590
+ "loss": 0.7869,
1591
+ "step": 226
1592
+ },
1593
+ {
1594
+ "epoch": 0.7264,
1595
+ "grad_norm": 0.34452187805524936,
1596
+ "learning_rate": 3.6610943348546526e-05,
1597
+ "loss": 0.8142,
1598
+ "step": 227
1599
+ },
1600
+ {
1601
+ "epoch": 0.7296,
1602
+ "grad_norm": 0.389690433062319,
1603
+ "learning_rate": 3.580982498073344e-05,
1604
+ "loss": 0.75,
1605
+ "step": 228
1606
+ },
1607
+ {
1608
+ "epoch": 0.7328,
1609
+ "grad_norm": 0.4645823764551201,
1610
+ "learning_rate": 3.501565286440914e-05,
1611
+ "loss": 0.9086,
1612
+ "step": 229
1613
+ },
1614
+ {
1615
+ "epoch": 0.736,
1616
+ "grad_norm": 0.3374398934171241,
1617
+ "learning_rate": 3.422851293981676e-05,
1618
+ "loss": 0.7671,
1619
+ "step": 230
1620
+ },
1621
+ {
1622
+ "epoch": 0.7392,
1623
+ "grad_norm": 0.4111564099874274,
1624
+ "learning_rate": 3.3448490386220355e-05,
1625
+ "loss": 0.83,
1626
+ "step": 231
1627
+ },
1628
+ {
1629
+ "epoch": 0.7424,
1630
+ "grad_norm": 0.4082259005237418,
1631
+ "learning_rate": 3.2675669612687565e-05,
1632
+ "loss": 0.8499,
1633
+ "step": 232
1634
+ },
1635
+ {
1636
+ "epoch": 0.7456,
1637
+ "grad_norm": 0.35262858393716395,
1638
+ "learning_rate": 3.191013424895536e-05,
1639
+ "loss": 0.8093,
1640
+ "step": 233
1641
+ },
1642
+ {
1643
+ "epoch": 0.7488,
1644
+ "grad_norm": 0.41355266235382226,
1645
+ "learning_rate": 3.115196713638e-05,
1646
+ "loss": 0.8087,
1647
+ "step": 234
1648
+ },
1649
+ {
1650
+ "epoch": 0.752,
1651
+ "grad_norm": 0.41241448924179946,
1652
+ "learning_rate": 3.040125031897264e-05,
1653
+ "loss": 0.7911,
1654
+ "step": 235
1655
+ },
1656
+ {
1657
+ "epoch": 0.7552,
1658
+ "grad_norm": 0.3279954208792422,
1659
+ "learning_rate": 2.9658065034520978e-05,
1660
+ "loss": 0.7616,
1661
+ "step": 236
1662
+ },
1663
+ {
1664
+ "epoch": 0.7584,
1665
+ "grad_norm": 0.3710790783951858,
1666
+ "learning_rate": 2.892249170579826e-05,
1667
+ "loss": 0.7417,
1668
+ "step": 237
1669
+ },
1670
+ {
1671
+ "epoch": 0.7616,
1672
+ "grad_norm": 0.3638956295243486,
1673
+ "learning_rate": 2.8194609931860316e-05,
1674
+ "loss": 0.7734,
1675
+ "step": 238
1676
+ },
1677
+ {
1678
+ "epoch": 0.7648,
1679
+ "grad_norm": 0.45340861210629174,
1680
+ "learning_rate": 2.7474498479432087e-05,
1681
+ "loss": 0.845,
1682
+ "step": 239
1683
+ },
1684
+ {
1685
+ "epoch": 0.768,
1686
+ "grad_norm": 0.32432848532039027,
1687
+ "learning_rate": 2.6762235274383772e-05,
1688
+ "loss": 0.7292,
1689
+ "step": 240
1690
+ },
1691
+ {
1692
+ "epoch": 0.7712,
1693
+ "grad_norm": 0.33285800890422707,
1694
+ "learning_rate": 2.6057897393298324e-05,
1695
+ "loss": 0.6951,
1696
+ "step": 241
1697
+ },
1698
+ {
1699
+ "epoch": 0.7744,
1700
+ "grad_norm": 0.36168512959628546,
1701
+ "learning_rate": 2.536156105513062e-05,
1702
+ "loss": 0.7777,
1703
+ "step": 242
1704
+ },
1705
+ {
1706
+ "epoch": 0.7776,
1707
+ "grad_norm": 0.3755110018820757,
1708
+ "learning_rate": 2.4673301612959654e-05,
1709
+ "loss": 0.7907,
1710
+ "step": 243
1711
+ },
1712
+ {
1713
+ "epoch": 0.7808,
1714
+ "grad_norm": 0.4746969071550545,
1715
+ "learning_rate": 2.399319354583418e-05,
1716
+ "loss": 0.8731,
1717
+ "step": 244
1718
+ },
1719
+ {
1720
+ "epoch": 0.784,
1721
+ "grad_norm": 0.3485421714780257,
1722
+ "learning_rate": 2.3321310450713062e-05,
1723
+ "loss": 0.7017,
1724
+ "step": 245
1725
+ },
1726
+ {
1727
+ "epoch": 0.7872,
1728
+ "grad_norm": 0.3522895092881672,
1729
+ "learning_rate": 2.265772503450122e-05,
1730
+ "loss": 0.7341,
1731
+ "step": 246
1732
+ },
1733
+ {
1734
+ "epoch": 0.7904,
1735
+ "grad_norm": 0.3171714951862727,
1736
+ "learning_rate": 2.2002509106181624e-05,
1737
+ "loss": 0.778,
1738
+ "step": 247
1739
+ },
1740
+ {
1741
+ "epoch": 0.7936,
1742
+ "grad_norm": 0.30854770168466894,
1743
+ "learning_rate": 2.1355733569044635e-05,
1744
+ "loss": 0.7326,
1745
+ "step": 248
1746
+ },
1747
+ {
1748
+ "epoch": 0.7968,
1749
+ "grad_norm": 0.4491439626115905,
1750
+ "learning_rate": 2.0717468413015283e-05,
1751
+ "loss": 0.8296,
1752
+ "step": 249
1753
+ },
1754
+ {
1755
+ "epoch": 0.8,
1756
+ "grad_norm": 0.37090037131233355,
1757
+ "learning_rate": 2.008778270707944e-05,
1758
+ "loss": 0.7953,
1759
+ "step": 250
1760
+ },
1761
+ {
1762
+ "epoch": 0.8032,
1763
+ "grad_norm": 0.3834261067678261,
1764
+ "learning_rate": 1.946674459180955e-05,
1765
+ "loss": 0.9055,
1766
+ "step": 251
1767
+ },
1768
+ {
1769
+ "epoch": 0.8064,
1770
+ "grad_norm": 0.3255432432056942,
1771
+ "learning_rate": 1.8854421271990964e-05,
1772
+ "loss": 0.7592,
1773
+ "step": 252
1774
+ },
1775
+ {
1776
+ "epoch": 0.8096,
1777
+ "grad_norm": 0.38151180353083647,
1778
+ "learning_rate": 1.8250879009349398e-05,
1779
+ "loss": 0.7883,
1780
+ "step": 253
1781
+ },
1782
+ {
1783
+ "epoch": 0.8128,
1784
+ "grad_norm": 0.43340018294551996,
1785
+ "learning_rate": 1.7656183115380577e-05,
1786
+ "loss": 0.9072,
1787
+ "step": 254
1788
+ },
1789
+ {
1790
+ "epoch": 0.816,
1791
+ "grad_norm": 0.4692009486980658,
1792
+ "learning_rate": 1.707039794428259e-05,
1793
+ "loss": 0.8892,
1794
+ "step": 255
1795
+ },
1796
+ {
1797
+ "epoch": 0.8192,
1798
+ "grad_norm": 0.34906122041207605,
1799
+ "learning_rate": 1.649358688599191e-05,
1800
+ "loss": 0.7177,
1801
+ "step": 256
1802
+ },
1803
+ {
1804
+ "epoch": 0.8224,
1805
+ "grad_norm": 0.357075923035099,
1806
+ "learning_rate": 1.5925812359323745e-05,
1807
+ "loss": 0.7832,
1808
+ "step": 257
1809
+ },
1810
+ {
1811
+ "epoch": 0.8256,
1812
+ "grad_norm": 0.3853853663460861,
1813
+ "learning_rate": 1.5367135805217458e-05,
1814
+ "loss": 0.7875,
1815
+ "step": 258
1816
+ },
1817
+ {
1818
+ "epoch": 0.8288,
1819
+ "grad_norm": 0.3162997323586251,
1820
+ "learning_rate": 1.4817617680087825e-05,
1821
+ "loss": 0.7652,
1822
+ "step": 259
1823
+ },
1824
+ {
1825
+ "epoch": 0.832,
1826
+ "grad_norm": 0.5058370501510021,
1827
+ "learning_rate": 1.4277317449282834e-05,
1828
+ "loss": 0.788,
1829
+ "step": 260
1830
+ },
1831
+ {
1832
+ "epoch": 0.8352,
1833
+ "grad_norm": 0.38934979473108083,
1834
+ "learning_rate": 1.3746293580648717e-05,
1835
+ "loss": 0.8643,
1836
+ "step": 261
1837
+ },
1838
+ {
1839
+ "epoch": 0.8384,
1840
+ "grad_norm": 0.36714032393813667,
1841
+ "learning_rate": 1.3224603538202929e-05,
1842
+ "loss": 0.7469,
1843
+ "step": 262
1844
+ },
1845
+ {
1846
+ "epoch": 0.8416,
1847
+ "grad_norm": 0.3488248102724531,
1848
+ "learning_rate": 1.2712303775915802e-05,
1849
+ "loss": 0.7318,
1850
+ "step": 263
1851
+ },
1852
+ {
1853
+ "epoch": 0.8448,
1854
+ "grad_norm": 0.294650221806305,
1855
+ "learning_rate": 1.220944973160133e-05,
1856
+ "loss": 0.7344,
1857
+ "step": 264
1858
+ },
1859
+ {
1860
+ "epoch": 0.848,
1861
+ "grad_norm": 0.3540730290394561,
1862
+ "learning_rate": 1.1716095820918216e-05,
1863
+ "loss": 0.7354,
1864
+ "step": 265
1865
+ },
1866
+ {
1867
+ "epoch": 0.8512,
1868
+ "grad_norm": 0.4226203562757057,
1869
+ "learning_rate": 1.1232295431481222e-05,
1870
+ "loss": 0.808,
1871
+ "step": 266
1872
+ },
1873
+ {
1874
+ "epoch": 0.8544,
1875
+ "grad_norm": 0.4014616869239377,
1876
+ "learning_rate": 1.0758100917083991e-05,
1877
+ "loss": 0.7749,
1878
+ "step": 267
1879
+ },
1880
+ {
1881
+ "epoch": 0.8576,
1882
+ "grad_norm": 0.3934215620886321,
1883
+ "learning_rate": 1.0293563592033595e-05,
1884
+ "loss": 0.8003,
1885
+ "step": 268
1886
+ },
1887
+ {
1888
+ "epoch": 0.8608,
1889
+ "grad_norm": 0.3353659014526165,
1890
+ "learning_rate": 9.838733725597615e-06,
1891
+ "loss": 0.7851,
1892
+ "step": 269
1893
+ },
1894
+ {
1895
+ "epoch": 0.864,
1896
+ "grad_norm": 0.3700720016155327,
1897
+ "learning_rate": 9.393660536564408e-06,
1898
+ "loss": 0.7941,
1899
+ "step": 270
1900
+ },
1901
+ {
1902
+ "epoch": 0.8672,
1903
+ "grad_norm": 0.31100504311573046,
1904
+ "learning_rate": 8.958392187916841e-06,
1905
+ "loss": 0.7298,
1906
+ "step": 271
1907
+ },
1908
+ {
1909
+ "epoch": 0.8704,
1910
+ "grad_norm": 0.4172712953645561,
1911
+ "learning_rate": 8.532975781620512e-06,
1912
+ "loss": 0.7686,
1913
+ "step": 272
1914
+ },
1915
+ {
1916
+ "epoch": 0.8736,
1917
+ "grad_norm": 0.34667441316708114,
1918
+ "learning_rate": 8.117457353526625e-06,
1919
+ "loss": 0.7106,
1920
+ "step": 273
1921
+ },
1922
+ {
1923
+ "epoch": 0.8768,
1924
+ "grad_norm": 0.3004518824396042,
1925
+ "learning_rate": 7.711881868390291e-06,
1926
+ "loss": 0.6887,
1927
+ "step": 274
1928
+ },
1929
+ {
1930
+ "epoch": 0.88,
1931
+ "grad_norm": 0.38133602184118887,
1932
+ "learning_rate": 7.3162932150046885e-06,
1933
+ "loss": 0.8172,
1934
+ "step": 275
1935
+ },
1936
+ {
1937
+ "epoch": 0.8832,
1938
+ "grad_norm": 0.33116090594086295,
1939
+ "learning_rate": 6.930734201451816e-06,
1940
+ "loss": 0.7005,
1941
+ "step": 276
1942
+ },
1943
+ {
1944
+ "epoch": 0.8864,
1945
+ "grad_norm": 0.3188298094332972,
1946
+ "learning_rate": 6.555246550469907e-06,
1947
+ "loss": 0.7534,
1948
+ "step": 277
1949
+ },
1950
+ {
1951
+ "epoch": 0.8896,
1952
+ "grad_norm": 0.4403999231950908,
1953
+ "learning_rate": 6.189870894938587e-06,
1954
+ "loss": 0.8213,
1955
+ "step": 278
1956
+ },
1957
+ {
1958
+ "epoch": 0.8928,
1959
+ "grad_norm": 0.3608087635662593,
1960
+ "learning_rate": 5.834646773481811e-06,
1961
+ "loss": 0.7844,
1962
+ "step": 279
1963
+ },
1964
+ {
1965
+ "epoch": 0.896,
1966
+ "grad_norm": 0.40474388045501003,
1967
+ "learning_rate": 5.489612626189245e-06,
1968
+ "loss": 0.8244,
1969
+ "step": 280
1970
+ },
1971
+ {
1972
+ "epoch": 0.8992,
1973
+ "grad_norm": 0.3389637770265784,
1974
+ "learning_rate": 5.154805790456485e-06,
1975
+ "loss": 0.7018,
1976
+ "step": 281
1977
+ },
1978
+ {
1979
+ "epoch": 0.9024,
1980
+ "grad_norm": 0.30643971186231883,
1981
+ "learning_rate": 4.830262496944693e-06,
1982
+ "loss": 0.7619,
1983
+ "step": 282
1984
+ },
1985
+ {
1986
+ "epoch": 0.9056,
1987
+ "grad_norm": 0.3661184834317572,
1988
+ "learning_rate": 4.516017865659949e-06,
1989
+ "loss": 0.703,
1990
+ "step": 283
1991
+ },
1992
+ {
1993
+ "epoch": 0.9088,
1994
+ "grad_norm": 0.3671129154556767,
1995
+ "learning_rate": 4.21210590215273e-06,
1996
+ "loss": 0.7824,
1997
+ "step": 284
1998
+ },
1999
+ {
2000
+ "epoch": 0.912,
2001
+ "grad_norm": 0.34883381196841734,
2002
+ "learning_rate": 3.918559493838114e-06,
2003
+ "loss": 0.8148,
2004
+ "step": 285
2005
+ },
2006
+ {
2007
+ "epoch": 0.9152,
2008
+ "grad_norm": 0.32439361737968153,
2009
+ "learning_rate": 3.6354104064368566e-06,
2010
+ "loss": 0.7575,
2011
+ "step": 286
2012
+ },
2013
+ {
2014
+ "epoch": 0.9184,
2015
+ "grad_norm": 0.3866839936796524,
2016
+ "learning_rate": 3.3626892805379562e-06,
2017
+ "loss": 0.8134,
2018
+ "step": 287
2019
+ },
2020
+ {
2021
+ "epoch": 0.9216,
2022
+ "grad_norm": 0.3825547694903366,
2023
+ "learning_rate": 3.100425628282899e-06,
2024
+ "loss": 0.7618,
2025
+ "step": 288
2026
+ },
2027
+ {
2028
+ "epoch": 0.9248,
2029
+ "grad_norm": 0.31827546790247363,
2030
+ "learning_rate": 2.848647830172024e-06,
2031
+ "loss": 0.7321,
2032
+ "step": 289
2033
+ },
2034
+ {
2035
+ "epoch": 0.928,
2036
+ "grad_norm": 0.29623028045498556,
2037
+ "learning_rate": 2.607383131993424e-06,
2038
+ "loss": 0.6688,
2039
+ "step": 290
2040
+ },
2041
+ {
2042
+ "epoch": 0.9312,
2043
+ "grad_norm": 0.40429655628990896,
2044
+ "learning_rate": 2.3766576418745022e-06,
2045
+ "loss": 0.8106,
2046
+ "step": 291
2047
+ },
2048
+ {
2049
+ "epoch": 0.9344,
2050
+ "grad_norm": 0.3650008962489634,
2051
+ "learning_rate": 2.1564963274568027e-06,
2052
+ "loss": 0.7758,
2053
+ "step": 292
2054
+ },
2055
+ {
2056
+ "epoch": 0.9376,
2057
+ "grad_norm": 0.34654671660631003,
2058
+ "learning_rate": 1.9469230131940907e-06,
2059
+ "loss": 0.7488,
2060
+ "step": 293
2061
+ },
2062
+ {
2063
+ "epoch": 0.9408,
2064
+ "grad_norm": 0.3417601789633415,
2065
+ "learning_rate": 1.7479603777742938e-06,
2066
+ "loss": 0.7376,
2067
+ "step": 294
2068
+ },
2069
+ {
2070
+ "epoch": 0.944,
2071
+ "grad_norm": 0.4766922892989375,
2072
+ "learning_rate": 1.559629951665298e-06,
2073
+ "loss": 0.8448,
2074
+ "step": 295
2075
+ },
2076
+ {
2077
+ "epoch": 0.9472,
2078
+ "grad_norm": 0.3764754677513324,
2079
+ "learning_rate": 1.3819521147851123e-06,
2080
+ "loss": 0.756,
2081
+ "step": 296
2082
+ },
2083
+ {
2084
+ "epoch": 0.9504,
2085
+ "grad_norm": 0.3744144624463219,
2086
+ "learning_rate": 1.2149460942964098e-06,
2087
+ "loss": 0.7769,
2088
+ "step": 297
2089
+ },
2090
+ {
2091
+ "epoch": 0.9536,
2092
+ "grad_norm": 0.41513981451373816,
2093
+ "learning_rate": 1.05862996252597e-06,
2094
+ "loss": 0.7734,
2095
+ "step": 298
2096
+ },
2097
+ {
2098
+ "epoch": 0.9568,
2099
+ "grad_norm": 0.36679556444218603,
2100
+ "learning_rate": 9.130206350089765e-07,
2101
+ "loss": 0.7664,
2102
+ "step": 299
2103
+ },
2104
+ {
2105
+ "epoch": 0.96,
2106
+ "grad_norm": 0.3859580111548229,
2107
+ "learning_rate": 7.781338686584927e-07,
2108
+ "loss": 0.7639,
2109
+ "step": 300
2110
+ },
2111
+ {
2112
+ "epoch": 0.9632,
2113
+ "grad_norm": 0.34312029909834285,
2114
+ "learning_rate": 6.539842600603918e-07,
2115
+ "loss": 0.8412,
2116
+ "step": 301
2117
+ },
2118
+ {
2119
+ "epoch": 0.9664,
2120
+ "grad_norm": 0.4680442538250724,
2121
+ "learning_rate": 5.405852438937764e-07,
2122
+ "loss": 0.8093,
2123
+ "step": 302
2124
+ },
2125
+ {
2126
+ "epoch": 0.9696,
2127
+ "grad_norm": 0.3160450323270329,
2128
+ "learning_rate": 4.3794909147720773e-07,
2129
+ "loss": 0.709,
2130
+ "step": 303
2131
+ },
2132
+ {
2133
+ "epoch": 0.9728,
2134
+ "grad_norm": 0.45915080458361,
2135
+ "learning_rate": 3.4608690944071263e-07,
2136
+ "loss": 0.8064,
2137
+ "step": 304
2138
+ },
2139
+ {
2140
+ "epoch": 0.976,
2141
+ "grad_norm": 0.3737969883986542,
2142
+ "learning_rate": 2.6500863852395584e-07,
2143
+ "loss": 0.8277,
2144
+ "step": 305
2145
+ },
2146
+ {
2147
+ "epoch": 0.9792,
2148
+ "grad_norm": 0.3789680381062684,
2149
+ "learning_rate": 1.947230525005006e-07,
2150
+ "loss": 0.8404,
2151
+ "step": 306
2152
+ },
2153
+ {
2154
+ "epoch": 0.9824,
2155
+ "grad_norm": 0.35233074082938165,
2156
+ "learning_rate": 1.3523775722834587e-07,
2157
+ "loss": 0.7446,
2158
+ "step": 307
2159
+ },
2160
+ {
2161
+ "epoch": 0.9856,
2162
+ "grad_norm": 0.3337846639484774,
2163
+ "learning_rate": 8.655918982689581e-08,
2164
+ "loss": 0.7811,
2165
+ "step": 308
2166
+ },
2167
+ {
2168
+ "epoch": 0.9888,
2169
+ "grad_norm": 0.35005314677512966,
2170
+ "learning_rate": 4.8692617980350406e-08,
2171
+ "loss": 0.8336,
2172
+ "step": 309
2173
+ },
2174
+ {
2175
+ "epoch": 0.992,
2176
+ "grad_norm": 0.38107841486064986,
2177
+ "learning_rate": 2.164213936770576e-08,
2178
+ "loss": 0.768,
2179
+ "step": 310
2180
+ },
2181
+ {
2182
+ "epoch": 0.9952,
2183
+ "grad_norm": 0.37188047064663365,
2184
+ "learning_rate": 5.410681219286673e-09,
2185
+ "loss": 0.7323,
2186
+ "step": 311
2187
+ },
2188
+ {
2189
+ "epoch": 0.9984,
2190
+ "grad_norm": 0.3528962453383034,
2191
+ "learning_rate": 0.0,
2192
+ "loss": 0.7924,
2193
+ "step": 312
2194
+ },
2195
+ {
2196
+ "epoch": 0.9984,
2197
+ "step": 312,
2198
+ "total_flos": 736497759813632.0,
2199
+ "train_loss": 0.8298983348485751,
2200
+ "train_runtime": 9149.0946,
2201
+ "train_samples_per_second": 1.093,
2202
+ "train_steps_per_second": 0.034
2203
+ }
2204
+ ],
2205
+ "logging_steps": 1.0,
2206
+ "max_steps": 312,
2207
+ "num_input_tokens_seen": 0,
2208
+ "num_train_epochs": 1,
2209
+ "save_steps": 500,
2210
+ "stateful_callbacks": {
2211
+ "TrainerControl": {
2212
+ "args": {
2213
+ "should_epoch_stop": false,
2214
+ "should_evaluate": false,
2215
+ "should_log": false,
2216
+ "should_save": false,
2217
+ "should_training_stop": false
2218
+ },
2219
+ "attributes": {}
2220
+ }
2221
+ },
2222
+ "total_flos": 736497759813632.0,
2223
+ "train_batch_size": 8,
2224
+ "trial_name": null,
2225
+ "trial_params": null
2226
+ }
mixing_strategies/Equal/bugsBunny-v1_1-Llama-3-8B-V-Equal_dataset_10000_repeat_3_epochs_1_GA_2_lora/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: ./weights/Bunny-v1_1-Llama-3-8B-V
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.11.1
mixing_strategies/Equal/bugsBunny-v1_1-Llama-3-8B-V-Equal_dataset_10000_repeat_3_epochs_1_GA_2_lora/adapter_config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "./weights/Bunny-v1_1-Llama-3-8B-V",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 256,
14
+ "lora_dropout": 0.1,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 128,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "q_proj",
24
+ "up_proj",
25
+ "k_proj",
26
+ "down_proj",
27
+ "o_proj",
28
+ "gate_proj",
29
+ "v_proj"
30
+ ],
31
+ "task_type": "CAUSAL_LM",
32
+ "use_dora": false,
33
+ "use_rslora": false
34
+ }
mixing_strategies/Equal/bugsBunny-v1_1-Llama-3-8B-V-Equal_dataset_10000_repeat_3_epochs_1_GA_2_lora/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:61659b7548812b91a870a85aa48869803be2f9ca23408f3b764320bcca5a24cc
3
+ size 671150064
mixing_strategies/Equal/bugsBunny-v1_1-Llama-3-8B-V-Equal_dataset_10000_repeat_3_epochs_1_GA_2_lora/config.json ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "./weights/Bunny-v1_1-Llama-3-8B-V",
3
+ "architectures": [
4
+ "BunnyLlamaForCausalLM"
5
+ ],
6
+ "attention_bias": false,
7
+ "attention_dropout": 0.0,
8
+ "auto_map": {
9
+ "AutoConfig": "configuration_bunny_llama.BunnyLlamaConfig",
10
+ "AutoModelForCausalLM": "modeling_bunny_llama.BunnyLlamaForCausalLM"
11
+ },
12
+ "bos_token_id": 128000,
13
+ "continuous_training": false,
14
+ "eos_token_id": 128001,
15
+ "freeze_mm_mlp_adapter": false,
16
+ "hidden_act": "silu",
17
+ "hidden_size": 4096,
18
+ "image_aspect_ratio": "pad",
19
+ "initializer_range": 0.02,
20
+ "intermediate_size": 14336,
21
+ "max_position_embeddings": 8192,
22
+ "mm_hidden_size": 3456,
23
+ "mm_projector_lr": null,
24
+ "mm_projector_type": "mlp2x_gelu",
25
+ "mm_vision_tower": "./weights/siglip-so400m-patch14-384",
26
+ "model_type": "bunny-llama",
27
+ "num_attention_heads": 32,
28
+ "num_hidden_layers": 32,
29
+ "num_key_value_heads": 8,
30
+ "pretraining_tp": 1,
31
+ "rms_norm_eps": 1e-05,
32
+ "rope_scaling": null,
33
+ "rope_theta": 500000.0,
34
+ "tie_word_embeddings": false,
35
+ "tokenizer_model_max_length": 2048,
36
+ "tokenizer_padding_side": "right",
37
+ "torch_dtype": "float16",
38
+ "transformers_version": "4.41.2",
39
+ "tune_mm_mlp_adapter": false,
40
+ "unfreeze_vision_tower": true,
41
+ "use_cache": true,
42
+ "use_mm_proj": true,
43
+ "use_s2": true,
44
+ "vocab_size": 128256
45
+ }
mixing_strategies/Equal/bugsBunny-v1_1-Llama-3-8B-V-Equal_dataset_10000_repeat_3_epochs_1_GA_2_lora/non_lora_trainables.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cf545e27d23f76953d9bdd19703edae1ee5f1f56973e863e6006b8a69c875de6
3
+ size 918507402
mixing_strategies/Equal/bugsBunny-v1_1-Llama-3-8B-V-Equal_dataset_10000_repeat_3_epochs_1_GA_2_lora/trainer_state.json ADDED
The diff for this file is too large to render. See raw diff
 
mixing_strategies/Equal/bugsBunny-v1_1-Llama-3-8B-V-Equal_dataset_10000_repeat_3_epochs_1_GA_4_lora/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: ./weights/Bunny-v1_1-Llama-3-8B-V
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.11.1
mixing_strategies/Equal/bugsBunny-v1_1-Llama-3-8B-V-Equal_dataset_10000_repeat_3_epochs_1_GA_4_lora/adapter_config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "./weights/Bunny-v1_1-Llama-3-8B-V",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 256,
14
+ "lora_dropout": 0.1,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 128,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "up_proj",
24
+ "q_proj",
25
+ "o_proj",
26
+ "v_proj",
27
+ "down_proj",
28
+ "gate_proj",
29
+ "k_proj"
30
+ ],
31
+ "task_type": "CAUSAL_LM",
32
+ "use_dora": false,
33
+ "use_rslora": false
34
+ }
mixing_strategies/Equal/bugsBunny-v1_1-Llama-3-8B-V-Equal_dataset_10000_repeat_3_epochs_1_GA_4_lora/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:60e78440e8ad5c216e1bbb491649fb73d8e9423283d6831d816658f013ddea60
3
+ size 671150064
mixing_strategies/Equal/bugsBunny-v1_1-Llama-3-8B-V-Equal_dataset_10000_repeat_3_epochs_1_GA_4_lora/config.json ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "./weights/Bunny-v1_1-Llama-3-8B-V",
3
+ "architectures": [
4
+ "BunnyLlamaForCausalLM"
5
+ ],
6
+ "attention_bias": false,
7
+ "attention_dropout": 0.0,
8
+ "auto_map": {
9
+ "AutoConfig": "configuration_bunny_llama.BunnyLlamaConfig",
10
+ "AutoModelForCausalLM": "modeling_bunny_llama.BunnyLlamaForCausalLM"
11
+ },
12
+ "bos_token_id": 128000,
13
+ "continuous_training": false,
14
+ "eos_token_id": 128001,
15
+ "freeze_mm_mlp_adapter": false,
16
+ "hidden_act": "silu",
17
+ "hidden_size": 4096,
18
+ "image_aspect_ratio": "pad",
19
+ "initializer_range": 0.02,
20
+ "intermediate_size": 14336,
21
+ "max_position_embeddings": 8192,
22
+ "mm_hidden_size": 3456,
23
+ "mm_projector_lr": null,
24
+ "mm_projector_type": "mlp2x_gelu",
25
+ "mm_vision_tower": "./weights/siglip-so400m-patch14-384",
26
+ "model_type": "bunny-llama",
27
+ "num_attention_heads": 32,
28
+ "num_hidden_layers": 32,
29
+ "num_key_value_heads": 8,
30
+ "pretraining_tp": 1,
31
+ "rms_norm_eps": 1e-05,
32
+ "rope_scaling": null,
33
+ "rope_theta": 500000.0,
34
+ "tie_word_embeddings": false,
35
+ "tokenizer_model_max_length": 2048,
36
+ "tokenizer_padding_side": "right",
37
+ "torch_dtype": "float16",
38
+ "transformers_version": "4.41.2",
39
+ "tune_mm_mlp_adapter": false,
40
+ "unfreeze_vision_tower": true,
41
+ "use_cache": true,
42
+ "use_mm_proj": true,
43
+ "use_s2": true,
44
+ "vocab_size": 128256
45
+ }
mixing_strategies/Equal/bugsBunny-v1_1-Llama-3-8B-V-Equal_dataset_10000_repeat_3_epochs_1_GA_4_lora/non_lora_trainables.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7d89c8f41acde27e42e9a8a3b4e1df3f1d80d5199b474eab8c9904c815c8b6d0
3
+ size 918507402
mixing_strategies/Equal/bugsBunny-v1_1-Llama-3-8B-V-Equal_dataset_10000_repeat_3_epochs_1_GA_4_lora/trainer_state.json ADDED
@@ -0,0 +1,2226 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.9984,
5
+ "eval_steps": 500,
6
+ "global_step": 312,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.0032,
13
+ "grad_norm": 0.7954520844133007,
14
+ "learning_rate": 2e-05,
15
+ "loss": 1.3544,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.0064,
20
+ "grad_norm": 0.8486736733468345,
21
+ "learning_rate": 4e-05,
22
+ "loss": 1.4258,
23
+ "step": 2
24
+ },
25
+ {
26
+ "epoch": 0.0096,
27
+ "grad_norm": 0.7231129434225938,
28
+ "learning_rate": 6e-05,
29
+ "loss": 1.2565,
30
+ "step": 3
31
+ },
32
+ {
33
+ "epoch": 0.0128,
34
+ "grad_norm": 0.6549525568483539,
35
+ "learning_rate": 8e-05,
36
+ "loss": 1.301,
37
+ "step": 4
38
+ },
39
+ {
40
+ "epoch": 0.016,
41
+ "grad_norm": 0.6713937782391836,
42
+ "learning_rate": 0.0001,
43
+ "loss": 1.1783,
44
+ "step": 5
45
+ },
46
+ {
47
+ "epoch": 0.0192,
48
+ "grad_norm": 0.7775279811022765,
49
+ "learning_rate": 0.00012,
50
+ "loss": 1.2018,
51
+ "step": 6
52
+ },
53
+ {
54
+ "epoch": 0.0224,
55
+ "grad_norm": 0.8210500566974728,
56
+ "learning_rate": 0.00014,
57
+ "loss": 1.0322,
58
+ "step": 7
59
+ },
60
+ {
61
+ "epoch": 0.0256,
62
+ "grad_norm": 0.582072473996548,
63
+ "learning_rate": 0.00016,
64
+ "loss": 1.0719,
65
+ "step": 8
66
+ },
67
+ {
68
+ "epoch": 0.0288,
69
+ "grad_norm": 0.5332524469921555,
70
+ "learning_rate": 0.00018,
71
+ "loss": 0.9937,
72
+ "step": 9
73
+ },
74
+ {
75
+ "epoch": 0.032,
76
+ "grad_norm": 0.4652344399947701,
77
+ "learning_rate": 0.0002,
78
+ "loss": 0.9582,
79
+ "step": 10
80
+ },
81
+ {
82
+ "epoch": 0.0352,
83
+ "grad_norm": 0.528479459724629,
84
+ "learning_rate": 0.00019999458931878073,
85
+ "loss": 1.0025,
86
+ "step": 11
87
+ },
88
+ {
89
+ "epoch": 0.0384,
90
+ "grad_norm": 0.48862298453038183,
91
+ "learning_rate": 0.0001999783578606323,
92
+ "loss": 1.0045,
93
+ "step": 12
94
+ },
95
+ {
96
+ "epoch": 0.0416,
97
+ "grad_norm": 0.4788245246121141,
98
+ "learning_rate": 0.00019995130738201966,
99
+ "loss": 0.9681,
100
+ "step": 13
101
+ },
102
+ {
103
+ "epoch": 0.0448,
104
+ "grad_norm": 0.44036289873008344,
105
+ "learning_rate": 0.0001999134408101731,
106
+ "loss": 0.9215,
107
+ "step": 14
108
+ },
109
+ {
110
+ "epoch": 0.048,
111
+ "grad_norm": 0.5449869090192805,
112
+ "learning_rate": 0.00019986476224277165,
113
+ "loss": 0.9593,
114
+ "step": 15
115
+ },
116
+ {
117
+ "epoch": 0.0512,
118
+ "grad_norm": 0.4237521722332184,
119
+ "learning_rate": 0.00019980527694749952,
120
+ "loss": 0.8736,
121
+ "step": 16
122
+ },
123
+ {
124
+ "epoch": 0.0544,
125
+ "grad_norm": 0.4168713872622836,
126
+ "learning_rate": 0.00019973499136147606,
127
+ "loss": 0.8863,
128
+ "step": 17
129
+ },
130
+ {
131
+ "epoch": 0.0576,
132
+ "grad_norm": 0.45264982727147834,
133
+ "learning_rate": 0.0001996539130905593,
134
+ "loss": 0.8696,
135
+ "step": 18
136
+ },
137
+ {
138
+ "epoch": 0.0608,
139
+ "grad_norm": 0.3929576698684051,
140
+ "learning_rate": 0.0001995620509085228,
141
+ "loss": 0.916,
142
+ "step": 19
143
+ },
144
+ {
145
+ "epoch": 0.064,
146
+ "grad_norm": 0.4415540009570294,
147
+ "learning_rate": 0.00019945941475610623,
148
+ "loss": 0.9198,
149
+ "step": 20
150
+ },
151
+ {
152
+ "epoch": 0.0672,
153
+ "grad_norm": 0.3812265501303348,
154
+ "learning_rate": 0.0001993460157399396,
155
+ "loss": 0.8966,
156
+ "step": 21
157
+ },
158
+ {
159
+ "epoch": 0.0704,
160
+ "grad_norm": 0.4047740643644689,
161
+ "learning_rate": 0.0001992218661313415,
162
+ "loss": 0.9509,
163
+ "step": 22
164
+ },
165
+ {
166
+ "epoch": 0.0736,
167
+ "grad_norm": 0.394670597027155,
168
+ "learning_rate": 0.00019908697936499103,
169
+ "loss": 0.8582,
170
+ "step": 23
171
+ },
172
+ {
173
+ "epoch": 0.0768,
174
+ "grad_norm": 0.40883800080500177,
175
+ "learning_rate": 0.00019894137003747403,
176
+ "loss": 0.8873,
177
+ "step": 24
178
+ },
179
+ {
180
+ "epoch": 0.08,
181
+ "grad_norm": 0.4945237937729557,
182
+ "learning_rate": 0.00019878505390570362,
183
+ "loss": 0.9728,
184
+ "step": 25
185
+ },
186
+ {
187
+ "epoch": 0.0832,
188
+ "grad_norm": 0.4621016693300622,
189
+ "learning_rate": 0.00019861804788521493,
190
+ "loss": 0.9232,
191
+ "step": 26
192
+ },
193
+ {
194
+ "epoch": 0.0864,
195
+ "grad_norm": 0.6732021018661585,
196
+ "learning_rate": 0.00019844037004833473,
197
+ "loss": 0.8132,
198
+ "step": 27
199
+ },
200
+ {
201
+ "epoch": 0.0896,
202
+ "grad_norm": 0.4422468298010891,
203
+ "learning_rate": 0.00019825203962222572,
204
+ "loss": 0.9266,
205
+ "step": 28
206
+ },
207
+ {
208
+ "epoch": 0.0928,
209
+ "grad_norm": 0.40220173065598824,
210
+ "learning_rate": 0.0001980530769868059,
211
+ "loss": 0.8905,
212
+ "step": 29
213
+ },
214
+ {
215
+ "epoch": 0.096,
216
+ "grad_norm": 0.36918169793645084,
217
+ "learning_rate": 0.00019784350367254322,
218
+ "loss": 0.8733,
219
+ "step": 30
220
+ },
221
+ {
222
+ "epoch": 0.0992,
223
+ "grad_norm": 0.5597457386366598,
224
+ "learning_rate": 0.0001976233423581255,
225
+ "loss": 0.9705,
226
+ "step": 31
227
+ },
228
+ {
229
+ "epoch": 0.1024,
230
+ "grad_norm": 0.5595809993867294,
231
+ "learning_rate": 0.0001973926168680066,
232
+ "loss": 0.9519,
233
+ "step": 32
234
+ },
235
+ {
236
+ "epoch": 0.1056,
237
+ "grad_norm": 0.4605324530129531,
238
+ "learning_rate": 0.00019715135216982798,
239
+ "loss": 0.895,
240
+ "step": 33
241
+ },
242
+ {
243
+ "epoch": 0.1088,
244
+ "grad_norm": 0.42815914241954167,
245
+ "learning_rate": 0.0001968995743717171,
246
+ "loss": 0.9781,
247
+ "step": 34
248
+ },
249
+ {
250
+ "epoch": 0.112,
251
+ "grad_norm": 0.4124008245937204,
252
+ "learning_rate": 0.00019663731071946206,
253
+ "loss": 0.8654,
254
+ "step": 35
255
+ },
256
+ {
257
+ "epoch": 0.1152,
258
+ "grad_norm": 0.4388119798381529,
259
+ "learning_rate": 0.00019636458959356316,
260
+ "loss": 0.9486,
261
+ "step": 36
262
+ },
263
+ {
264
+ "epoch": 0.1184,
265
+ "grad_norm": 0.41876874470531383,
266
+ "learning_rate": 0.0001960814405061619,
267
+ "loss": 0.8528,
268
+ "step": 37
269
+ },
270
+ {
271
+ "epoch": 0.1216,
272
+ "grad_norm": 0.4063934253065074,
273
+ "learning_rate": 0.00019578789409784727,
274
+ "loss": 0.9519,
275
+ "step": 38
276
+ },
277
+ {
278
+ "epoch": 0.1248,
279
+ "grad_norm": 0.4281987478958129,
280
+ "learning_rate": 0.00019548398213434007,
281
+ "loss": 0.931,
282
+ "step": 39
283
+ },
284
+ {
285
+ "epoch": 0.128,
286
+ "grad_norm": 0.3995519502824548,
287
+ "learning_rate": 0.00019516973750305532,
288
+ "loss": 0.8706,
289
+ "step": 40
290
+ },
291
+ {
292
+ "epoch": 0.1312,
293
+ "grad_norm": 0.39938546863455104,
294
+ "learning_rate": 0.00019484519420954354,
295
+ "loss": 0.9081,
296
+ "step": 41
297
+ },
298
+ {
299
+ "epoch": 0.1344,
300
+ "grad_norm": 0.41849656692135495,
301
+ "learning_rate": 0.00019451038737381077,
302
+ "loss": 0.9316,
303
+ "step": 42
304
+ },
305
+ {
306
+ "epoch": 0.1376,
307
+ "grad_norm": 0.38704750788751674,
308
+ "learning_rate": 0.00019416535322651818,
309
+ "loss": 0.9122,
310
+ "step": 43
311
+ },
312
+ {
313
+ "epoch": 0.1408,
314
+ "grad_norm": 0.36713908717782284,
315
+ "learning_rate": 0.00019381012910506146,
316
+ "loss": 0.8173,
317
+ "step": 44
318
+ },
319
+ {
320
+ "epoch": 0.144,
321
+ "grad_norm": 0.386332629442072,
322
+ "learning_rate": 0.00019344475344953012,
323
+ "loss": 0.8054,
324
+ "step": 45
325
+ },
326
+ {
327
+ "epoch": 0.1472,
328
+ "grad_norm": 0.40175758635877834,
329
+ "learning_rate": 0.00019306926579854821,
330
+ "loss": 0.871,
331
+ "step": 46
332
+ },
333
+ {
334
+ "epoch": 0.1504,
335
+ "grad_norm": 0.3980262653132001,
336
+ "learning_rate": 0.00019268370678499533,
337
+ "loss": 0.864,
338
+ "step": 47
339
+ },
340
+ {
341
+ "epoch": 0.1536,
342
+ "grad_norm": 0.4340588852915137,
343
+ "learning_rate": 0.0001922881181316097,
344
+ "loss": 0.9131,
345
+ "step": 48
346
+ },
347
+ {
348
+ "epoch": 0.1568,
349
+ "grad_norm": 0.424408064468781,
350
+ "learning_rate": 0.00019188254264647337,
351
+ "loss": 0.8575,
352
+ "step": 49
353
+ },
354
+ {
355
+ "epoch": 0.16,
356
+ "grad_norm": 0.42662287831550505,
357
+ "learning_rate": 0.0001914670242183795,
358
+ "loss": 0.8401,
359
+ "step": 50
360
+ },
361
+ {
362
+ "epoch": 0.1632,
363
+ "grad_norm": 0.4018922149491412,
364
+ "learning_rate": 0.0001910416078120832,
365
+ "loss": 0.8477,
366
+ "step": 51
367
+ },
368
+ {
369
+ "epoch": 0.1664,
370
+ "grad_norm": 0.4547104194477866,
371
+ "learning_rate": 0.0001906063394634356,
372
+ "loss": 0.9216,
373
+ "step": 52
374
+ },
375
+ {
376
+ "epoch": 0.1696,
377
+ "grad_norm": 0.46878889945327834,
378
+ "learning_rate": 0.00019016126627440237,
379
+ "loss": 0.8866,
380
+ "step": 53
381
+ },
382
+ {
383
+ "epoch": 0.1728,
384
+ "grad_norm": 0.3901101154924772,
385
+ "learning_rate": 0.00018970643640796642,
386
+ "loss": 0.8071,
387
+ "step": 54
388
+ },
389
+ {
390
+ "epoch": 0.176,
391
+ "grad_norm": 0.3786177626239962,
392
+ "learning_rate": 0.000189241899082916,
393
+ "loss": 0.8155,
394
+ "step": 55
395
+ },
396
+ {
397
+ "epoch": 0.1792,
398
+ "grad_norm": 0.37399747556550167,
399
+ "learning_rate": 0.00018876770456851877,
400
+ "loss": 0.8673,
401
+ "step": 56
402
+ },
403
+ {
404
+ "epoch": 0.1824,
405
+ "grad_norm": 0.4476713311081534,
406
+ "learning_rate": 0.0001882839041790818,
407
+ "loss": 0.8913,
408
+ "step": 57
409
+ },
410
+ {
411
+ "epoch": 0.1856,
412
+ "grad_norm": 0.3695813169482114,
413
+ "learning_rate": 0.00018779055026839868,
414
+ "loss": 0.8532,
415
+ "step": 58
416
+ },
417
+ {
418
+ "epoch": 0.1888,
419
+ "grad_norm": 0.3740852677452882,
420
+ "learning_rate": 0.00018728769622408423,
421
+ "loss": 0.851,
422
+ "step": 59
423
+ },
424
+ {
425
+ "epoch": 0.192,
426
+ "grad_norm": 0.37805895790025723,
427
+ "learning_rate": 0.00018677539646179707,
428
+ "loss": 0.8893,
429
+ "step": 60
430
+ },
431
+ {
432
+ "epoch": 0.1952,
433
+ "grad_norm": 0.48550367409643636,
434
+ "learning_rate": 0.00018625370641935129,
435
+ "loss": 0.9271,
436
+ "step": 61
437
+ },
438
+ {
439
+ "epoch": 0.1984,
440
+ "grad_norm": 0.4261985087419851,
441
+ "learning_rate": 0.00018572268255071718,
442
+ "loss": 0.9485,
443
+ "step": 62
444
+ },
445
+ {
446
+ "epoch": 0.2016,
447
+ "grad_norm": 0.3506821138816665,
448
+ "learning_rate": 0.00018518238231991218,
449
+ "loss": 0.7993,
450
+ "step": 63
451
+ },
452
+ {
453
+ "epoch": 0.2048,
454
+ "grad_norm": 0.39926954240428475,
455
+ "learning_rate": 0.00018463286419478255,
456
+ "loss": 0.9094,
457
+ "step": 64
458
+ },
459
+ {
460
+ "epoch": 0.208,
461
+ "grad_norm": 0.369474669842929,
462
+ "learning_rate": 0.00018407418764067627,
463
+ "loss": 0.8639,
464
+ "step": 65
465
+ },
466
+ {
467
+ "epoch": 0.2112,
468
+ "grad_norm": 0.38412612507425553,
469
+ "learning_rate": 0.00018350641311400812,
470
+ "loss": 0.92,
471
+ "step": 66
472
+ },
473
+ {
474
+ "epoch": 0.2144,
475
+ "grad_norm": 0.6236483911477445,
476
+ "learning_rate": 0.0001829296020557174,
477
+ "loss": 0.9896,
478
+ "step": 67
479
+ },
480
+ {
481
+ "epoch": 0.2176,
482
+ "grad_norm": 0.40709892702353573,
483
+ "learning_rate": 0.00018234381688461942,
484
+ "loss": 0.7737,
485
+ "step": 68
486
+ },
487
+ {
488
+ "epoch": 0.2208,
489
+ "grad_norm": 0.38384691117683545,
490
+ "learning_rate": 0.0001817491209906506,
491
+ "loss": 0.8189,
492
+ "step": 69
493
+ },
494
+ {
495
+ "epoch": 0.224,
496
+ "grad_norm": 0.419002960060546,
497
+ "learning_rate": 0.00018114557872800905,
498
+ "loss": 0.8892,
499
+ "step": 70
500
+ },
501
+ {
502
+ "epoch": 0.2272,
503
+ "grad_norm": 0.4317304658707876,
504
+ "learning_rate": 0.00018053325540819045,
505
+ "loss": 0.9425,
506
+ "step": 71
507
+ },
508
+ {
509
+ "epoch": 0.2304,
510
+ "grad_norm": 0.3605359976609917,
511
+ "learning_rate": 0.0001799122172929206,
512
+ "loss": 0.8432,
513
+ "step": 72
514
+ },
515
+ {
516
+ "epoch": 0.2336,
517
+ "grad_norm": 0.38387195033721394,
518
+ "learning_rate": 0.00017928253158698473,
519
+ "loss": 0.8127,
520
+ "step": 73
521
+ },
522
+ {
523
+ "epoch": 0.2368,
524
+ "grad_norm": 0.4115773141922566,
525
+ "learning_rate": 0.0001786442664309554,
526
+ "loss": 0.835,
527
+ "step": 74
528
+ },
529
+ {
530
+ "epoch": 0.24,
531
+ "grad_norm": 0.41682944760695084,
532
+ "learning_rate": 0.0001779974908938184,
533
+ "loss": 0.8527,
534
+ "step": 75
535
+ },
536
+ {
537
+ "epoch": 0.2432,
538
+ "grad_norm": 0.44021561768781686,
539
+ "learning_rate": 0.0001773422749654988,
540
+ "loss": 0.8634,
541
+ "step": 76
542
+ },
543
+ {
544
+ "epoch": 0.2464,
545
+ "grad_norm": 0.3788641404846892,
546
+ "learning_rate": 0.00017667868954928694,
547
+ "loss": 0.8657,
548
+ "step": 77
549
+ },
550
+ {
551
+ "epoch": 0.2496,
552
+ "grad_norm": 0.35062726715426834,
553
+ "learning_rate": 0.00017600680645416583,
554
+ "loss": 0.776,
555
+ "step": 78
556
+ },
557
+ {
558
+ "epoch": 0.2528,
559
+ "grad_norm": 0.3640559161150146,
560
+ "learning_rate": 0.00017532669838704035,
561
+ "loss": 0.8121,
562
+ "step": 79
563
+ },
564
+ {
565
+ "epoch": 0.256,
566
+ "grad_norm": 0.35673860083372294,
567
+ "learning_rate": 0.00017463843894486937,
568
+ "loss": 0.8013,
569
+ "step": 80
570
+ },
571
+ {
572
+ "epoch": 0.2592,
573
+ "grad_norm": 0.36719254075722085,
574
+ "learning_rate": 0.0001739421026067017,
575
+ "loss": 0.864,
576
+ "step": 81
577
+ },
578
+ {
579
+ "epoch": 0.2624,
580
+ "grad_norm": 0.39931819574163646,
581
+ "learning_rate": 0.00017323776472561627,
582
+ "loss": 0.8932,
583
+ "step": 82
584
+ },
585
+ {
586
+ "epoch": 0.2656,
587
+ "grad_norm": 0.3982022670626305,
588
+ "learning_rate": 0.00017252550152056795,
589
+ "loss": 0.8254,
590
+ "step": 83
591
+ },
592
+ {
593
+ "epoch": 0.2688,
594
+ "grad_norm": 0.3997476767736355,
595
+ "learning_rate": 0.0001718053900681397,
596
+ "loss": 0.8817,
597
+ "step": 84
598
+ },
599
+ {
600
+ "epoch": 0.272,
601
+ "grad_norm": 0.3463507690011195,
602
+ "learning_rate": 0.00017107750829420176,
603
+ "loss": 0.8348,
604
+ "step": 85
605
+ },
606
+ {
607
+ "epoch": 0.2752,
608
+ "grad_norm": 0.4200196272874818,
609
+ "learning_rate": 0.00017034193496547902,
610
+ "loss": 0.9056,
611
+ "step": 86
612
+ },
613
+ {
614
+ "epoch": 0.2784,
615
+ "grad_norm": 0.3755782720326349,
616
+ "learning_rate": 0.00016959874968102735,
617
+ "loss": 0.8419,
618
+ "step": 87
619
+ },
620
+ {
621
+ "epoch": 0.2816,
622
+ "grad_norm": 0.3981270184947585,
623
+ "learning_rate": 0.00016884803286362,
624
+ "loss": 0.8491,
625
+ "step": 88
626
+ },
627
+ {
628
+ "epoch": 0.2848,
629
+ "grad_norm": 0.37218427069658755,
630
+ "learning_rate": 0.00016808986575104465,
631
+ "loss": 0.9352,
632
+ "step": 89
633
+ },
634
+ {
635
+ "epoch": 0.288,
636
+ "grad_norm": 0.3395579879759133,
637
+ "learning_rate": 0.00016732433038731242,
638
+ "loss": 0.7546,
639
+ "step": 90
640
+ },
641
+ {
642
+ "epoch": 0.2912,
643
+ "grad_norm": 0.3673793454918801,
644
+ "learning_rate": 0.0001665515096137797,
645
+ "loss": 0.833,
646
+ "step": 91
647
+ },
648
+ {
649
+ "epoch": 0.2944,
650
+ "grad_norm": 0.34780686537520417,
651
+ "learning_rate": 0.00016577148706018328,
652
+ "loss": 0.8021,
653
+ "step": 92
654
+ },
655
+ {
656
+ "epoch": 0.2976,
657
+ "grad_norm": 0.38425962561813065,
658
+ "learning_rate": 0.00016498434713559088,
659
+ "loss": 0.8679,
660
+ "step": 93
661
+ },
662
+ {
663
+ "epoch": 0.3008,
664
+ "grad_norm": 0.42936546302655365,
665
+ "learning_rate": 0.00016419017501926656,
666
+ "loss": 0.8377,
667
+ "step": 94
668
+ },
669
+ {
670
+ "epoch": 0.304,
671
+ "grad_norm": 0.4267179181570991,
672
+ "learning_rate": 0.0001633890566514535,
673
+ "loss": 0.8357,
674
+ "step": 95
675
+ },
676
+ {
677
+ "epoch": 0.3072,
678
+ "grad_norm": 0.36916905077663476,
679
+ "learning_rate": 0.00016258107872407375,
680
+ "loss": 0.8232,
681
+ "step": 96
682
+ },
683
+ {
684
+ "epoch": 0.3104,
685
+ "grad_norm": 0.38729223078060027,
686
+ "learning_rate": 0.0001617663286713474,
687
+ "loss": 0.8608,
688
+ "step": 97
689
+ },
690
+ {
691
+ "epoch": 0.3136,
692
+ "grad_norm": 0.4065510182299363,
693
+ "learning_rate": 0.00016094489466033043,
694
+ "loss": 0.8215,
695
+ "step": 98
696
+ },
697
+ {
698
+ "epoch": 0.3168,
699
+ "grad_norm": 0.35357551053351133,
700
+ "learning_rate": 0.00016011686558137448,
701
+ "loss": 0.8115,
702
+ "step": 99
703
+ },
704
+ {
705
+ "epoch": 0.32,
706
+ "grad_norm": 1.0001838046966431,
707
+ "learning_rate": 0.0001592823310385073,
708
+ "loss": 0.8702,
709
+ "step": 100
710
+ },
711
+ {
712
+ "epoch": 0.3232,
713
+ "grad_norm": 0.40193375582947716,
714
+ "learning_rate": 0.0001584413813397364,
715
+ "loss": 0.8128,
716
+ "step": 101
717
+ },
718
+ {
719
+ "epoch": 0.3264,
720
+ "grad_norm": 0.3935235182421146,
721
+ "learning_rate": 0.00015759410748727662,
722
+ "loss": 0.7955,
723
+ "step": 102
724
+ },
725
+ {
726
+ "epoch": 0.3296,
727
+ "grad_norm": 0.6013285238613454,
728
+ "learning_rate": 0.00015674060116770236,
729
+ "loss": 0.8225,
730
+ "step": 103
731
+ },
732
+ {
733
+ "epoch": 0.3328,
734
+ "grad_norm": 0.3787137979507313,
735
+ "learning_rate": 0.00015588095474202595,
736
+ "loss": 0.8257,
737
+ "step": 104
738
+ },
739
+ {
740
+ "epoch": 0.336,
741
+ "grad_norm": 0.38425572159674526,
742
+ "learning_rate": 0.00015501526123570277,
743
+ "loss": 0.8475,
744
+ "step": 105
745
+ },
746
+ {
747
+ "epoch": 0.3392,
748
+ "grad_norm": 0.4006328412662351,
749
+ "learning_rate": 0.00015414361432856475,
750
+ "loss": 0.8648,
751
+ "step": 106
752
+ },
753
+ {
754
+ "epoch": 0.3424,
755
+ "grad_norm": 0.4086678609977253,
756
+ "learning_rate": 0.0001532661083446829,
757
+ "loss": 0.8863,
758
+ "step": 107
759
+ },
760
+ {
761
+ "epoch": 0.3456,
762
+ "grad_norm": 0.4881485864286447,
763
+ "learning_rate": 0.00015238283824216015,
764
+ "loss": 0.9356,
765
+ "step": 108
766
+ },
767
+ {
768
+ "epoch": 0.3488,
769
+ "grad_norm": 0.4025668507825546,
770
+ "learning_rate": 0.00015149389960285558,
771
+ "loss": 0.8127,
772
+ "step": 109
773
+ },
774
+ {
775
+ "epoch": 0.352,
776
+ "grad_norm": 0.3710129691466552,
777
+ "learning_rate": 0.00015059938862204127,
778
+ "loss": 0.8428,
779
+ "step": 110
780
+ },
781
+ {
782
+ "epoch": 0.3552,
783
+ "grad_norm": 0.4003824576144442,
784
+ "learning_rate": 0.00014969940209799248,
785
+ "loss": 0.8425,
786
+ "step": 111
787
+ },
788
+ {
789
+ "epoch": 0.3584,
790
+ "grad_norm": 0.5018583001311245,
791
+ "learning_rate": 0.00014879403742151283,
792
+ "loss": 0.8779,
793
+ "step": 112
794
+ },
795
+ {
796
+ "epoch": 0.3616,
797
+ "grad_norm": 0.36121263099811374,
798
+ "learning_rate": 0.00014788339256539544,
799
+ "loss": 0.7713,
800
+ "step": 113
801
+ },
802
+ {
803
+ "epoch": 0.3648,
804
+ "grad_norm": 0.4251687064188239,
805
+ "learning_rate": 0.0001469675660738206,
806
+ "loss": 0.7802,
807
+ "step": 114
808
+ },
809
+ {
810
+ "epoch": 0.368,
811
+ "grad_norm": 0.3569667148399426,
812
+ "learning_rate": 0.00014604665705169237,
813
+ "loss": 0.8449,
814
+ "step": 115
815
+ },
816
+ {
817
+ "epoch": 0.3712,
818
+ "grad_norm": 0.4066427039698594,
819
+ "learning_rate": 0.00014512076515391375,
820
+ "loss": 0.8426,
821
+ "step": 116
822
+ },
823
+ {
824
+ "epoch": 0.3744,
825
+ "grad_norm": 0.44110171219803324,
826
+ "learning_rate": 0.00014418999057460276,
827
+ "loss": 0.8606,
828
+ "step": 117
829
+ },
830
+ {
831
+ "epoch": 0.3776,
832
+ "grad_norm": 0.37113662406191406,
833
+ "learning_rate": 0.0001432544340362501,
834
+ "loss": 0.8036,
835
+ "step": 118
836
+ },
837
+ {
838
+ "epoch": 0.3808,
839
+ "grad_norm": 0.36927548404036525,
840
+ "learning_rate": 0.00014231419677881966,
841
+ "loss": 0.7892,
842
+ "step": 119
843
+ },
844
+ {
845
+ "epoch": 0.384,
846
+ "grad_norm": 0.3628801931909292,
847
+ "learning_rate": 0.00014136938054879283,
848
+ "loss": 0.8945,
849
+ "step": 120
850
+ },
851
+ {
852
+ "epoch": 0.3872,
853
+ "grad_norm": 0.3881852305317355,
854
+ "learning_rate": 0.00014042008758815818,
855
+ "loss": 0.8457,
856
+ "step": 121
857
+ },
858
+ {
859
+ "epoch": 0.3904,
860
+ "grad_norm": 0.3493063856843603,
861
+ "learning_rate": 0.00013946642062334766,
862
+ "loss": 0.8096,
863
+ "step": 122
864
+ },
865
+ {
866
+ "epoch": 0.3936,
867
+ "grad_norm": 0.4238637282608415,
868
+ "learning_rate": 0.00013850848285411994,
869
+ "loss": 0.8239,
870
+ "step": 123
871
+ },
872
+ {
873
+ "epoch": 0.3968,
874
+ "grad_norm": 0.35268751443414337,
875
+ "learning_rate": 0.000137546377942393,
876
+ "loss": 0.8348,
877
+ "step": 124
878
+ },
879
+ {
880
+ "epoch": 0.4,
881
+ "grad_norm": 0.39291285524686237,
882
+ "learning_rate": 0.00013658021000102636,
883
+ "loss": 0.8241,
884
+ "step": 125
885
+ },
886
+ {
887
+ "epoch": 0.4032,
888
+ "grad_norm": 0.34506213306561334,
889
+ "learning_rate": 0.00013561008358255468,
890
+ "loss": 0.7677,
891
+ "step": 126
892
+ },
893
+ {
894
+ "epoch": 0.4064,
895
+ "grad_norm": 0.4203851880192952,
896
+ "learning_rate": 0.00013463610366787392,
897
+ "loss": 0.8461,
898
+ "step": 127
899
+ },
900
+ {
901
+ "epoch": 0.4096,
902
+ "grad_norm": 0.4474038709406084,
903
+ "learning_rate": 0.00013365837565488064,
904
+ "loss": 0.8768,
905
+ "step": 128
906
+ },
907
+ {
908
+ "epoch": 0.4128,
909
+ "grad_norm": 0.3778914426775528,
910
+ "learning_rate": 0.0001326770053470668,
911
+ "loss": 0.8762,
912
+ "step": 129
913
+ },
914
+ {
915
+ "epoch": 0.416,
916
+ "grad_norm": 0.3583604676991779,
917
+ "learning_rate": 0.0001316920989420703,
918
+ "loss": 0.749,
919
+ "step": 130
920
+ },
921
+ {
922
+ "epoch": 0.4192,
923
+ "grad_norm": 0.3201977553502979,
924
+ "learning_rate": 0.00013070376302018287,
925
+ "loss": 0.771,
926
+ "step": 131
927
+ },
928
+ {
929
+ "epoch": 0.4224,
930
+ "grad_norm": 0.327874635613636,
931
+ "learning_rate": 0.00012971210453281674,
932
+ "loss": 0.7247,
933
+ "step": 132
934
+ },
935
+ {
936
+ "epoch": 0.4256,
937
+ "grad_norm": 0.36654127787678314,
938
+ "learning_rate": 0.000128717230790931,
939
+ "loss": 0.8057,
940
+ "step": 133
941
+ },
942
+ {
943
+ "epoch": 0.4288,
944
+ "grad_norm": 0.37665903879585244,
945
+ "learning_rate": 0.00012771924945341906,
946
+ "loss": 0.7767,
947
+ "step": 134
948
+ },
949
+ {
950
+ "epoch": 0.432,
951
+ "grad_norm": 0.4034764628456416,
952
+ "learning_rate": 0.00012671826851545851,
953
+ "loss": 0.8348,
954
+ "step": 135
955
+ },
956
+ {
957
+ "epoch": 0.4352,
958
+ "grad_norm": 0.3907539802126158,
959
+ "learning_rate": 0.0001257143962968246,
960
+ "loss": 0.8872,
961
+ "step": 136
962
+ },
963
+ {
964
+ "epoch": 0.4384,
965
+ "grad_norm": 0.3569846944905879,
966
+ "learning_rate": 0.00012470774143016853,
967
+ "loss": 0.8112,
968
+ "step": 137
969
+ },
970
+ {
971
+ "epoch": 0.4416,
972
+ "grad_norm": 0.36188126942655424,
973
+ "learning_rate": 0.00012369841284926188,
974
+ "loss": 0.8019,
975
+ "step": 138
976
+ },
977
+ {
978
+ "epoch": 0.4448,
979
+ "grad_norm": 0.379019802148045,
980
+ "learning_rate": 0.00012268651977720866,
981
+ "loss": 0.7994,
982
+ "step": 139
983
+ },
984
+ {
985
+ "epoch": 0.448,
986
+ "grad_norm": 0.41234904215035534,
987
+ "learning_rate": 0.00012167217171462566,
988
+ "loss": 0.8809,
989
+ "step": 140
990
+ },
991
+ {
992
+ "epoch": 0.4512,
993
+ "grad_norm": 0.38868434007296393,
994
+ "learning_rate": 0.0001206554784277931,
995
+ "loss": 0.7578,
996
+ "step": 141
997
+ },
998
+ {
999
+ "epoch": 0.4544,
1000
+ "grad_norm": 0.350346834606368,
1001
+ "learning_rate": 0.00011963654993677645,
1002
+ "loss": 0.8003,
1003
+ "step": 142
1004
+ },
1005
+ {
1006
+ "epoch": 0.4576,
1007
+ "grad_norm": 0.4135182041369236,
1008
+ "learning_rate": 0.00011861549650352069,
1009
+ "loss": 0.7891,
1010
+ "step": 143
1011
+ },
1012
+ {
1013
+ "epoch": 0.4608,
1014
+ "grad_norm": 0.3447428610535347,
1015
+ "learning_rate": 0.00011759242861991855,
1016
+ "loss": 0.7747,
1017
+ "step": 144
1018
+ },
1019
+ {
1020
+ "epoch": 0.464,
1021
+ "grad_norm": 0.3659043229276162,
1022
+ "learning_rate": 0.00011656745699585371,
1023
+ "loss": 0.7847,
1024
+ "step": 145
1025
+ },
1026
+ {
1027
+ "epoch": 0.4672,
1028
+ "grad_norm": 0.3627598928666497,
1029
+ "learning_rate": 0.00011554069254722051,
1030
+ "loss": 0.8729,
1031
+ "step": 146
1032
+ },
1033
+ {
1034
+ "epoch": 0.4704,
1035
+ "grad_norm": 0.3316910349747776,
1036
+ "learning_rate": 0.00011451224638392129,
1037
+ "loss": 0.7812,
1038
+ "step": 147
1039
+ },
1040
+ {
1041
+ "epoch": 0.4736,
1042
+ "grad_norm": 0.3946570922891007,
1043
+ "learning_rate": 0.00011348222979784289,
1044
+ "loss": 0.7865,
1045
+ "step": 148
1046
+ },
1047
+ {
1048
+ "epoch": 0.4768,
1049
+ "grad_norm": 0.3359636799382807,
1050
+ "learning_rate": 0.00011245075425081328,
1051
+ "loss": 0.7965,
1052
+ "step": 149
1053
+ },
1054
+ {
1055
+ "epoch": 0.48,
1056
+ "grad_norm": 0.37137439376427284,
1057
+ "learning_rate": 0.00011141793136253986,
1058
+ "loss": 0.849,
1059
+ "step": 150
1060
+ },
1061
+ {
1062
+ "epoch": 0.4832,
1063
+ "grad_norm": 0.3574031642165924,
1064
+ "learning_rate": 0.0001103838728985307,
1065
+ "loss": 0.825,
1066
+ "step": 151
1067
+ },
1068
+ {
1069
+ "epoch": 0.4864,
1070
+ "grad_norm": 0.38556543326751924,
1071
+ "learning_rate": 0.000109348690758,
1072
+ "loss": 0.8379,
1073
+ "step": 152
1074
+ },
1075
+ {
1076
+ "epoch": 0.4896,
1077
+ "grad_norm": 0.38805213476282924,
1078
+ "learning_rate": 0.00010831249696175918,
1079
+ "loss": 0.8097,
1080
+ "step": 153
1081
+ },
1082
+ {
1083
+ "epoch": 0.4928,
1084
+ "grad_norm": 0.3574217944877886,
1085
+ "learning_rate": 0.0001072754036400944,
1086
+ "loss": 0.7886,
1087
+ "step": 154
1088
+ },
1089
+ {
1090
+ "epoch": 0.496,
1091
+ "grad_norm": 0.39271223057544774,
1092
+ "learning_rate": 0.00010623752302063283,
1093
+ "loss": 0.8542,
1094
+ "step": 155
1095
+ },
1096
+ {
1097
+ "epoch": 0.4992,
1098
+ "grad_norm": 0.4324299524551468,
1099
+ "learning_rate": 0.00010519896741619803,
1100
+ "loss": 0.8882,
1101
+ "step": 156
1102
+ },
1103
+ {
1104
+ "epoch": 0.5024,
1105
+ "grad_norm": 0.32450275667877587,
1106
+ "learning_rate": 0.00010415984921265609,
1107
+ "loss": 0.7915,
1108
+ "step": 157
1109
+ },
1110
+ {
1111
+ "epoch": 0.5056,
1112
+ "grad_norm": 0.37732713298950105,
1113
+ "learning_rate": 0.00010312028085675391,
1114
+ "loss": 0.7915,
1115
+ "step": 158
1116
+ },
1117
+ {
1118
+ "epoch": 0.5088,
1119
+ "grad_norm": 0.3406928749347663,
1120
+ "learning_rate": 0.00010208037484395114,
1121
+ "loss": 0.817,
1122
+ "step": 159
1123
+ },
1124
+ {
1125
+ "epoch": 0.512,
1126
+ "grad_norm": 0.3751715626743408,
1127
+ "learning_rate": 0.00010104024370624644,
1128
+ "loss": 0.8437,
1129
+ "step": 160
1130
+ },
1131
+ {
1132
+ "epoch": 0.5152,
1133
+ "grad_norm": 0.33757211373718954,
1134
+ "learning_rate": 0.0001,
1135
+ "loss": 0.7485,
1136
+ "step": 161
1137
+ },
1138
+ {
1139
+ "epoch": 0.5184,
1140
+ "grad_norm": 0.46079705496359785,
1141
+ "learning_rate": 9.895975629375359e-05,
1142
+ "loss": 0.8788,
1143
+ "step": 162
1144
+ },
1145
+ {
1146
+ "epoch": 0.5216,
1147
+ "grad_norm": 0.4271610568124271,
1148
+ "learning_rate": 9.791962515604887e-05,
1149
+ "loss": 0.8616,
1150
+ "step": 163
1151
+ },
1152
+ {
1153
+ "epoch": 0.5248,
1154
+ "grad_norm": 0.3730244116708226,
1155
+ "learning_rate": 9.687971914324607e-05,
1156
+ "loss": 0.713,
1157
+ "step": 164
1158
+ },
1159
+ {
1160
+ "epoch": 0.528,
1161
+ "grad_norm": 0.32767683574358164,
1162
+ "learning_rate": 9.584015078734395e-05,
1163
+ "loss": 0.7503,
1164
+ "step": 165
1165
+ },
1166
+ {
1167
+ "epoch": 0.5312,
1168
+ "grad_norm": 0.32244567576195554,
1169
+ "learning_rate": 9.480103258380198e-05,
1170
+ "loss": 0.7239,
1171
+ "step": 166
1172
+ },
1173
+ {
1174
+ "epoch": 0.5344,
1175
+ "grad_norm": 0.3397126044271277,
1176
+ "learning_rate": 9.376247697936719e-05,
1177
+ "loss": 0.7984,
1178
+ "step": 167
1179
+ },
1180
+ {
1181
+ "epoch": 0.5376,
1182
+ "grad_norm": 0.3012960591552935,
1183
+ "learning_rate": 9.272459635990562e-05,
1184
+ "loss": 0.7531,
1185
+ "step": 168
1186
+ },
1187
+ {
1188
+ "epoch": 0.5408,
1189
+ "grad_norm": 0.37938450909301,
1190
+ "learning_rate": 9.168750303824084e-05,
1191
+ "loss": 0.7915,
1192
+ "step": 169
1193
+ },
1194
+ {
1195
+ "epoch": 0.544,
1196
+ "grad_norm": 0.38701381132864615,
1197
+ "learning_rate": 9.065130924199998e-05,
1198
+ "loss": 0.7544,
1199
+ "step": 170
1200
+ },
1201
+ {
1202
+ "epoch": 0.5472,
1203
+ "grad_norm": 0.38690509598881456,
1204
+ "learning_rate": 8.961612710146934e-05,
1205
+ "loss": 0.8261,
1206
+ "step": 171
1207
+ },
1208
+ {
1209
+ "epoch": 0.5504,
1210
+ "grad_norm": 0.3662178194553636,
1211
+ "learning_rate": 8.858206863746018e-05,
1212
+ "loss": 0.7712,
1213
+ "step": 172
1214
+ },
1215
+ {
1216
+ "epoch": 0.5536,
1217
+ "grad_norm": 0.325465438950959,
1218
+ "learning_rate": 8.754924574918675e-05,
1219
+ "loss": 0.7461,
1220
+ "step": 173
1221
+ },
1222
+ {
1223
+ "epoch": 0.5568,
1224
+ "grad_norm": 0.36372519207365633,
1225
+ "learning_rate": 8.651777020215712e-05,
1226
+ "loss": 0.7577,
1227
+ "step": 174
1228
+ },
1229
+ {
1230
+ "epoch": 0.56,
1231
+ "grad_norm": 0.39791618344605173,
1232
+ "learning_rate": 8.548775361607872e-05,
1233
+ "loss": 0.8952,
1234
+ "step": 175
1235
+ },
1236
+ {
1237
+ "epoch": 0.5632,
1238
+ "grad_norm": 0.39106877210397273,
1239
+ "learning_rate": 8.445930745277953e-05,
1240
+ "loss": 0.8067,
1241
+ "step": 176
1242
+ },
1243
+ {
1244
+ "epoch": 0.5664,
1245
+ "grad_norm": 0.32165292969442727,
1246
+ "learning_rate": 8.343254300414628e-05,
1247
+ "loss": 0.704,
1248
+ "step": 177
1249
+ },
1250
+ {
1251
+ "epoch": 0.5696,
1252
+ "grad_norm": 0.36154222910864736,
1253
+ "learning_rate": 8.240757138008149e-05,
1254
+ "loss": 0.8184,
1255
+ "step": 178
1256
+ },
1257
+ {
1258
+ "epoch": 0.5728,
1259
+ "grad_norm": 0.42719982445728705,
1260
+ "learning_rate": 8.138450349647936e-05,
1261
+ "loss": 0.8165,
1262
+ "step": 179
1263
+ },
1264
+ {
1265
+ "epoch": 0.576,
1266
+ "grad_norm": 0.5246656865774878,
1267
+ "learning_rate": 8.036345006322359e-05,
1268
+ "loss": 0.9235,
1269
+ "step": 180
1270
+ },
1271
+ {
1272
+ "epoch": 0.5792,
1273
+ "grad_norm": 0.3889988384699533,
1274
+ "learning_rate": 7.934452157220694e-05,
1275
+ "loss": 0.8564,
1276
+ "step": 181
1277
+ },
1278
+ {
1279
+ "epoch": 0.5824,
1280
+ "grad_norm": 0.34293279991160774,
1281
+ "learning_rate": 7.832782828537437e-05,
1282
+ "loss": 0.7917,
1283
+ "step": 182
1284
+ },
1285
+ {
1286
+ "epoch": 0.5856,
1287
+ "grad_norm": 0.43448804859625373,
1288
+ "learning_rate": 7.731348022279134e-05,
1289
+ "loss": 0.8397,
1290
+ "step": 183
1291
+ },
1292
+ {
1293
+ "epoch": 0.5888,
1294
+ "grad_norm": 0.37332421671048194,
1295
+ "learning_rate": 7.630158715073813e-05,
1296
+ "loss": 0.847,
1297
+ "step": 184
1298
+ },
1299
+ {
1300
+ "epoch": 0.592,
1301
+ "grad_norm": 0.2847408908726539,
1302
+ "learning_rate": 7.52922585698315e-05,
1303
+ "loss": 0.7008,
1304
+ "step": 185
1305
+ },
1306
+ {
1307
+ "epoch": 0.5952,
1308
+ "grad_norm": 0.3793630586511894,
1309
+ "learning_rate": 7.428560370317542e-05,
1310
+ "loss": 0.8073,
1311
+ "step": 186
1312
+ },
1313
+ {
1314
+ "epoch": 0.5984,
1315
+ "grad_norm": 0.3314978495730383,
1316
+ "learning_rate": 7.328173148454151e-05,
1317
+ "loss": 0.7501,
1318
+ "step": 187
1319
+ },
1320
+ {
1321
+ "epoch": 0.6016,
1322
+ "grad_norm": 0.38192244839668066,
1323
+ "learning_rate": 7.228075054658096e-05,
1324
+ "loss": 0.8806,
1325
+ "step": 188
1326
+ },
1327
+ {
1328
+ "epoch": 0.6048,
1329
+ "grad_norm": 0.35144673379944147,
1330
+ "learning_rate": 7.1282769209069e-05,
1331
+ "loss": 0.7983,
1332
+ "step": 189
1333
+ },
1334
+ {
1335
+ "epoch": 0.608,
1336
+ "grad_norm": 0.3320272570958794,
1337
+ "learning_rate": 7.028789546718326e-05,
1338
+ "loss": 0.7778,
1339
+ "step": 190
1340
+ },
1341
+ {
1342
+ "epoch": 0.6112,
1343
+ "grad_norm": 0.3245100936187699,
1344
+ "learning_rate": 6.929623697981718e-05,
1345
+ "loss": 0.7638,
1346
+ "step": 191
1347
+ },
1348
+ {
1349
+ "epoch": 0.6144,
1350
+ "grad_norm": 0.3487129086320174,
1351
+ "learning_rate": 6.830790105792973e-05,
1352
+ "loss": 0.771,
1353
+ "step": 192
1354
+ },
1355
+ {
1356
+ "epoch": 0.6176,
1357
+ "grad_norm": 0.35931606259571913,
1358
+ "learning_rate": 6.732299465293322e-05,
1359
+ "loss": 0.7663,
1360
+ "step": 193
1361
+ },
1362
+ {
1363
+ "epoch": 0.6208,
1364
+ "grad_norm": 0.3367390991318867,
1365
+ "learning_rate": 6.63416243451194e-05,
1366
+ "loss": 0.7966,
1367
+ "step": 194
1368
+ },
1369
+ {
1370
+ "epoch": 0.624,
1371
+ "grad_norm": 0.33183255910992066,
1372
+ "learning_rate": 6.536389633212609e-05,
1373
+ "loss": 0.78,
1374
+ "step": 195
1375
+ },
1376
+ {
1377
+ "epoch": 0.6272,
1378
+ "grad_norm": 0.3264528270630262,
1379
+ "learning_rate": 6.43899164174453e-05,
1380
+ "loss": 0.7772,
1381
+ "step": 196
1382
+ },
1383
+ {
1384
+ "epoch": 0.6304,
1385
+ "grad_norm": 0.3517378205790495,
1386
+ "learning_rate": 6.341978999897365e-05,
1387
+ "loss": 0.7642,
1388
+ "step": 197
1389
+ },
1390
+ {
1391
+ "epoch": 0.6336,
1392
+ "grad_norm": 0.431338962220006,
1393
+ "learning_rate": 6.245362205760704e-05,
1394
+ "loss": 0.7927,
1395
+ "step": 198
1396
+ },
1397
+ {
1398
+ "epoch": 0.6368,
1399
+ "grad_norm": 0.3731631592093385,
1400
+ "learning_rate": 6.149151714588009e-05,
1401
+ "loss": 0.8503,
1402
+ "step": 199
1403
+ },
1404
+ {
1405
+ "epoch": 0.64,
1406
+ "grad_norm": 0.33909105312590193,
1407
+ "learning_rate": 6.053357937665237e-05,
1408
+ "loss": 0.7154,
1409
+ "step": 200
1410
+ },
1411
+ {
1412
+ "epoch": 0.6432,
1413
+ "grad_norm": 0.36200420260594113,
1414
+ "learning_rate": 5.957991241184184e-05,
1415
+ "loss": 0.7569,
1416
+ "step": 201
1417
+ },
1418
+ {
1419
+ "epoch": 0.6464,
1420
+ "grad_norm": 0.4149004455820632,
1421
+ "learning_rate": 5.863061945120719e-05,
1422
+ "loss": 0.8286,
1423
+ "step": 202
1424
+ },
1425
+ {
1426
+ "epoch": 0.6496,
1427
+ "grad_norm": 0.32292850370856624,
1428
+ "learning_rate": 5.768580322118034e-05,
1429
+ "loss": 0.8015,
1430
+ "step": 203
1431
+ },
1432
+ {
1433
+ "epoch": 0.6528,
1434
+ "grad_norm": 0.3771935747682809,
1435
+ "learning_rate": 5.6745565963749925e-05,
1436
+ "loss": 0.803,
1437
+ "step": 204
1438
+ },
1439
+ {
1440
+ "epoch": 0.656,
1441
+ "grad_norm": 0.3541848583253109,
1442
+ "learning_rate": 5.5810009425397294e-05,
1443
+ "loss": 0.8545,
1444
+ "step": 205
1445
+ },
1446
+ {
1447
+ "epoch": 0.6592,
1448
+ "grad_norm": 0.44832715565151354,
1449
+ "learning_rate": 5.487923484608629e-05,
1450
+ "loss": 0.8812,
1451
+ "step": 206
1452
+ },
1453
+ {
1454
+ "epoch": 0.6624,
1455
+ "grad_norm": 0.37472326339826867,
1456
+ "learning_rate": 5.395334294830765e-05,
1457
+ "loss": 0.9129,
1458
+ "step": 207
1459
+ },
1460
+ {
1461
+ "epoch": 0.6656,
1462
+ "grad_norm": 0.35228666839882417,
1463
+ "learning_rate": 5.3032433926179395e-05,
1464
+ "loss": 0.7832,
1465
+ "step": 208
1466
+ },
1467
+ {
1468
+ "epoch": 0.6688,
1469
+ "grad_norm": 0.3350939709150189,
1470
+ "learning_rate": 5.211660743460458e-05,
1471
+ "loss": 0.7491,
1472
+ "step": 209
1473
+ },
1474
+ {
1475
+ "epoch": 0.672,
1476
+ "grad_norm": 0.38948109383274765,
1477
+ "learning_rate": 5.1205962578487155e-05,
1478
+ "loss": 0.7651,
1479
+ "step": 210
1480
+ },
1481
+ {
1482
+ "epoch": 0.6752,
1483
+ "grad_norm": 0.32094235443298985,
1484
+ "learning_rate": 5.030059790200756e-05,
1485
+ "loss": 0.769,
1486
+ "step": 211
1487
+ },
1488
+ {
1489
+ "epoch": 0.6784,
1490
+ "grad_norm": 0.30333546694103175,
1491
+ "learning_rate": 4.940061137795876e-05,
1492
+ "loss": 0.6676,
1493
+ "step": 212
1494
+ },
1495
+ {
1496
+ "epoch": 0.6816,
1497
+ "grad_norm": 0.36011644742045107,
1498
+ "learning_rate": 4.850610039714444e-05,
1499
+ "loss": 0.7948,
1500
+ "step": 213
1501
+ },
1502
+ {
1503
+ "epoch": 0.6848,
1504
+ "grad_norm": 0.4501270149702274,
1505
+ "learning_rate": 4.761716175783989e-05,
1506
+ "loss": 0.8075,
1507
+ "step": 214
1508
+ },
1509
+ {
1510
+ "epoch": 0.688,
1511
+ "grad_norm": 0.32443270170477734,
1512
+ "learning_rate": 4.673389165531714e-05,
1513
+ "loss": 0.7327,
1514
+ "step": 215
1515
+ },
1516
+ {
1517
+ "epoch": 0.6912,
1518
+ "grad_norm": 0.35437103043306173,
1519
+ "learning_rate": 4.585638567143529e-05,
1520
+ "loss": 0.7306,
1521
+ "step": 216
1522
+ },
1523
+ {
1524
+ "epoch": 0.6944,
1525
+ "grad_norm": 0.32026538320410597,
1526
+ "learning_rate": 4.498473876429726e-05,
1527
+ "loss": 0.7387,
1528
+ "step": 217
1529
+ },
1530
+ {
1531
+ "epoch": 0.6976,
1532
+ "grad_norm": 0.3565566202307532,
1533
+ "learning_rate": 4.411904525797408e-05,
1534
+ "loss": 0.7722,
1535
+ "step": 218
1536
+ },
1537
+ {
1538
+ "epoch": 0.7008,
1539
+ "grad_norm": 0.3770279902011318,
1540
+ "learning_rate": 4.325939883229766e-05,
1541
+ "loss": 0.8262,
1542
+ "step": 219
1543
+ },
1544
+ {
1545
+ "epoch": 0.704,
1546
+ "grad_norm": 0.3225427774272655,
1547
+ "learning_rate": 4.240589251272342e-05,
1548
+ "loss": 0.7808,
1549
+ "step": 220
1550
+ },
1551
+ {
1552
+ "epoch": 0.7072,
1553
+ "grad_norm": 0.3643305874741898,
1554
+ "learning_rate": 4.155861866026364e-05,
1555
+ "loss": 0.6751,
1556
+ "step": 221
1557
+ },
1558
+ {
1559
+ "epoch": 0.7104,
1560
+ "grad_norm": 0.3495365472341216,
1561
+ "learning_rate": 4.071766896149273e-05,
1562
+ "loss": 0.7634,
1563
+ "step": 222
1564
+ },
1565
+ {
1566
+ "epoch": 0.7136,
1567
+ "grad_norm": 0.3865725013932627,
1568
+ "learning_rate": 3.988313441862553e-05,
1569
+ "loss": 0.8201,
1570
+ "step": 223
1571
+ },
1572
+ {
1573
+ "epoch": 0.7168,
1574
+ "grad_norm": 0.39371326689707414,
1575
+ "learning_rate": 3.9055105339669595e-05,
1576
+ "loss": 0.783,
1577
+ "step": 224
1578
+ },
1579
+ {
1580
+ "epoch": 0.72,
1581
+ "grad_norm": 0.3343399455415386,
1582
+ "learning_rate": 3.823367132865265e-05,
1583
+ "loss": 0.7558,
1584
+ "step": 225
1585
+ },
1586
+ {
1587
+ "epoch": 0.7232,
1588
+ "grad_norm": 0.37018368726419704,
1589
+ "learning_rate": 3.741892127592625e-05,
1590
+ "loss": 0.8034,
1591
+ "step": 226
1592
+ },
1593
+ {
1594
+ "epoch": 0.7264,
1595
+ "grad_norm": 0.2917671574400929,
1596
+ "learning_rate": 3.6610943348546526e-05,
1597
+ "loss": 0.7608,
1598
+ "step": 227
1599
+ },
1600
+ {
1601
+ "epoch": 0.7296,
1602
+ "grad_norm": 0.3149055123541856,
1603
+ "learning_rate": 3.580982498073344e-05,
1604
+ "loss": 0.7376,
1605
+ "step": 228
1606
+ },
1607
+ {
1608
+ "epoch": 0.7328,
1609
+ "grad_norm": 0.48194732886134795,
1610
+ "learning_rate": 3.501565286440914e-05,
1611
+ "loss": 0.8543,
1612
+ "step": 229
1613
+ },
1614
+ {
1615
+ "epoch": 0.736,
1616
+ "grad_norm": 0.3201762925229535,
1617
+ "learning_rate": 3.422851293981676e-05,
1618
+ "loss": 0.7311,
1619
+ "step": 230
1620
+ },
1621
+ {
1622
+ "epoch": 0.7392,
1623
+ "grad_norm": 0.3832969139432672,
1624
+ "learning_rate": 3.3448490386220355e-05,
1625
+ "loss": 0.8361,
1626
+ "step": 231
1627
+ },
1628
+ {
1629
+ "epoch": 0.7424,
1630
+ "grad_norm": 0.3591778802980467,
1631
+ "learning_rate": 3.2675669612687565e-05,
1632
+ "loss": 0.8246,
1633
+ "step": 232
1634
+ },
1635
+ {
1636
+ "epoch": 0.7456,
1637
+ "grad_norm": 0.33711687357568193,
1638
+ "learning_rate": 3.191013424895536e-05,
1639
+ "loss": 0.7911,
1640
+ "step": 233
1641
+ },
1642
+ {
1643
+ "epoch": 0.7488,
1644
+ "grad_norm": 0.3992050715809478,
1645
+ "learning_rate": 3.115196713638e-05,
1646
+ "loss": 0.784,
1647
+ "step": 234
1648
+ },
1649
+ {
1650
+ "epoch": 0.752,
1651
+ "grad_norm": 0.3717791655175765,
1652
+ "learning_rate": 3.040125031897264e-05,
1653
+ "loss": 0.8544,
1654
+ "step": 235
1655
+ },
1656
+ {
1657
+ "epoch": 0.7552,
1658
+ "grad_norm": 0.3266902771814692,
1659
+ "learning_rate": 2.9658065034520978e-05,
1660
+ "loss": 0.758,
1661
+ "step": 236
1662
+ },
1663
+ {
1664
+ "epoch": 0.7584,
1665
+ "grad_norm": 0.35563021204215095,
1666
+ "learning_rate": 2.892249170579826e-05,
1667
+ "loss": 0.7699,
1668
+ "step": 237
1669
+ },
1670
+ {
1671
+ "epoch": 0.7616,
1672
+ "grad_norm": 0.379714101588036,
1673
+ "learning_rate": 2.8194609931860316e-05,
1674
+ "loss": 0.8409,
1675
+ "step": 238
1676
+ },
1677
+ {
1678
+ "epoch": 0.7648,
1679
+ "grad_norm": 0.47451149824579747,
1680
+ "learning_rate": 2.7474498479432087e-05,
1681
+ "loss": 0.8289,
1682
+ "step": 239
1683
+ },
1684
+ {
1685
+ "epoch": 0.768,
1686
+ "grad_norm": 0.3188599450071592,
1687
+ "learning_rate": 2.6762235274383772e-05,
1688
+ "loss": 0.7431,
1689
+ "step": 240
1690
+ },
1691
+ {
1692
+ "epoch": 0.7712,
1693
+ "grad_norm": 0.3537473485993502,
1694
+ "learning_rate": 2.6057897393298324e-05,
1695
+ "loss": 0.7519,
1696
+ "step": 241
1697
+ },
1698
+ {
1699
+ "epoch": 0.7744,
1700
+ "grad_norm": 0.35260123842359997,
1701
+ "learning_rate": 2.536156105513062e-05,
1702
+ "loss": 0.8052,
1703
+ "step": 242
1704
+ },
1705
+ {
1706
+ "epoch": 0.7776,
1707
+ "grad_norm": 0.3782134918689213,
1708
+ "learning_rate": 2.4673301612959654e-05,
1709
+ "loss": 0.8498,
1710
+ "step": 243
1711
+ },
1712
+ {
1713
+ "epoch": 0.7808,
1714
+ "grad_norm": 0.4240797008066036,
1715
+ "learning_rate": 2.399319354583418e-05,
1716
+ "loss": 0.8504,
1717
+ "step": 244
1718
+ },
1719
+ {
1720
+ "epoch": 0.784,
1721
+ "grad_norm": 0.3493922027357962,
1722
+ "learning_rate": 2.3321310450713062e-05,
1723
+ "loss": 0.748,
1724
+ "step": 245
1725
+ },
1726
+ {
1727
+ "epoch": 0.7872,
1728
+ "grad_norm": 0.3109975196467063,
1729
+ "learning_rate": 2.265772503450122e-05,
1730
+ "loss": 0.7332,
1731
+ "step": 246
1732
+ },
1733
+ {
1734
+ "epoch": 0.7904,
1735
+ "grad_norm": 0.3490386685549296,
1736
+ "learning_rate": 2.2002509106181624e-05,
1737
+ "loss": 0.7745,
1738
+ "step": 247
1739
+ },
1740
+ {
1741
+ "epoch": 0.7936,
1742
+ "grad_norm": 0.36175624431520176,
1743
+ "learning_rate": 2.1355733569044635e-05,
1744
+ "loss": 0.7388,
1745
+ "step": 248
1746
+ },
1747
+ {
1748
+ "epoch": 0.7968,
1749
+ "grad_norm": 0.4367153475876239,
1750
+ "learning_rate": 2.0717468413015283e-05,
1751
+ "loss": 0.8179,
1752
+ "step": 249
1753
+ },
1754
+ {
1755
+ "epoch": 0.8,
1756
+ "grad_norm": 0.39966660383957925,
1757
+ "learning_rate": 2.008778270707944e-05,
1758
+ "loss": 0.7862,
1759
+ "step": 250
1760
+ },
1761
+ {
1762
+ "epoch": 0.8032,
1763
+ "grad_norm": 0.39454280119505963,
1764
+ "learning_rate": 1.946674459180955e-05,
1765
+ "loss": 0.7943,
1766
+ "step": 251
1767
+ },
1768
+ {
1769
+ "epoch": 0.8064,
1770
+ "grad_norm": 0.34240338202982135,
1771
+ "learning_rate": 1.8854421271990964e-05,
1772
+ "loss": 0.7764,
1773
+ "step": 252
1774
+ },
1775
+ {
1776
+ "epoch": 0.8096,
1777
+ "grad_norm": 0.3836219267710939,
1778
+ "learning_rate": 1.8250879009349398e-05,
1779
+ "loss": 0.7249,
1780
+ "step": 253
1781
+ },
1782
+ {
1783
+ "epoch": 0.8128,
1784
+ "grad_norm": 0.3545049008632808,
1785
+ "learning_rate": 1.7656183115380577e-05,
1786
+ "loss": 0.745,
1787
+ "step": 254
1788
+ },
1789
+ {
1790
+ "epoch": 0.816,
1791
+ "grad_norm": 0.4782319117565856,
1792
+ "learning_rate": 1.707039794428259e-05,
1793
+ "loss": 0.9546,
1794
+ "step": 255
1795
+ },
1796
+ {
1797
+ "epoch": 0.8192,
1798
+ "grad_norm": 0.30912276688779844,
1799
+ "learning_rate": 1.649358688599191e-05,
1800
+ "loss": 0.7098,
1801
+ "step": 256
1802
+ },
1803
+ {
1804
+ "epoch": 0.8224,
1805
+ "grad_norm": 0.3564793276918867,
1806
+ "learning_rate": 1.5925812359323745e-05,
1807
+ "loss": 0.7553,
1808
+ "step": 257
1809
+ },
1810
+ {
1811
+ "epoch": 0.8256,
1812
+ "grad_norm": 0.34525121870000597,
1813
+ "learning_rate": 1.5367135805217458e-05,
1814
+ "loss": 0.7499,
1815
+ "step": 258
1816
+ },
1817
+ {
1818
+ "epoch": 0.8288,
1819
+ "grad_norm": 0.3349420082155695,
1820
+ "learning_rate": 1.4817617680087825e-05,
1821
+ "loss": 0.805,
1822
+ "step": 259
1823
+ },
1824
+ {
1825
+ "epoch": 0.832,
1826
+ "grad_norm": 0.433540567668089,
1827
+ "learning_rate": 1.4277317449282834e-05,
1828
+ "loss": 0.877,
1829
+ "step": 260
1830
+ },
1831
+ {
1832
+ "epoch": 0.8352,
1833
+ "grad_norm": 0.3801150070687427,
1834
+ "learning_rate": 1.3746293580648717e-05,
1835
+ "loss": 0.8694,
1836
+ "step": 261
1837
+ },
1838
+ {
1839
+ "epoch": 0.8384,
1840
+ "grad_norm": 0.3738768456908641,
1841
+ "learning_rate": 1.3224603538202929e-05,
1842
+ "loss": 0.7737,
1843
+ "step": 262
1844
+ },
1845
+ {
1846
+ "epoch": 0.8416,
1847
+ "grad_norm": 0.3801506817792511,
1848
+ "learning_rate": 1.2712303775915802e-05,
1849
+ "loss": 0.7256,
1850
+ "step": 263
1851
+ },
1852
+ {
1853
+ "epoch": 0.8448,
1854
+ "grad_norm": 0.29294064483194054,
1855
+ "learning_rate": 1.220944973160133e-05,
1856
+ "loss": 0.7278,
1857
+ "step": 264
1858
+ },
1859
+ {
1860
+ "epoch": 0.848,
1861
+ "grad_norm": 0.3574084890505441,
1862
+ "learning_rate": 1.1716095820918216e-05,
1863
+ "loss": 0.8017,
1864
+ "step": 265
1865
+ },
1866
+ {
1867
+ "epoch": 0.8512,
1868
+ "grad_norm": 0.44325322418927066,
1869
+ "learning_rate": 1.1232295431481222e-05,
1870
+ "loss": 0.8188,
1871
+ "step": 266
1872
+ },
1873
+ {
1874
+ "epoch": 0.8544,
1875
+ "grad_norm": 0.33465511889302607,
1876
+ "learning_rate": 1.0758100917083991e-05,
1877
+ "loss": 0.7404,
1878
+ "step": 267
1879
+ },
1880
+ {
1881
+ "epoch": 0.8576,
1882
+ "grad_norm": 0.35582143701746155,
1883
+ "learning_rate": 1.0293563592033595e-05,
1884
+ "loss": 0.828,
1885
+ "step": 268
1886
+ },
1887
+ {
1888
+ "epoch": 0.8608,
1889
+ "grad_norm": 0.32908366694518915,
1890
+ "learning_rate": 9.838733725597615e-06,
1891
+ "loss": 0.7496,
1892
+ "step": 269
1893
+ },
1894
+ {
1895
+ "epoch": 0.864,
1896
+ "grad_norm": 0.3923286422615176,
1897
+ "learning_rate": 9.393660536564408e-06,
1898
+ "loss": 0.7605,
1899
+ "step": 270
1900
+ },
1901
+ {
1902
+ "epoch": 0.8672,
1903
+ "grad_norm": 0.32871379992022076,
1904
+ "learning_rate": 8.958392187916841e-06,
1905
+ "loss": 0.7252,
1906
+ "step": 271
1907
+ },
1908
+ {
1909
+ "epoch": 0.8704,
1910
+ "grad_norm": 0.4464878317171815,
1911
+ "learning_rate": 8.532975781620512e-06,
1912
+ "loss": 0.7487,
1913
+ "step": 272
1914
+ },
1915
+ {
1916
+ "epoch": 0.8736,
1917
+ "grad_norm": 0.37431391710968503,
1918
+ "learning_rate": 8.117457353526625e-06,
1919
+ "loss": 0.7393,
1920
+ "step": 273
1921
+ },
1922
+ {
1923
+ "epoch": 0.8768,
1924
+ "grad_norm": 0.31383965433569194,
1925
+ "learning_rate": 7.711881868390291e-06,
1926
+ "loss": 0.7417,
1927
+ "step": 274
1928
+ },
1929
+ {
1930
+ "epoch": 0.88,
1931
+ "grad_norm": 0.40622594368739234,
1932
+ "learning_rate": 7.3162932150046885e-06,
1933
+ "loss": 0.8212,
1934
+ "step": 275
1935
+ },
1936
+ {
1937
+ "epoch": 0.8832,
1938
+ "grad_norm": 0.312688075077189,
1939
+ "learning_rate": 6.930734201451816e-06,
1940
+ "loss": 0.6931,
1941
+ "step": 276
1942
+ },
1943
+ {
1944
+ "epoch": 0.8864,
1945
+ "grad_norm": 0.2951795837647385,
1946
+ "learning_rate": 6.555246550469907e-06,
1947
+ "loss": 0.7062,
1948
+ "step": 277
1949
+ },
1950
+ {
1951
+ "epoch": 0.8896,
1952
+ "grad_norm": 0.3906241449752177,
1953
+ "learning_rate": 6.189870894938587e-06,
1954
+ "loss": 0.8502,
1955
+ "step": 278
1956
+ },
1957
+ {
1958
+ "epoch": 0.8928,
1959
+ "grad_norm": 0.33976393181898756,
1960
+ "learning_rate": 5.834646773481811e-06,
1961
+ "loss": 0.7466,
1962
+ "step": 279
1963
+ },
1964
+ {
1965
+ "epoch": 0.896,
1966
+ "grad_norm": 0.3645631566569671,
1967
+ "learning_rate": 5.489612626189245e-06,
1968
+ "loss": 0.8331,
1969
+ "step": 280
1970
+ },
1971
+ {
1972
+ "epoch": 0.8992,
1973
+ "grad_norm": 0.32171725161543063,
1974
+ "learning_rate": 5.154805790456485e-06,
1975
+ "loss": 0.7301,
1976
+ "step": 281
1977
+ },
1978
+ {
1979
+ "epoch": 0.9024,
1980
+ "grad_norm": 0.3215222867159588,
1981
+ "learning_rate": 4.830262496944693e-06,
1982
+ "loss": 0.7803,
1983
+ "step": 282
1984
+ },
1985
+ {
1986
+ "epoch": 0.9056,
1987
+ "grad_norm": 0.3930936220455362,
1988
+ "learning_rate": 4.516017865659949e-06,
1989
+ "loss": 0.8015,
1990
+ "step": 283
1991
+ },
1992
+ {
1993
+ "epoch": 0.9088,
1994
+ "grad_norm": 0.4009757739317676,
1995
+ "learning_rate": 4.21210590215273e-06,
1996
+ "loss": 0.7702,
1997
+ "step": 284
1998
+ },
1999
+ {
2000
+ "epoch": 0.912,
2001
+ "grad_norm": 0.3509902652942518,
2002
+ "learning_rate": 3.918559493838114e-06,
2003
+ "loss": 0.8313,
2004
+ "step": 285
2005
+ },
2006
+ {
2007
+ "epoch": 0.9152,
2008
+ "grad_norm": 0.4823527769540213,
2009
+ "learning_rate": 3.6354104064368566e-06,
2010
+ "loss": 0.7737,
2011
+ "step": 286
2012
+ },
2013
+ {
2014
+ "epoch": 0.9184,
2015
+ "grad_norm": 0.37189019955946206,
2016
+ "learning_rate": 3.3626892805379562e-06,
2017
+ "loss": 0.7485,
2018
+ "step": 287
2019
+ },
2020
+ {
2021
+ "epoch": 0.9216,
2022
+ "grad_norm": 0.3929380712488443,
2023
+ "learning_rate": 3.100425628282899e-06,
2024
+ "loss": 0.7541,
2025
+ "step": 288
2026
+ },
2027
+ {
2028
+ "epoch": 0.9248,
2029
+ "grad_norm": 0.3230172315650001,
2030
+ "learning_rate": 2.848647830172024e-06,
2031
+ "loss": 0.7514,
2032
+ "step": 289
2033
+ },
2034
+ {
2035
+ "epoch": 0.928,
2036
+ "grad_norm": 0.331298596116422,
2037
+ "learning_rate": 2.607383131993424e-06,
2038
+ "loss": 0.7476,
2039
+ "step": 290
2040
+ },
2041
+ {
2042
+ "epoch": 0.9312,
2043
+ "grad_norm": 0.41208820254007095,
2044
+ "learning_rate": 2.3766576418745022e-06,
2045
+ "loss": 0.8253,
2046
+ "step": 291
2047
+ },
2048
+ {
2049
+ "epoch": 0.9344,
2050
+ "grad_norm": 0.3540797011234827,
2051
+ "learning_rate": 2.1564963274568027e-06,
2052
+ "loss": 0.7754,
2053
+ "step": 292
2054
+ },
2055
+ {
2056
+ "epoch": 0.9376,
2057
+ "grad_norm": 0.40367747859127645,
2058
+ "learning_rate": 1.9469230131940907e-06,
2059
+ "loss": 0.8121,
2060
+ "step": 293
2061
+ },
2062
+ {
2063
+ "epoch": 0.9408,
2064
+ "grad_norm": 0.36985043876259127,
2065
+ "learning_rate": 1.7479603777742938e-06,
2066
+ "loss": 0.7875,
2067
+ "step": 294
2068
+ },
2069
+ {
2070
+ "epoch": 0.944,
2071
+ "grad_norm": 0.3757213402313114,
2072
+ "learning_rate": 1.559629951665298e-06,
2073
+ "loss": 0.7626,
2074
+ "step": 295
2075
+ },
2076
+ {
2077
+ "epoch": 0.9472,
2078
+ "grad_norm": 0.3519319526157233,
2079
+ "learning_rate": 1.3819521147851123e-06,
2080
+ "loss": 0.8127,
2081
+ "step": 296
2082
+ },
2083
+ {
2084
+ "epoch": 0.9504,
2085
+ "grad_norm": 0.3733908580196815,
2086
+ "learning_rate": 1.2149460942964098e-06,
2087
+ "loss": 0.7547,
2088
+ "step": 297
2089
+ },
2090
+ {
2091
+ "epoch": 0.9536,
2092
+ "grad_norm": 0.36965768774397506,
2093
+ "learning_rate": 1.05862996252597e-06,
2094
+ "loss": 0.7968,
2095
+ "step": 298
2096
+ },
2097
+ {
2098
+ "epoch": 0.9568,
2099
+ "grad_norm": 0.392672840473129,
2100
+ "learning_rate": 9.130206350089765e-07,
2101
+ "loss": 0.7971,
2102
+ "step": 299
2103
+ },
2104
+ {
2105
+ "epoch": 0.96,
2106
+ "grad_norm": 0.35145171210243764,
2107
+ "learning_rate": 7.781338686584927e-07,
2108
+ "loss": 0.7712,
2109
+ "step": 300
2110
+ },
2111
+ {
2112
+ "epoch": 0.9632,
2113
+ "grad_norm": 0.3557470819008264,
2114
+ "learning_rate": 6.539842600603918e-07,
2115
+ "loss": 0.8122,
2116
+ "step": 301
2117
+ },
2118
+ {
2119
+ "epoch": 0.9664,
2120
+ "grad_norm": 0.39875493221618996,
2121
+ "learning_rate": 5.405852438937764e-07,
2122
+ "loss": 0.7222,
2123
+ "step": 302
2124
+ },
2125
+ {
2126
+ "epoch": 0.9696,
2127
+ "grad_norm": 0.3398025671483795,
2128
+ "learning_rate": 4.3794909147720773e-07,
2129
+ "loss": 0.7241,
2130
+ "step": 303
2131
+ },
2132
+ {
2133
+ "epoch": 0.9728,
2134
+ "grad_norm": 0.44734223609044316,
2135
+ "learning_rate": 3.4608690944071263e-07,
2136
+ "loss": 0.8064,
2137
+ "step": 304
2138
+ },
2139
+ {
2140
+ "epoch": 0.976,
2141
+ "grad_norm": 0.36261141044117756,
2142
+ "learning_rate": 2.6500863852395584e-07,
2143
+ "loss": 0.7815,
2144
+ "step": 305
2145
+ },
2146
+ {
2147
+ "epoch": 0.9792,
2148
+ "grad_norm": 1.1171234591773465,
2149
+ "learning_rate": 1.947230525005006e-07,
2150
+ "loss": 0.7992,
2151
+ "step": 306
2152
+ },
2153
+ {
2154
+ "epoch": 0.9824,
2155
+ "grad_norm": 0.3255664161802146,
2156
+ "learning_rate": 1.3523775722834587e-07,
2157
+ "loss": 0.7498,
2158
+ "step": 307
2159
+ },
2160
+ {
2161
+ "epoch": 0.9856,
2162
+ "grad_norm": 0.34989009087457607,
2163
+ "learning_rate": 8.655918982689581e-08,
2164
+ "loss": 0.8037,
2165
+ "step": 308
2166
+ },
2167
+ {
2168
+ "epoch": 0.9888,
2169
+ "grad_norm": 0.33217965843871977,
2170
+ "learning_rate": 4.8692617980350406e-08,
2171
+ "loss": 0.8156,
2172
+ "step": 309
2173
+ },
2174
+ {
2175
+ "epoch": 0.992,
2176
+ "grad_norm": 0.3603261858382364,
2177
+ "learning_rate": 2.164213936770576e-08,
2178
+ "loss": 0.7071,
2179
+ "step": 310
2180
+ },
2181
+ {
2182
+ "epoch": 0.9952,
2183
+ "grad_norm": 0.3558631704357258,
2184
+ "learning_rate": 5.410681219286673e-09,
2185
+ "loss": 0.742,
2186
+ "step": 311
2187
+ },
2188
+ {
2189
+ "epoch": 0.9984,
2190
+ "grad_norm": 0.3200726372631764,
2191
+ "learning_rate": 0.0,
2192
+ "loss": 0.7306,
2193
+ "step": 312
2194
+ },
2195
+ {
2196
+ "epoch": 0.9984,
2197
+ "step": 312,
2198
+ "total_flos": 739882583326720.0,
2199
+ "train_loss": 0.8309416449986972,
2200
+ "train_runtime": 9163.8195,
2201
+ "train_samples_per_second": 1.091,
2202
+ "train_steps_per_second": 0.034
2203
+ }
2204
+ ],
2205
+ "logging_steps": 1.0,
2206
+ "max_steps": 312,
2207
+ "num_input_tokens_seen": 0,
2208
+ "num_train_epochs": 1,
2209
+ "save_steps": 500,
2210
+ "stateful_callbacks": {
2211
+ "TrainerControl": {
2212
+ "args": {
2213
+ "should_epoch_stop": false,
2214
+ "should_evaluate": false,
2215
+ "should_log": false,
2216
+ "should_save": false,
2217
+ "should_training_stop": false
2218
+ },
2219
+ "attributes": {}
2220
+ }
2221
+ },
2222
+ "total_flos": 739882583326720.0,
2223
+ "train_batch_size": 8,
2224
+ "trial_name": null,
2225
+ "trial_params": null
2226
+ }
mixing_strategies/Equal/bugsBunny-v1_1-Llama-3-8B-V-Equal_dataset_20000_repeat_1_epochs_1_GA_2_lora/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: ./weights/Bunny-v1_1-Llama-3-8B-V
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.11.1
mixing_strategies/Equal/bugsBunny-v1_1-Llama-3-8B-V-Equal_dataset_20000_repeat_1_epochs_1_GA_2_lora/adapter_config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "./weights/Bunny-v1_1-Llama-3-8B-V",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 256,
14
+ "lora_dropout": 0.1,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 128,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "q_proj",
24
+ "v_proj",
25
+ "gate_proj",
26
+ "k_proj",
27
+ "o_proj",
28
+ "down_proj",
29
+ "up_proj"
30
+ ],
31
+ "task_type": "CAUSAL_LM",
32
+ "use_dora": false,
33
+ "use_rslora": false
34
+ }
mixing_strategies/Equal/bugsBunny-v1_1-Llama-3-8B-V-Equal_dataset_20000_repeat_1_epochs_1_GA_2_lora/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:807df09410a8bac8441b10edd939efedcbdf49e2206c5d73aed6963a3087c65e
3
+ size 671150064
mixing_strategies/Equal/bugsBunny-v1_1-Llama-3-8B-V-Equal_dataset_20000_repeat_1_epochs_1_GA_2_lora/config.json ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "./weights/Bunny-v1_1-Llama-3-8B-V",
3
+ "architectures": [
4
+ "BunnyLlamaForCausalLM"
5
+ ],
6
+ "attention_bias": false,
7
+ "attention_dropout": 0.0,
8
+ "auto_map": {
9
+ "AutoConfig": "configuration_bunny_llama.BunnyLlamaConfig",
10
+ "AutoModelForCausalLM": "modeling_bunny_llama.BunnyLlamaForCausalLM"
11
+ },
12
+ "bos_token_id": 128000,
13
+ "continuous_training": false,
14
+ "eos_token_id": 128001,
15
+ "freeze_mm_mlp_adapter": false,
16
+ "hidden_act": "silu",
17
+ "hidden_size": 4096,
18
+ "image_aspect_ratio": "pad",
19
+ "initializer_range": 0.02,
20
+ "intermediate_size": 14336,
21
+ "max_position_embeddings": 8192,
22
+ "mm_hidden_size": 3456,
23
+ "mm_projector_lr": null,
24
+ "mm_projector_type": "mlp2x_gelu",
25
+ "mm_vision_tower": "./weights/siglip-so400m-patch14-384",
26
+ "model_type": "bunny-llama",
27
+ "num_attention_heads": 32,
28
+ "num_hidden_layers": 32,
29
+ "num_key_value_heads": 8,
30
+ "pretraining_tp": 1,
31
+ "rms_norm_eps": 1e-05,
32
+ "rope_scaling": null,
33
+ "rope_theta": 500000.0,
34
+ "tie_word_embeddings": false,
35
+ "tokenizer_model_max_length": 2048,
36
+ "tokenizer_padding_side": "right",
37
+ "torch_dtype": "float16",
38
+ "transformers_version": "4.41.2",
39
+ "tune_mm_mlp_adapter": false,
40
+ "unfreeze_vision_tower": true,
41
+ "use_cache": true,
42
+ "use_mm_proj": true,
43
+ "use_s2": true,
44
+ "vocab_size": 128256
45
+ }
mixing_strategies/Equal/bugsBunny-v1_1-Llama-3-8B-V-Equal_dataset_20000_repeat_1_epochs_1_GA_2_lora/non_lora_trainables.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4a957a55853852e70c4e4559e96f956dcefc8993421eea81bbc558164c8b426a
3
+ size 918507402
mixing_strategies/Equal/bugsBunny-v1_1-Llama-3-8B-V-Equal_dataset_20000_repeat_1_epochs_1_GA_2_lora/trainer_state.json ADDED
The diff for this file is too large to render. See raw diff
 
mixing_strategies/Equal/bugsBunny-v1_1-Llama-3-8B-V-Equal_dataset_20000_repeat_2_epochs_1_GA_2_lora/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: ./weights/Bunny-v1_1-Llama-3-8B-V
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.11.1
mixing_strategies/Equal/bugsBunny-v1_1-Llama-3-8B-V-Equal_dataset_20000_repeat_2_epochs_1_GA_2_lora/adapter_config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "./weights/Bunny-v1_1-Llama-3-8B-V",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 256,
14
+ "lora_dropout": 0.1,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 128,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "k_proj",
24
+ "q_proj",
25
+ "down_proj",
26
+ "up_proj",
27
+ "o_proj",
28
+ "v_proj",
29
+ "gate_proj"
30
+ ],
31
+ "task_type": "CAUSAL_LM",
32
+ "use_dora": false,
33
+ "use_rslora": false
34
+ }
mixing_strategies/Equal/bugsBunny-v1_1-Llama-3-8B-V-Equal_dataset_20000_repeat_2_epochs_1_GA_2_lora/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:222d6020a814fe4a9d38c7187c52bcc5c8fab80c418dd58f37f19789d5d3258e
3
+ size 671150064
mixing_strategies/Equal/bugsBunny-v1_1-Llama-3-8B-V-Equal_dataset_20000_repeat_2_epochs_1_GA_2_lora/config.json ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "./weights/Bunny-v1_1-Llama-3-8B-V",
3
+ "architectures": [
4
+ "BunnyLlamaForCausalLM"
5
+ ],
6
+ "attention_bias": false,
7
+ "attention_dropout": 0.0,
8
+ "auto_map": {
9
+ "AutoConfig": "configuration_bunny_llama.BunnyLlamaConfig",
10
+ "AutoModelForCausalLM": "modeling_bunny_llama.BunnyLlamaForCausalLM"
11
+ },
12
+ "bos_token_id": 128000,
13
+ "continuous_training": false,
14
+ "eos_token_id": 128001,
15
+ "freeze_mm_mlp_adapter": false,
16
+ "hidden_act": "silu",
17
+ "hidden_size": 4096,
18
+ "image_aspect_ratio": "pad",
19
+ "initializer_range": 0.02,
20
+ "intermediate_size": 14336,
21
+ "max_position_embeddings": 8192,
22
+ "mm_hidden_size": 3456,
23
+ "mm_projector_lr": null,
24
+ "mm_projector_type": "mlp2x_gelu",
25
+ "mm_vision_tower": "./weights/siglip-so400m-patch14-384",
26
+ "model_type": "bunny-llama",
27
+ "num_attention_heads": 32,
28
+ "num_hidden_layers": 32,
29
+ "num_key_value_heads": 8,
30
+ "pretraining_tp": 1,
31
+ "rms_norm_eps": 1e-05,
32
+ "rope_scaling": null,
33
+ "rope_theta": 500000.0,
34
+ "tie_word_embeddings": false,
35
+ "tokenizer_model_max_length": 2048,
36
+ "tokenizer_padding_side": "right",
37
+ "torch_dtype": "float16",
38
+ "transformers_version": "4.41.2",
39
+ "tune_mm_mlp_adapter": false,
40
+ "unfreeze_vision_tower": true,
41
+ "use_cache": true,
42
+ "use_mm_proj": true,
43
+ "use_s2": true,
44
+ "vocab_size": 128256
45
+ }
mixing_strategies/Equal/bugsBunny-v1_1-Llama-3-8B-V-Equal_dataset_20000_repeat_2_epochs_1_GA_2_lora/non_lora_trainables.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:48d577f56281a55d9ebce8783da6a9f998306862aa87ce27b012361b7d4c3a07
3
+ size 918507402
mixing_strategies/Equal/bugsBunny-v1_1-Llama-3-8B-V-Equal_dataset_20000_repeat_2_epochs_1_GA_2_lora/trainer_state.json ADDED
The diff for this file is too large to render. See raw diff
 
mixing_strategies/Equal/bugsBunny-v1_1-Llama-3-8B-V-Equal_dataset_20000_repeat_3_epochs_1_GA_2_lora/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: ./weights/Bunny-v1_1-Llama-3-8B-V
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.11.1
mixing_strategies/Equal/bugsBunny-v1_1-Llama-3-8B-V-Equal_dataset_20000_repeat_3_epochs_1_GA_2_lora/adapter_config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "./weights/Bunny-v1_1-Llama-3-8B-V",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 256,
14
+ "lora_dropout": 0.1,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 128,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "k_proj",
24
+ "down_proj",
25
+ "up_proj",
26
+ "v_proj",
27
+ "q_proj",
28
+ "o_proj",
29
+ "gate_proj"
30
+ ],
31
+ "task_type": "CAUSAL_LM",
32
+ "use_dora": false,
33
+ "use_rslora": false
34
+ }