Upload folder using huggingface_hub
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- single_dataset/gpt4o_conversations/VideoGameBunny_v1_1-Llama-3-8B-V-gpt4o_conversations_dataset_10000_epochs_1_lora/README.md +202 -0
- single_dataset/gpt4o_conversations/VideoGameBunny_v1_1-Llama-3-8B-V-gpt4o_conversations_dataset_10000_epochs_1_lora/adapter_config.json +34 -0
- single_dataset/gpt4o_conversations/VideoGameBunny_v1_1-Llama-3-8B-V-gpt4o_conversations_dataset_10000_epochs_1_lora/adapter_model.safetensors +3 -0
- single_dataset/gpt4o_conversations/VideoGameBunny_v1_1-Llama-3-8B-V-gpt4o_conversations_dataset_10000_epochs_1_lora/config.json +45 -0
- single_dataset/gpt4o_conversations/VideoGameBunny_v1_1-Llama-3-8B-V-gpt4o_conversations_dataset_10000_epochs_1_lora/non_lora_trainables.bin +3 -0
- single_dataset/gpt4o_conversations/VideoGameBunny_v1_1-Llama-3-8B-V-gpt4o_conversations_dataset_10000_epochs_1_lora/trainer_state.json +0 -0
- single_dataset/gpt4o_conversations/VideoGameBunny_v1_1-Llama-3-8B-V-gpt4o_conversations_dataset_2000_epochs_1_lora/README.md +202 -0
- single_dataset/gpt4o_conversations/VideoGameBunny_v1_1-Llama-3-8B-V-gpt4o_conversations_dataset_2000_epochs_1_lora/adapter_config.json +34 -0
- single_dataset/gpt4o_conversations/VideoGameBunny_v1_1-Llama-3-8B-V-gpt4o_conversations_dataset_2000_epochs_1_lora/adapter_model.safetensors +3 -0
- single_dataset/gpt4o_conversations/VideoGameBunny_v1_1-Llama-3-8B-V-gpt4o_conversations_dataset_2000_epochs_1_lora/config.json +45 -0
- single_dataset/gpt4o_conversations/VideoGameBunny_v1_1-Llama-3-8B-V-gpt4o_conversations_dataset_2000_epochs_1_lora/non_lora_trainables.bin +3 -0
- single_dataset/gpt4o_conversations/VideoGameBunny_v1_1-Llama-3-8B-V-gpt4o_conversations_dataset_2000_epochs_1_lora/trainer_state.json +917 -0
- single_dataset/gpt4o_conversations/VideoGameBunny_v1_1-Llama-3-8B-V-gpt4o_conversations_dataset_2000_epochs_2_lora/README.md +202 -0
- single_dataset/gpt4o_conversations/VideoGameBunny_v1_1-Llama-3-8B-V-gpt4o_conversations_dataset_2000_epochs_2_lora/adapter_config.json +34 -0
- single_dataset/gpt4o_conversations/VideoGameBunny_v1_1-Llama-3-8B-V-gpt4o_conversations_dataset_2000_epochs_2_lora/adapter_model.safetensors +3 -0
- single_dataset/gpt4o_conversations/VideoGameBunny_v1_1-Llama-3-8B-V-gpt4o_conversations_dataset_2000_epochs_2_lora/config.json +45 -0
- single_dataset/gpt4o_conversations/VideoGameBunny_v1_1-Llama-3-8B-V-gpt4o_conversations_dataset_2000_epochs_2_lora/non_lora_trainables.bin +3 -0
- single_dataset/gpt4o_conversations/VideoGameBunny_v1_1-Llama-3-8B-V-gpt4o_conversations_dataset_2000_epochs_2_lora/trainer_state.json +1792 -0
- single_dataset/gpt4o_conversations/VideoGameBunny_v1_1-Llama-3-8B-V-gpt4o_conversations_dataset_5000_epochs_1_lora/README.md +202 -0
- single_dataset/gpt4o_conversations/VideoGameBunny_v1_1-Llama-3-8B-V-gpt4o_conversations_dataset_5000_epochs_1_lora/adapter_config.json +34 -0
- single_dataset/gpt4o_conversations/VideoGameBunny_v1_1-Llama-3-8B-V-gpt4o_conversations_dataset_5000_epochs_1_lora/adapter_model.safetensors +3 -0
- single_dataset/gpt4o_conversations/VideoGameBunny_v1_1-Llama-3-8B-V-gpt4o_conversations_dataset_5000_epochs_1_lora/config.json +45 -0
- single_dataset/gpt4o_conversations/VideoGameBunny_v1_1-Llama-3-8B-V-gpt4o_conversations_dataset_5000_epochs_1_lora/non_lora_trainables.bin +3 -0
- single_dataset/gpt4o_conversations/VideoGameBunny_v1_1-Llama-3-8B-V-gpt4o_conversations_dataset_5000_epochs_1_lora/trainer_state.json +2226 -0
- single_dataset/img2json/VideoGameBunny_v1_1-Llama-3-8B-V-img2json_dataset_10000_epochs_1_lora/README.md +202 -0
- single_dataset/img2json/VideoGameBunny_v1_1-Llama-3-8B-V-img2json_dataset_10000_epochs_1_lora/adapter_config.json +34 -0
- single_dataset/img2json/VideoGameBunny_v1_1-Llama-3-8B-V-img2json_dataset_10000_epochs_1_lora/adapter_model.safetensors +3 -0
- single_dataset/img2json/VideoGameBunny_v1_1-Llama-3-8B-V-img2json_dataset_10000_epochs_1_lora/config.json +45 -0
- single_dataset/img2json/VideoGameBunny_v1_1-Llama-3-8B-V-img2json_dataset_10000_epochs_1_lora/non_lora_trainables.bin +3 -0
- single_dataset/img2json/VideoGameBunny_v1_1-Llama-3-8B-V-img2json_dataset_10000_epochs_1_lora/trainer_state.json +0 -0
- single_dataset/img2json/VideoGameBunny_v1_1-Llama-3-8B-V-img2json_dataset_20000_epochs_1_lora/README.md +202 -0
- single_dataset/img2json/VideoGameBunny_v1_1-Llama-3-8B-V-img2json_dataset_20000_epochs_1_lora/adapter_config.json +34 -0
- single_dataset/img2json/VideoGameBunny_v1_1-Llama-3-8B-V-img2json_dataset_20000_epochs_1_lora/adapter_model.safetensors +3 -0
- single_dataset/img2json/VideoGameBunny_v1_1-Llama-3-8B-V-img2json_dataset_20000_epochs_1_lora/config.json +45 -0
- single_dataset/img2json/VideoGameBunny_v1_1-Llama-3-8B-V-img2json_dataset_20000_epochs_1_lora/non_lora_trainables.bin +3 -0
- single_dataset/img2json/VideoGameBunny_v1_1-Llama-3-8B-V-img2json_dataset_20000_epochs_1_lora/trainer_state.json +0 -0
- single_dataset/img2json/VideoGameBunny_v1_1-Llama-3-8B-V-img2json_dataset_2000_epochs_1_lora/README.md +202 -0
- single_dataset/img2json/VideoGameBunny_v1_1-Llama-3-8B-V-img2json_dataset_2000_epochs_1_lora/adapter_config.json +34 -0
- single_dataset/img2json/VideoGameBunny_v1_1-Llama-3-8B-V-img2json_dataset_2000_epochs_1_lora/adapter_model.safetensors +3 -0
- single_dataset/img2json/VideoGameBunny_v1_1-Llama-3-8B-V-img2json_dataset_2000_epochs_1_lora/config.json +45 -0
- single_dataset/img2json/VideoGameBunny_v1_1-Llama-3-8B-V-img2json_dataset_2000_epochs_1_lora/non_lora_trainables.bin +3 -0
- single_dataset/img2json/VideoGameBunny_v1_1-Llama-3-8B-V-img2json_dataset_2000_epochs_1_lora/trainer_state.json +917 -0
- single_dataset/img2json/VideoGameBunny_v1_1-Llama-3-8B-V-img2json_dataset_40000_epochs_1_lora/README.md +202 -0
- single_dataset/img2json/VideoGameBunny_v1_1-Llama-3-8B-V-img2json_dataset_40000_epochs_1_lora/adapter_config.json +34 -0
- single_dataset/img2json/VideoGameBunny_v1_1-Llama-3-8B-V-img2json_dataset_40000_epochs_1_lora/adapter_model.safetensors +3 -0
- single_dataset/img2json/VideoGameBunny_v1_1-Llama-3-8B-V-img2json_dataset_40000_epochs_1_lora/config.json +45 -0
- single_dataset/img2json/VideoGameBunny_v1_1-Llama-3-8B-V-img2json_dataset_40000_epochs_1_lora/non_lora_trainables.bin +3 -0
- single_dataset/img2json/VideoGameBunny_v1_1-Llama-3-8B-V-img2json_dataset_40000_epochs_1_lora/trainer_state.json +0 -0
- single_dataset/img2json/VideoGameBunny_v1_1-Llama-3-8B-V-img2json_dataset_50000_epochs_1_lora/README.md +202 -0
- single_dataset/img2json/VideoGameBunny_v1_1-Llama-3-8B-V-img2json_dataset_50000_epochs_1_lora/adapter_config.json +34 -0
single_dataset/gpt4o_conversations/VideoGameBunny_v1_1-Llama-3-8B-V-gpt4o_conversations_dataset_10000_epochs_1_lora/README.md
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: peft
|
3 |
+
base_model: ./weights/Bunny-v1_1-Llama-3-8B-V
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.11.1
|
single_dataset/gpt4o_conversations/VideoGameBunny_v1_1-Llama-3-8B-V-gpt4o_conversations_dataset_10000_epochs_1_lora/adapter_config.json
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "./weights/Bunny-v1_1-Llama-3-8B-V",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layer_replication": null,
|
10 |
+
"layers_pattern": null,
|
11 |
+
"layers_to_transform": null,
|
12 |
+
"loftq_config": {},
|
13 |
+
"lora_alpha": 256,
|
14 |
+
"lora_dropout": 0.1,
|
15 |
+
"megatron_config": null,
|
16 |
+
"megatron_core": "megatron.core",
|
17 |
+
"modules_to_save": null,
|
18 |
+
"peft_type": "LORA",
|
19 |
+
"r": 128,
|
20 |
+
"rank_pattern": {},
|
21 |
+
"revision": null,
|
22 |
+
"target_modules": [
|
23 |
+
"gate_proj",
|
24 |
+
"up_proj",
|
25 |
+
"q_proj",
|
26 |
+
"k_proj",
|
27 |
+
"v_proj",
|
28 |
+
"down_proj",
|
29 |
+
"o_proj"
|
30 |
+
],
|
31 |
+
"task_type": "CAUSAL_LM",
|
32 |
+
"use_dora": false,
|
33 |
+
"use_rslora": false
|
34 |
+
}
|
single_dataset/gpt4o_conversations/VideoGameBunny_v1_1-Llama-3-8B-V-gpt4o_conversations_dataset_10000_epochs_1_lora/adapter_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ba877586bdd14eeb401b52760ab6fcbfa98f6b86828c47f86282709dce6d6d1f
|
3 |
+
size 671150064
|
single_dataset/gpt4o_conversations/VideoGameBunny_v1_1-Llama-3-8B-V-gpt4o_conversations_dataset_10000_epochs_1_lora/config.json
ADDED
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "./weights/Bunny-v1_1-Llama-3-8B-V",
|
3 |
+
"architectures": [
|
4 |
+
"BunnyLlamaForCausalLM"
|
5 |
+
],
|
6 |
+
"attention_bias": false,
|
7 |
+
"attention_dropout": 0.0,
|
8 |
+
"auto_map": {
|
9 |
+
"AutoConfig": "configuration_bunny_llama.BunnyLlamaConfig",
|
10 |
+
"AutoModelForCausalLM": "modeling_bunny_llama.BunnyLlamaForCausalLM"
|
11 |
+
},
|
12 |
+
"bos_token_id": 128000,
|
13 |
+
"continuous_training": false,
|
14 |
+
"eos_token_id": 128001,
|
15 |
+
"freeze_mm_mlp_adapter": false,
|
16 |
+
"hidden_act": "silu",
|
17 |
+
"hidden_size": 4096,
|
18 |
+
"image_aspect_ratio": "pad",
|
19 |
+
"initializer_range": 0.02,
|
20 |
+
"intermediate_size": 14336,
|
21 |
+
"max_position_embeddings": 8192,
|
22 |
+
"mm_hidden_size": 3456,
|
23 |
+
"mm_projector_lr": null,
|
24 |
+
"mm_projector_type": "mlp2x_gelu",
|
25 |
+
"mm_vision_tower": "./weights/siglip-so400m-patch14-384",
|
26 |
+
"model_type": "bunny-llama",
|
27 |
+
"num_attention_heads": 32,
|
28 |
+
"num_hidden_layers": 32,
|
29 |
+
"num_key_value_heads": 8,
|
30 |
+
"pretraining_tp": 1,
|
31 |
+
"rms_norm_eps": 1e-05,
|
32 |
+
"rope_scaling": null,
|
33 |
+
"rope_theta": 500000.0,
|
34 |
+
"tie_word_embeddings": false,
|
35 |
+
"tokenizer_model_max_length": 2048,
|
36 |
+
"tokenizer_padding_side": "right",
|
37 |
+
"torch_dtype": "float16",
|
38 |
+
"transformers_version": "4.41.2",
|
39 |
+
"tune_mm_mlp_adapter": false,
|
40 |
+
"unfreeze_vision_tower": true,
|
41 |
+
"use_cache": true,
|
42 |
+
"use_mm_proj": true,
|
43 |
+
"use_s2": true,
|
44 |
+
"vocab_size": 128256
|
45 |
+
}
|
single_dataset/gpt4o_conversations/VideoGameBunny_v1_1-Llama-3-8B-V-gpt4o_conversations_dataset_10000_epochs_1_lora/non_lora_trainables.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d03b5e8dc93898c8165f95efc97f379e2efafe1851803ae36808a028dac30494
|
3 |
+
size 918507402
|
single_dataset/gpt4o_conversations/VideoGameBunny_v1_1-Llama-3-8B-V-gpt4o_conversations_dataset_10000_epochs_1_lora/trainer_state.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
single_dataset/gpt4o_conversations/VideoGameBunny_v1_1-Llama-3-8B-V-gpt4o_conversations_dataset_2000_epochs_1_lora/README.md
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: peft
|
3 |
+
base_model: ./weights/Bunny-v1_1-Llama-3-8B-V
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.11.1
|
single_dataset/gpt4o_conversations/VideoGameBunny_v1_1-Llama-3-8B-V-gpt4o_conversations_dataset_2000_epochs_1_lora/adapter_config.json
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "./weights/Bunny-v1_1-Llama-3-8B-V",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layer_replication": null,
|
10 |
+
"layers_pattern": null,
|
11 |
+
"layers_to_transform": null,
|
12 |
+
"loftq_config": {},
|
13 |
+
"lora_alpha": 256,
|
14 |
+
"lora_dropout": 0.1,
|
15 |
+
"megatron_config": null,
|
16 |
+
"megatron_core": "megatron.core",
|
17 |
+
"modules_to_save": null,
|
18 |
+
"peft_type": "LORA",
|
19 |
+
"r": 128,
|
20 |
+
"rank_pattern": {},
|
21 |
+
"revision": null,
|
22 |
+
"target_modules": [
|
23 |
+
"k_proj",
|
24 |
+
"q_proj",
|
25 |
+
"gate_proj",
|
26 |
+
"v_proj",
|
27 |
+
"up_proj",
|
28 |
+
"o_proj",
|
29 |
+
"down_proj"
|
30 |
+
],
|
31 |
+
"task_type": "CAUSAL_LM",
|
32 |
+
"use_dora": false,
|
33 |
+
"use_rslora": false
|
34 |
+
}
|
single_dataset/gpt4o_conversations/VideoGameBunny_v1_1-Llama-3-8B-V-gpt4o_conversations_dataset_2000_epochs_1_lora/adapter_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6eeb61ea8f79dbf15e1aae58c7b0170375847ec00a4f9c8ad346e2f75e5fef1c
|
3 |
+
size 671150064
|
single_dataset/gpt4o_conversations/VideoGameBunny_v1_1-Llama-3-8B-V-gpt4o_conversations_dataset_2000_epochs_1_lora/config.json
ADDED
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "./weights/Bunny-v1_1-Llama-3-8B-V",
|
3 |
+
"architectures": [
|
4 |
+
"BunnyLlamaForCausalLM"
|
5 |
+
],
|
6 |
+
"attention_bias": false,
|
7 |
+
"attention_dropout": 0.0,
|
8 |
+
"auto_map": {
|
9 |
+
"AutoConfig": "configuration_bunny_llama.BunnyLlamaConfig",
|
10 |
+
"AutoModelForCausalLM": "modeling_bunny_llama.BunnyLlamaForCausalLM"
|
11 |
+
},
|
12 |
+
"bos_token_id": 128000,
|
13 |
+
"continuous_training": false,
|
14 |
+
"eos_token_id": 128001,
|
15 |
+
"freeze_mm_mlp_adapter": false,
|
16 |
+
"hidden_act": "silu",
|
17 |
+
"hidden_size": 4096,
|
18 |
+
"image_aspect_ratio": "pad",
|
19 |
+
"initializer_range": 0.02,
|
20 |
+
"intermediate_size": 14336,
|
21 |
+
"max_position_embeddings": 8192,
|
22 |
+
"mm_hidden_size": 3456,
|
23 |
+
"mm_projector_lr": null,
|
24 |
+
"mm_projector_type": "mlp2x_gelu",
|
25 |
+
"mm_vision_tower": "./weights/siglip-so400m-patch14-384",
|
26 |
+
"model_type": "bunny-llama",
|
27 |
+
"num_attention_heads": 32,
|
28 |
+
"num_hidden_layers": 32,
|
29 |
+
"num_key_value_heads": 8,
|
30 |
+
"pretraining_tp": 1,
|
31 |
+
"rms_norm_eps": 1e-05,
|
32 |
+
"rope_scaling": null,
|
33 |
+
"rope_theta": 500000.0,
|
34 |
+
"tie_word_embeddings": false,
|
35 |
+
"tokenizer_model_max_length": 2048,
|
36 |
+
"tokenizer_padding_side": "right",
|
37 |
+
"torch_dtype": "float16",
|
38 |
+
"transformers_version": "4.41.2",
|
39 |
+
"tune_mm_mlp_adapter": false,
|
40 |
+
"unfreeze_vision_tower": true,
|
41 |
+
"use_cache": true,
|
42 |
+
"use_mm_proj": true,
|
43 |
+
"use_s2": true,
|
44 |
+
"vocab_size": 128256
|
45 |
+
}
|
single_dataset/gpt4o_conversations/VideoGameBunny_v1_1-Llama-3-8B-V-gpt4o_conversations_dataset_2000_epochs_1_lora/non_lora_trainables.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:03b75b38d4fbde04610931840aba206073356e8d0d298a4aa817d786f79f0789
|
3 |
+
size 918507402
|
single_dataset/gpt4o_conversations/VideoGameBunny_v1_1-Llama-3-8B-V-gpt4o_conversations_dataset_2000_epochs_1_lora/trainer_state.json
ADDED
@@ -0,0 +1,917 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 1.0,
|
5 |
+
"eval_steps": 500,
|
6 |
+
"global_step": 125,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.008,
|
13 |
+
"grad_norm": 1.0877886563071673,
|
14 |
+
"learning_rate": 5e-05,
|
15 |
+
"loss": 1.4204,
|
16 |
+
"step": 1
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.016,
|
20 |
+
"grad_norm": 0.9831963058763455,
|
21 |
+
"learning_rate": 0.0001,
|
22 |
+
"loss": 1.2175,
|
23 |
+
"step": 2
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"epoch": 0.024,
|
27 |
+
"grad_norm": 0.7478913848154679,
|
28 |
+
"learning_rate": 0.00015000000000000001,
|
29 |
+
"loss": 1.2755,
|
30 |
+
"step": 3
|
31 |
+
},
|
32 |
+
{
|
33 |
+
"epoch": 0.032,
|
34 |
+
"grad_norm": 1.1851945547125557,
|
35 |
+
"learning_rate": 0.0002,
|
36 |
+
"loss": 1.294,
|
37 |
+
"step": 4
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"epoch": 0.04,
|
41 |
+
"grad_norm": 0.9476134964793809,
|
42 |
+
"learning_rate": 0.00019996629653035126,
|
43 |
+
"loss": 1.2281,
|
44 |
+
"step": 5
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"epoch": 0.048,
|
48 |
+
"grad_norm": 0.7133074153458693,
|
49 |
+
"learning_rate": 0.00019986520883988232,
|
50 |
+
"loss": 1.2197,
|
51 |
+
"step": 6
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"epoch": 0.056,
|
55 |
+
"grad_norm": 0.7174771013040582,
|
56 |
+
"learning_rate": 0.00019969680506871137,
|
57 |
+
"loss": 1.2152,
|
58 |
+
"step": 7
|
59 |
+
},
|
60 |
+
{
|
61 |
+
"epoch": 0.064,
|
62 |
+
"grad_norm": 0.7669579161324069,
|
63 |
+
"learning_rate": 0.00019946119873266613,
|
64 |
+
"loss": 1.2647,
|
65 |
+
"step": 8
|
66 |
+
},
|
67 |
+
{
|
68 |
+
"epoch": 0.072,
|
69 |
+
"grad_norm": 1.1079413613918108,
|
70 |
+
"learning_rate": 0.00019915854864676664,
|
71 |
+
"loss": 1.2143,
|
72 |
+
"step": 9
|
73 |
+
},
|
74 |
+
{
|
75 |
+
"epoch": 0.08,
|
76 |
+
"grad_norm": 0.7583043070072526,
|
77 |
+
"learning_rate": 0.00019878905881817252,
|
78 |
+
"loss": 1.1807,
|
79 |
+
"step": 10
|
80 |
+
},
|
81 |
+
{
|
82 |
+
"epoch": 0.088,
|
83 |
+
"grad_norm": 0.8929329853128891,
|
84 |
+
"learning_rate": 0.00019835297830866826,
|
85 |
+
"loss": 1.1392,
|
86 |
+
"step": 11
|
87 |
+
},
|
88 |
+
{
|
89 |
+
"epoch": 0.096,
|
90 |
+
"grad_norm": 0.7522497944874978,
|
91 |
+
"learning_rate": 0.00019785060106677818,
|
92 |
+
"loss": 1.1502,
|
93 |
+
"step": 12
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"epoch": 0.104,
|
97 |
+
"grad_norm": 0.6440337581737159,
|
98 |
+
"learning_rate": 0.00019728226572962473,
|
99 |
+
"loss": 1.1695,
|
100 |
+
"step": 13
|
101 |
+
},
|
102 |
+
{
|
103 |
+
"epoch": 0.112,
|
104 |
+
"grad_norm": 0.7692304262417425,
|
105 |
+
"learning_rate": 0.0001966483553946637,
|
106 |
+
"loss": 1.2483,
|
107 |
+
"step": 14
|
108 |
+
},
|
109 |
+
{
|
110 |
+
"epoch": 0.12,
|
111 |
+
"grad_norm": 0.6635724770585765,
|
112 |
+
"learning_rate": 0.00019594929736144976,
|
113 |
+
"loss": 1.0857,
|
114 |
+
"step": 15
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 0.128,
|
118 |
+
"grad_norm": 0.6339210471192188,
|
119 |
+
"learning_rate": 0.00019518556284360696,
|
120 |
+
"loss": 1.1672,
|
121 |
+
"step": 16
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"epoch": 0.136,
|
125 |
+
"grad_norm": 0.6790889547946641,
|
126 |
+
"learning_rate": 0.0001943576666511982,
|
127 |
+
"loss": 1.088,
|
128 |
+
"step": 17
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"epoch": 0.144,
|
132 |
+
"grad_norm": 0.6692175057561588,
|
133 |
+
"learning_rate": 0.0001934661668437073,
|
134 |
+
"loss": 1.2209,
|
135 |
+
"step": 18
|
136 |
+
},
|
137 |
+
{
|
138 |
+
"epoch": 0.152,
|
139 |
+
"grad_norm": 0.6437761998032046,
|
140 |
+
"learning_rate": 0.0001925116643538684,
|
141 |
+
"loss": 1.122,
|
142 |
+
"step": 19
|
143 |
+
},
|
144 |
+
{
|
145 |
+
"epoch": 0.16,
|
146 |
+
"grad_norm": 0.6525125502220214,
|
147 |
+
"learning_rate": 0.00019149480258259533,
|
148 |
+
"loss": 1.1809,
|
149 |
+
"step": 20
|
150 |
+
},
|
151 |
+
{
|
152 |
+
"epoch": 0.168,
|
153 |
+
"grad_norm": 0.7383920037847639,
|
154 |
+
"learning_rate": 0.00019041626696528503,
|
155 |
+
"loss": 1.2011,
|
156 |
+
"step": 21
|
157 |
+
},
|
158 |
+
{
|
159 |
+
"epoch": 0.176,
|
160 |
+
"grad_norm": 0.599229910744791,
|
161 |
+
"learning_rate": 0.0001892767845097864,
|
162 |
+
"loss": 1.1337,
|
163 |
+
"step": 22
|
164 |
+
},
|
165 |
+
{
|
166 |
+
"epoch": 0.184,
|
167 |
+
"grad_norm": 0.6368541820149072,
|
168 |
+
"learning_rate": 0.00018807712330634642,
|
169 |
+
"loss": 1.1691,
|
170 |
+
"step": 23
|
171 |
+
},
|
172 |
+
{
|
173 |
+
"epoch": 0.192,
|
174 |
+
"grad_norm": 0.6479968056136417,
|
175 |
+
"learning_rate": 0.0001868180920098644,
|
176 |
+
"loss": 1.1646,
|
177 |
+
"step": 24
|
178 |
+
},
|
179 |
+
{
|
180 |
+
"epoch": 0.2,
|
181 |
+
"grad_norm": 0.6492295290083023,
|
182 |
+
"learning_rate": 0.00018550053929480202,
|
183 |
+
"loss": 1.1822,
|
184 |
+
"step": 25
|
185 |
+
},
|
186 |
+
{
|
187 |
+
"epoch": 0.208,
|
188 |
+
"grad_norm": 0.6581163598715829,
|
189 |
+
"learning_rate": 0.00018412535328311814,
|
190 |
+
"loss": 1.0881,
|
191 |
+
"step": 26
|
192 |
+
},
|
193 |
+
{
|
194 |
+
"epoch": 0.216,
|
195 |
+
"grad_norm": 0.6528735853321923,
|
196 |
+
"learning_rate": 0.0001826934609456129,
|
197 |
+
"loss": 1.1763,
|
198 |
+
"step": 27
|
199 |
+
},
|
200 |
+
{
|
201 |
+
"epoch": 0.224,
|
202 |
+
"grad_norm": 0.6219951075238257,
|
203 |
+
"learning_rate": 0.00018120582747708502,
|
204 |
+
"loss": 1.0637,
|
205 |
+
"step": 28
|
206 |
+
},
|
207 |
+
{
|
208 |
+
"epoch": 0.232,
|
209 |
+
"grad_norm": 0.7509932918198108,
|
210 |
+
"learning_rate": 0.0001796634556457236,
|
211 |
+
"loss": 1.1323,
|
212 |
+
"step": 29
|
213 |
+
},
|
214 |
+
{
|
215 |
+
"epoch": 0.24,
|
216 |
+
"grad_norm": 0.6626945316885953,
|
217 |
+
"learning_rate": 0.0001780673851171728,
|
218 |
+
"loss": 1.1007,
|
219 |
+
"step": 30
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 0.248,
|
223 |
+
"grad_norm": 0.7185209593516516,
|
224 |
+
"learning_rate": 0.00017641869175372493,
|
225 |
+
"loss": 1.2184,
|
226 |
+
"step": 31
|
227 |
+
},
|
228 |
+
{
|
229 |
+
"epoch": 0.256,
|
230 |
+
"grad_norm": 0.639961093110283,
|
231 |
+
"learning_rate": 0.00017471848688911464,
|
232 |
+
"loss": 1.1013,
|
233 |
+
"step": 32
|
234 |
+
},
|
235 |
+
{
|
236 |
+
"epoch": 0.264,
|
237 |
+
"grad_norm": 0.6093800026585015,
|
238 |
+
"learning_rate": 0.000172967916579403,
|
239 |
+
"loss": 1.0853,
|
240 |
+
"step": 33
|
241 |
+
},
|
242 |
+
{
|
243 |
+
"epoch": 0.272,
|
244 |
+
"grad_norm": 0.5977982267642971,
|
245 |
+
"learning_rate": 0.00017116816083045602,
|
246 |
+
"loss": 1.0534,
|
247 |
+
"step": 34
|
248 |
+
},
|
249 |
+
{
|
250 |
+
"epoch": 0.28,
|
251 |
+
"grad_norm": 0.6585541370699558,
|
252 |
+
"learning_rate": 0.0001693204328025389,
|
253 |
+
"loss": 1.1287,
|
254 |
+
"step": 35
|
255 |
+
},
|
256 |
+
{
|
257 |
+
"epoch": 0.288,
|
258 |
+
"grad_norm": 0.6562897452410896,
|
259 |
+
"learning_rate": 0.00016742597799256182,
|
260 |
+
"loss": 1.1724,
|
261 |
+
"step": 36
|
262 |
+
},
|
263 |
+
{
|
264 |
+
"epoch": 0.296,
|
265 |
+
"grad_norm": 0.6419065162769554,
|
266 |
+
"learning_rate": 0.00016548607339452853,
|
267 |
+
"loss": 1.142,
|
268 |
+
"step": 37
|
269 |
+
},
|
270 |
+
{
|
271 |
+
"epoch": 0.304,
|
272 |
+
"grad_norm": 0.6683261695427306,
|
273 |
+
"learning_rate": 0.00016350202663875386,
|
274 |
+
"loss": 1.1943,
|
275 |
+
"step": 38
|
276 |
+
},
|
277 |
+
{
|
278 |
+
"epoch": 0.312,
|
279 |
+
"grad_norm": 0.6037906950042923,
|
280 |
+
"learning_rate": 0.0001614751751104301,
|
281 |
+
"loss": 1.2452,
|
282 |
+
"step": 39
|
283 |
+
},
|
284 |
+
{
|
285 |
+
"epoch": 0.32,
|
286 |
+
"grad_norm": 0.6722143393952856,
|
287 |
+
"learning_rate": 0.00015940688504813662,
|
288 |
+
"loss": 1.1435,
|
289 |
+
"step": 40
|
290 |
+
},
|
291 |
+
{
|
292 |
+
"epoch": 0.328,
|
293 |
+
"grad_norm": 0.5849511558342113,
|
294 |
+
"learning_rate": 0.00015729855062290022,
|
295 |
+
"loss": 1.1326,
|
296 |
+
"step": 41
|
297 |
+
},
|
298 |
+
{
|
299 |
+
"epoch": 0.336,
|
300 |
+
"grad_norm": 0.6496843215077648,
|
301 |
+
"learning_rate": 0.00015515159299842707,
|
302 |
+
"loss": 1.0871,
|
303 |
+
"step": 42
|
304 |
+
},
|
305 |
+
{
|
306 |
+
"epoch": 0.344,
|
307 |
+
"grad_norm": 0.622273267698997,
|
308 |
+
"learning_rate": 0.00015296745937313987,
|
309 |
+
"loss": 1.1245,
|
310 |
+
"step": 43
|
311 |
+
},
|
312 |
+
{
|
313 |
+
"epoch": 0.352,
|
314 |
+
"grad_norm": 0.6248801200159152,
|
315 |
+
"learning_rate": 0.00015074762200466556,
|
316 |
+
"loss": 1.0756,
|
317 |
+
"step": 44
|
318 |
+
},
|
319 |
+
{
|
320 |
+
"epoch": 0.36,
|
321 |
+
"grad_norm": 0.6350409040736777,
|
322 |
+
"learning_rate": 0.00014849357721743168,
|
323 |
+
"loss": 1.1282,
|
324 |
+
"step": 45
|
325 |
+
},
|
326 |
+
{
|
327 |
+
"epoch": 0.368,
|
328 |
+
"grad_norm": 0.6573934364037886,
|
329 |
+
"learning_rate": 0.00014620684439403962,
|
330 |
+
"loss": 1.2089,
|
331 |
+
"step": 46
|
332 |
+
},
|
333 |
+
{
|
334 |
+
"epoch": 0.376,
|
335 |
+
"grad_norm": 0.6322079151415101,
|
336 |
+
"learning_rate": 0.0001438889649510956,
|
337 |
+
"loss": 1.1702,
|
338 |
+
"step": 47
|
339 |
+
},
|
340 |
+
{
|
341 |
+
"epoch": 0.384,
|
342 |
+
"grad_norm": 0.5931281923571887,
|
343 |
+
"learning_rate": 0.00014154150130018866,
|
344 |
+
"loss": 1.1344,
|
345 |
+
"step": 48
|
346 |
+
},
|
347 |
+
{
|
348 |
+
"epoch": 0.392,
|
349 |
+
"grad_norm": 0.679086044926115,
|
350 |
+
"learning_rate": 0.00013916603579471705,
|
351 |
+
"loss": 1.0855,
|
352 |
+
"step": 49
|
353 |
+
},
|
354 |
+
{
|
355 |
+
"epoch": 0.4,
|
356 |
+
"grad_norm": 0.6250561524286053,
|
357 |
+
"learning_rate": 0.000136764169663272,
|
358 |
+
"loss": 1.1218,
|
359 |
+
"step": 50
|
360 |
+
},
|
361 |
+
{
|
362 |
+
"epoch": 0.408,
|
363 |
+
"grad_norm": 0.5455053641893781,
|
364 |
+
"learning_rate": 0.00013433752193029886,
|
365 |
+
"loss": 1.069,
|
366 |
+
"step": 51
|
367 |
+
},
|
368 |
+
{
|
369 |
+
"epoch": 0.416,
|
370 |
+
"grad_norm": 0.6315994964575306,
|
371 |
+
"learning_rate": 0.00013188772832476188,
|
372 |
+
"loss": 1.1472,
|
373 |
+
"step": 52
|
374 |
+
},
|
375 |
+
{
|
376 |
+
"epoch": 0.424,
|
377 |
+
"grad_norm": 0.6058785708917978,
|
378 |
+
"learning_rate": 0.00012941644017754964,
|
379 |
+
"loss": 1.0467,
|
380 |
+
"step": 53
|
381 |
+
},
|
382 |
+
{
|
383 |
+
"epoch": 0.432,
|
384 |
+
"grad_norm": 0.6163207183209253,
|
385 |
+
"learning_rate": 0.00012692532330836346,
|
386 |
+
"loss": 1.0946,
|
387 |
+
"step": 54
|
388 |
+
},
|
389 |
+
{
|
390 |
+
"epoch": 0.44,
|
391 |
+
"grad_norm": 0.6262642109854599,
|
392 |
+
"learning_rate": 0.00012441605690283915,
|
393 |
+
"loss": 1.1487,
|
394 |
+
"step": 55
|
395 |
+
},
|
396 |
+
{
|
397 |
+
"epoch": 0.448,
|
398 |
+
"grad_norm": 0.6959618230470047,
|
399 |
+
"learning_rate": 0.0001218903323806595,
|
400 |
+
"loss": 1.1448,
|
401 |
+
"step": 56
|
402 |
+
},
|
403 |
+
{
|
404 |
+
"epoch": 0.456,
|
405 |
+
"grad_norm": 0.5894157323220334,
|
406 |
+
"learning_rate": 0.00011934985225541998,
|
407 |
+
"loss": 1.0709,
|
408 |
+
"step": 57
|
409 |
+
},
|
410 |
+
{
|
411 |
+
"epoch": 0.464,
|
412 |
+
"grad_norm": 0.7981960617785065,
|
413 |
+
"learning_rate": 0.00011679632898701649,
|
414 |
+
"loss": 1.1515,
|
415 |
+
"step": 58
|
416 |
+
},
|
417 |
+
{
|
418 |
+
"epoch": 0.472,
|
419 |
+
"grad_norm": 0.5765858891790445,
|
420 |
+
"learning_rate": 0.00011423148382732853,
|
421 |
+
"loss": 1.0964,
|
422 |
+
"step": 59
|
423 |
+
},
|
424 |
+
{
|
425 |
+
"epoch": 0.48,
|
426 |
+
"grad_norm": 0.6046649871496205,
|
427 |
+
"learning_rate": 0.00011165704565997593,
|
428 |
+
"loss": 1.1076,
|
429 |
+
"step": 60
|
430 |
+
},
|
431 |
+
{
|
432 |
+
"epoch": 0.488,
|
433 |
+
"grad_norm": 0.5638841047377291,
|
434 |
+
"learning_rate": 0.00010907474983493144,
|
435 |
+
"loss": 1.1158,
|
436 |
+
"step": 61
|
437 |
+
},
|
438 |
+
{
|
439 |
+
"epoch": 0.496,
|
440 |
+
"grad_norm": 0.6248619311895685,
|
441 |
+
"learning_rate": 0.0001064863369987743,
|
442 |
+
"loss": 1.158,
|
443 |
+
"step": 62
|
444 |
+
},
|
445 |
+
{
|
446 |
+
"epoch": 0.504,
|
447 |
+
"grad_norm": 0.6194657217776681,
|
448 |
+
"learning_rate": 0.00010389355192137377,
|
449 |
+
"loss": 1.1525,
|
450 |
+
"step": 63
|
451 |
+
},
|
452 |
+
{
|
453 |
+
"epoch": 0.512,
|
454 |
+
"grad_norm": 0.6067740187850118,
|
455 |
+
"learning_rate": 0.0001012981423197931,
|
456 |
+
"loss": 1.0888,
|
457 |
+
"step": 64
|
458 |
+
},
|
459 |
+
{
|
460 |
+
"epoch": 0.52,
|
461 |
+
"grad_norm": 0.5867746714643287,
|
462 |
+
"learning_rate": 9.870185768020693e-05,
|
463 |
+
"loss": 1.2144,
|
464 |
+
"step": 65
|
465 |
+
},
|
466 |
+
{
|
467 |
+
"epoch": 0.528,
|
468 |
+
"grad_norm": 0.6162475621164234,
|
469 |
+
"learning_rate": 9.610644807862625e-05,
|
470 |
+
"loss": 1.187,
|
471 |
+
"step": 66
|
472 |
+
},
|
473 |
+
{
|
474 |
+
"epoch": 0.536,
|
475 |
+
"grad_norm": 0.5816260885153179,
|
476 |
+
"learning_rate": 9.35136630012257e-05,
|
477 |
+
"loss": 1.1378,
|
478 |
+
"step": 67
|
479 |
+
},
|
480 |
+
{
|
481 |
+
"epoch": 0.544,
|
482 |
+
"grad_norm": 0.6092121742013019,
|
483 |
+
"learning_rate": 9.092525016506858e-05,
|
484 |
+
"loss": 1.0935,
|
485 |
+
"step": 68
|
486 |
+
},
|
487 |
+
{
|
488 |
+
"epoch": 0.552,
|
489 |
+
"grad_norm": 0.6129047955044695,
|
490 |
+
"learning_rate": 8.83429543400241e-05,
|
491 |
+
"loss": 1.0815,
|
492 |
+
"step": 69
|
493 |
+
},
|
494 |
+
{
|
495 |
+
"epoch": 0.56,
|
496 |
+
"grad_norm": 0.5748567355209082,
|
497 |
+
"learning_rate": 8.57685161726715e-05,
|
498 |
+
"loss": 1.1137,
|
499 |
+
"step": 70
|
500 |
+
},
|
501 |
+
{
|
502 |
+
"epoch": 0.568,
|
503 |
+
"grad_norm": 0.5699053032110166,
|
504 |
+
"learning_rate": 8.320367101298351e-05,
|
505 |
+
"loss": 1.125,
|
506 |
+
"step": 71
|
507 |
+
},
|
508 |
+
{
|
509 |
+
"epoch": 0.576,
|
510 |
+
"grad_norm": 0.5943499018117111,
|
511 |
+
"learning_rate": 8.065014774458003e-05,
|
512 |
+
"loss": 1.1111,
|
513 |
+
"step": 72
|
514 |
+
},
|
515 |
+
{
|
516 |
+
"epoch": 0.584,
|
517 |
+
"grad_norm": 0.5697756101544271,
|
518 |
+
"learning_rate": 7.810966761934053e-05,
|
519 |
+
"loss": 1.0353,
|
520 |
+
"step": 73
|
521 |
+
},
|
522 |
+
{
|
523 |
+
"epoch": 0.592,
|
524 |
+
"grad_norm": 0.5987366993178018,
|
525 |
+
"learning_rate": 7.558394309716088e-05,
|
526 |
+
"loss": 1.1787,
|
527 |
+
"step": 74
|
528 |
+
},
|
529 |
+
{
|
530 |
+
"epoch": 0.6,
|
531 |
+
"grad_norm": 0.599965475322347,
|
532 |
+
"learning_rate": 7.307467669163655e-05,
|
533 |
+
"loss": 1.0606,
|
534 |
+
"step": 75
|
535 |
+
},
|
536 |
+
{
|
537 |
+
"epoch": 0.608,
|
538 |
+
"grad_norm": 0.6231622935530702,
|
539 |
+
"learning_rate": 7.058355982245037e-05,
|
540 |
+
"loss": 1.1237,
|
541 |
+
"step": 76
|
542 |
+
},
|
543 |
+
{
|
544 |
+
"epoch": 0.616,
|
545 |
+
"grad_norm": 0.5778865258296028,
|
546 |
+
"learning_rate": 6.811227167523815e-05,
|
547 |
+
"loss": 1.07,
|
548 |
+
"step": 77
|
549 |
+
},
|
550 |
+
{
|
551 |
+
"epoch": 0.624,
|
552 |
+
"grad_norm": 0.9006399353206177,
|
553 |
+
"learning_rate": 6.566247806970119e-05,
|
554 |
+
"loss": 1.0794,
|
555 |
+
"step": 78
|
556 |
+
},
|
557 |
+
{
|
558 |
+
"epoch": 0.632,
|
559 |
+
"grad_norm": 0.6080347772853175,
|
560 |
+
"learning_rate": 6.323583033672799e-05,
|
561 |
+
"loss": 1.1286,
|
562 |
+
"step": 79
|
563 |
+
},
|
564 |
+
{
|
565 |
+
"epoch": 0.64,
|
566 |
+
"grad_norm": 0.6215600441401722,
|
567 |
+
"learning_rate": 6.083396420528298e-05,
|
568 |
+
"loss": 1.0333,
|
569 |
+
"step": 80
|
570 |
+
},
|
571 |
+
{
|
572 |
+
"epoch": 0.648,
|
573 |
+
"grad_norm": 0.5532899039833619,
|
574 |
+
"learning_rate": 5.845849869981137e-05,
|
575 |
+
"loss": 1.1528,
|
576 |
+
"step": 81
|
577 |
+
},
|
578 |
+
{
|
579 |
+
"epoch": 0.656,
|
580 |
+
"grad_norm": 0.5702002946777001,
|
581 |
+
"learning_rate": 5.611103504890444e-05,
|
582 |
+
"loss": 1.1547,
|
583 |
+
"step": 82
|
584 |
+
},
|
585 |
+
{
|
586 |
+
"epoch": 0.664,
|
587 |
+
"grad_norm": 0.6414308810709265,
|
588 |
+
"learning_rate": 5.379315560596038e-05,
|
589 |
+
"loss": 1.176,
|
590 |
+
"step": 83
|
591 |
+
},
|
592 |
+
{
|
593 |
+
"epoch": 0.672,
|
594 |
+
"grad_norm": 0.6023323139281526,
|
595 |
+
"learning_rate": 5.1506422782568345e-05,
|
596 |
+
"loss": 1.1687,
|
597 |
+
"step": 84
|
598 |
+
},
|
599 |
+
{
|
600 |
+
"epoch": 0.68,
|
601 |
+
"grad_norm": 0.5892600207157096,
|
602 |
+
"learning_rate": 4.9252377995334444e-05,
|
603 |
+
"loss": 1.0763,
|
604 |
+
"step": 85
|
605 |
+
},
|
606 |
+
{
|
607 |
+
"epoch": 0.688,
|
608 |
+
"grad_norm": 0.5339341330615615,
|
609 |
+
"learning_rate": 4.703254062686017e-05,
|
610 |
+
"loss": 1.0444,
|
611 |
+
"step": 86
|
612 |
+
},
|
613 |
+
{
|
614 |
+
"epoch": 0.696,
|
615 |
+
"grad_norm": 0.6279565355094363,
|
616 |
+
"learning_rate": 4.484840700157295e-05,
|
617 |
+
"loss": 1.0997,
|
618 |
+
"step": 87
|
619 |
+
},
|
620 |
+
{
|
621 |
+
"epoch": 0.704,
|
622 |
+
"grad_norm": 0.6104692154812912,
|
623 |
+
"learning_rate": 4.270144937709981e-05,
|
624 |
+
"loss": 1.1856,
|
625 |
+
"step": 88
|
626 |
+
},
|
627 |
+
{
|
628 |
+
"epoch": 0.712,
|
629 |
+
"grad_norm": 0.6114748193401518,
|
630 |
+
"learning_rate": 4.059311495186338e-05,
|
631 |
+
"loss": 1.1813,
|
632 |
+
"step": 89
|
633 |
+
},
|
634 |
+
{
|
635 |
+
"epoch": 0.72,
|
636 |
+
"grad_norm": 0.5517958084848442,
|
637 |
+
"learning_rate": 3.852482488956992e-05,
|
638 |
+
"loss": 1.0973,
|
639 |
+
"step": 90
|
640 |
+
},
|
641 |
+
{
|
642 |
+
"epoch": 0.728,
|
643 |
+
"grad_norm": 0.5616033058541691,
|
644 |
+
"learning_rate": 3.649797336124615e-05,
|
645 |
+
"loss": 1.1052,
|
646 |
+
"step": 91
|
647 |
+
},
|
648 |
+
{
|
649 |
+
"epoch": 0.736,
|
650 |
+
"grad_norm": 0.5734895525736495,
|
651 |
+
"learning_rate": 3.45139266054715e-05,
|
652 |
+
"loss": 1.1017,
|
653 |
+
"step": 92
|
654 |
+
},
|
655 |
+
{
|
656 |
+
"epoch": 0.744,
|
657 |
+
"grad_norm": 0.5849100376601271,
|
658 |
+
"learning_rate": 3.257402200743821e-05,
|
659 |
+
"loss": 1.0507,
|
660 |
+
"step": 93
|
661 |
+
},
|
662 |
+
{
|
663 |
+
"epoch": 0.752,
|
664 |
+
"grad_norm": 0.5625815255394412,
|
665 |
+
"learning_rate": 3.0679567197461134e-05,
|
666 |
+
"loss": 1.1098,
|
667 |
+
"step": 94
|
668 |
+
},
|
669 |
+
{
|
670 |
+
"epoch": 0.76,
|
671 |
+
"grad_norm": 0.6367740796942681,
|
672 |
+
"learning_rate": 2.8831839169543996e-05,
|
673 |
+
"loss": 1.1416,
|
674 |
+
"step": 95
|
675 |
+
},
|
676 |
+
{
|
677 |
+
"epoch": 0.768,
|
678 |
+
"grad_norm": 0.5795379896457181,
|
679 |
+
"learning_rate": 2.7032083420597e-05,
|
680 |
+
"loss": 1.1132,
|
681 |
+
"step": 96
|
682 |
+
},
|
683 |
+
{
|
684 |
+
"epoch": 0.776,
|
685 |
+
"grad_norm": 0.6143227738602632,
|
686 |
+
"learning_rate": 2.528151311088537e-05,
|
687 |
+
"loss": 1.0109,
|
688 |
+
"step": 97
|
689 |
+
},
|
690 |
+
{
|
691 |
+
"epoch": 0.784,
|
692 |
+
"grad_norm": 0.6361204646970395,
|
693 |
+
"learning_rate": 2.3581308246275103e-05,
|
694 |
+
"loss": 1.0794,
|
695 |
+
"step": 98
|
696 |
+
},
|
697 |
+
{
|
698 |
+
"epoch": 0.792,
|
699 |
+
"grad_norm": 0.5930462513939105,
|
700 |
+
"learning_rate": 2.1932614882827197e-05,
|
701 |
+
"loss": 1.1248,
|
702 |
+
"step": 99
|
703 |
+
},
|
704 |
+
{
|
705 |
+
"epoch": 0.8,
|
706 |
+
"grad_norm": 0.5733572454846041,
|
707 |
+
"learning_rate": 2.03365443542764e-05,
|
708 |
+
"loss": 1.1523,
|
709 |
+
"step": 100
|
710 |
+
},
|
711 |
+
{
|
712 |
+
"epoch": 0.808,
|
713 |
+
"grad_norm": 0.6495463046060299,
|
714 |
+
"learning_rate": 1.879417252291502e-05,
|
715 |
+
"loss": 1.0592,
|
716 |
+
"step": 101
|
717 |
+
},
|
718 |
+
{
|
719 |
+
"epoch": 0.816,
|
720 |
+
"grad_norm": 0.5553303058115924,
|
721 |
+
"learning_rate": 1.730653905438714e-05,
|
722 |
+
"loss": 1.0753,
|
723 |
+
"step": 102
|
724 |
+
},
|
725 |
+
{
|
726 |
+
"epoch": 0.824,
|
727 |
+
"grad_norm": 0.5828567133941143,
|
728 |
+
"learning_rate": 1.587464671688187e-05,
|
729 |
+
"loss": 1.1418,
|
730 |
+
"step": 103
|
731 |
+
},
|
732 |
+
{
|
733 |
+
"epoch": 0.832,
|
734 |
+
"grad_norm": 0.5731686378110846,
|
735 |
+
"learning_rate": 1.4499460705197998e-05,
|
736 |
+
"loss": 1.1059,
|
737 |
+
"step": 104
|
738 |
+
},
|
739 |
+
{
|
740 |
+
"epoch": 0.84,
|
741 |
+
"grad_norm": 0.5654646756423977,
|
742 |
+
"learning_rate": 1.3181907990135622e-05,
|
743 |
+
"loss": 1.1122,
|
744 |
+
"step": 105
|
745 |
+
},
|
746 |
+
{
|
747 |
+
"epoch": 0.848,
|
748 |
+
"grad_norm": 0.6216056944469172,
|
749 |
+
"learning_rate": 1.1922876693653585e-05,
|
750 |
+
"loss": 1.0539,
|
751 |
+
"step": 106
|
752 |
+
},
|
753 |
+
{
|
754 |
+
"epoch": 0.856,
|
755 |
+
"grad_norm": 0.6030188752416026,
|
756 |
+
"learning_rate": 1.0723215490213634e-05,
|
757 |
+
"loss": 1.1155,
|
758 |
+
"step": 107
|
759 |
+
},
|
760 |
+
{
|
761 |
+
"epoch": 0.864,
|
762 |
+
"grad_norm": 0.6116320512749103,
|
763 |
+
"learning_rate": 9.583733034714981e-06,
|
764 |
+
"loss": 1.0367,
|
765 |
+
"step": 108
|
766 |
+
},
|
767 |
+
{
|
768 |
+
"epoch": 0.872,
|
769 |
+
"grad_norm": 0.6241071081816516,
|
770 |
+
"learning_rate": 8.505197417404687e-06,
|
771 |
+
"loss": 1.0317,
|
772 |
+
"step": 109
|
773 |
+
},
|
774 |
+
{
|
775 |
+
"epoch": 0.88,
|
776 |
+
"grad_norm": 0.6014326320967628,
|
777 |
+
"learning_rate": 7.488335646131628e-06,
|
778 |
+
"loss": 1.0507,
|
779 |
+
"step": 110
|
780 |
+
},
|
781 |
+
{
|
782 |
+
"epoch": 0.888,
|
783 |
+
"grad_norm": 0.6058356600728491,
|
784 |
+
"learning_rate": 6.533833156292679e-06,
|
785 |
+
"loss": 1.0841,
|
786 |
+
"step": 111
|
787 |
+
},
|
788 |
+
{
|
789 |
+
"epoch": 0.896,
|
790 |
+
"grad_norm": 0.6327026531424363,
|
791 |
+
"learning_rate": 5.6423333488018095e-06,
|
792 |
+
"loss": 1.1028,
|
793 |
+
"step": 112
|
794 |
+
},
|
795 |
+
{
|
796 |
+
"epoch": 0.904,
|
797 |
+
"grad_norm": 0.5560188144128159,
|
798 |
+
"learning_rate": 4.8144371563930476e-06,
|
799 |
+
"loss": 1.0278,
|
800 |
+
"step": 113
|
801 |
+
},
|
802 |
+
{
|
803 |
+
"epoch": 0.912,
|
804 |
+
"grad_norm": 0.683157124015512,
|
805 |
+
"learning_rate": 4.050702638550275e-06,
|
806 |
+
"loss": 1.0732,
|
807 |
+
"step": 114
|
808 |
+
},
|
809 |
+
{
|
810 |
+
"epoch": 0.92,
|
811 |
+
"grad_norm": 0.5661517981730091,
|
812 |
+
"learning_rate": 3.3516446053363015e-06,
|
813 |
+
"loss": 1.0709,
|
814 |
+
"step": 115
|
815 |
+
},
|
816 |
+
{
|
817 |
+
"epoch": 0.928,
|
818 |
+
"grad_norm": 0.5465688334036988,
|
819 |
+
"learning_rate": 2.717734270375272e-06,
|
820 |
+
"loss": 1.0601,
|
821 |
+
"step": 116
|
822 |
+
},
|
823 |
+
{
|
824 |
+
"epoch": 0.936,
|
825 |
+
"grad_norm": 0.6549818213185664,
|
826 |
+
"learning_rate": 2.1493989332218468e-06,
|
827 |
+
"loss": 1.1295,
|
828 |
+
"step": 117
|
829 |
+
},
|
830 |
+
{
|
831 |
+
"epoch": 0.944,
|
832 |
+
"grad_norm": 0.6120862014550815,
|
833 |
+
"learning_rate": 1.6470216913317626e-06,
|
834 |
+
"loss": 1.0448,
|
835 |
+
"step": 118
|
836 |
+
},
|
837 |
+
{
|
838 |
+
"epoch": 0.952,
|
839 |
+
"grad_norm": 0.5638666360794156,
|
840 |
+
"learning_rate": 1.2109411818274852e-06,
|
841 |
+
"loss": 1.0509,
|
842 |
+
"step": 119
|
843 |
+
},
|
844 |
+
{
|
845 |
+
"epoch": 0.96,
|
846 |
+
"grad_norm": 0.6363582988990896,
|
847 |
+
"learning_rate": 8.41451353233369e-07,
|
848 |
+
"loss": 1.082,
|
849 |
+
"step": 120
|
850 |
+
},
|
851 |
+
{
|
852 |
+
"epoch": 0.968,
|
853 |
+
"grad_norm": 0.5875639830126131,
|
854 |
+
"learning_rate": 5.388012673338661e-07,
|
855 |
+
"loss": 1.1082,
|
856 |
+
"step": 121
|
857 |
+
},
|
858 |
+
{
|
859 |
+
"epoch": 0.976,
|
860 |
+
"grad_norm": 0.5494186467411913,
|
861 |
+
"learning_rate": 3.0319493128866396e-07,
|
862 |
+
"loss": 1.0868,
|
863 |
+
"step": 122
|
864 |
+
},
|
865 |
+
{
|
866 |
+
"epoch": 0.984,
|
867 |
+
"grad_norm": 0.64150816142503,
|
868 |
+
"learning_rate": 1.3479116011769767e-07,
|
869 |
+
"loss": 1.0792,
|
870 |
+
"step": 123
|
871 |
+
},
|
872 |
+
{
|
873 |
+
"epoch": 0.992,
|
874 |
+
"grad_norm": 0.6834676443584711,
|
875 |
+
"learning_rate": 3.370346964876036e-08,
|
876 |
+
"loss": 1.1639,
|
877 |
+
"step": 124
|
878 |
+
},
|
879 |
+
{
|
880 |
+
"epoch": 1.0,
|
881 |
+
"grad_norm": 0.5706584527747506,
|
882 |
+
"learning_rate": 0.0,
|
883 |
+
"loss": 1.0897,
|
884 |
+
"step": 125
|
885 |
+
},
|
886 |
+
{
|
887 |
+
"epoch": 1.0,
|
888 |
+
"step": 125,
|
889 |
+
"total_flos": 65356609552384.0,
|
890 |
+
"train_loss": 1.127972110748291,
|
891 |
+
"train_runtime": 1526.5357,
|
892 |
+
"train_samples_per_second": 1.31,
|
893 |
+
"train_steps_per_second": 0.082
|
894 |
+
}
|
895 |
+
],
|
896 |
+
"logging_steps": 1.0,
|
897 |
+
"max_steps": 125,
|
898 |
+
"num_input_tokens_seen": 0,
|
899 |
+
"num_train_epochs": 1,
|
900 |
+
"save_steps": 500,
|
901 |
+
"stateful_callbacks": {
|
902 |
+
"TrainerControl": {
|
903 |
+
"args": {
|
904 |
+
"should_epoch_stop": false,
|
905 |
+
"should_evaluate": false,
|
906 |
+
"should_log": false,
|
907 |
+
"should_save": false,
|
908 |
+
"should_training_stop": false
|
909 |
+
},
|
910 |
+
"attributes": {}
|
911 |
+
}
|
912 |
+
},
|
913 |
+
"total_flos": 65356609552384.0,
|
914 |
+
"train_batch_size": 8,
|
915 |
+
"trial_name": null,
|
916 |
+
"trial_params": null
|
917 |
+
}
|
single_dataset/gpt4o_conversations/VideoGameBunny_v1_1-Llama-3-8B-V-gpt4o_conversations_dataset_2000_epochs_2_lora/README.md
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: peft
|
3 |
+
base_model: ./weights/Bunny-v1_1-Llama-3-8B-V
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.11.1
|
single_dataset/gpt4o_conversations/VideoGameBunny_v1_1-Llama-3-8B-V-gpt4o_conversations_dataset_2000_epochs_2_lora/adapter_config.json
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "./weights/Bunny-v1_1-Llama-3-8B-V",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layer_replication": null,
|
10 |
+
"layers_pattern": null,
|
11 |
+
"layers_to_transform": null,
|
12 |
+
"loftq_config": {},
|
13 |
+
"lora_alpha": 256,
|
14 |
+
"lora_dropout": 0.1,
|
15 |
+
"megatron_config": null,
|
16 |
+
"megatron_core": "megatron.core",
|
17 |
+
"modules_to_save": null,
|
18 |
+
"peft_type": "LORA",
|
19 |
+
"r": 128,
|
20 |
+
"rank_pattern": {},
|
21 |
+
"revision": null,
|
22 |
+
"target_modules": [
|
23 |
+
"o_proj",
|
24 |
+
"down_proj",
|
25 |
+
"k_proj",
|
26 |
+
"gate_proj",
|
27 |
+
"q_proj",
|
28 |
+
"up_proj",
|
29 |
+
"v_proj"
|
30 |
+
],
|
31 |
+
"task_type": "CAUSAL_LM",
|
32 |
+
"use_dora": false,
|
33 |
+
"use_rslora": false
|
34 |
+
}
|
single_dataset/gpt4o_conversations/VideoGameBunny_v1_1-Llama-3-8B-V-gpt4o_conversations_dataset_2000_epochs_2_lora/adapter_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c30251737ad375f44282c19e038d1ce7a52bfcfb7c9c4e7799a2e069687d5784
|
3 |
+
size 671150064
|
single_dataset/gpt4o_conversations/VideoGameBunny_v1_1-Llama-3-8B-V-gpt4o_conversations_dataset_2000_epochs_2_lora/config.json
ADDED
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "./weights/Bunny-v1_1-Llama-3-8B-V",
|
3 |
+
"architectures": [
|
4 |
+
"BunnyLlamaForCausalLM"
|
5 |
+
],
|
6 |
+
"attention_bias": false,
|
7 |
+
"attention_dropout": 0.0,
|
8 |
+
"auto_map": {
|
9 |
+
"AutoConfig": "configuration_bunny_llama.BunnyLlamaConfig",
|
10 |
+
"AutoModelForCausalLM": "modeling_bunny_llama.BunnyLlamaForCausalLM"
|
11 |
+
},
|
12 |
+
"bos_token_id": 128000,
|
13 |
+
"continuous_training": false,
|
14 |
+
"eos_token_id": 128001,
|
15 |
+
"freeze_mm_mlp_adapter": false,
|
16 |
+
"hidden_act": "silu",
|
17 |
+
"hidden_size": 4096,
|
18 |
+
"image_aspect_ratio": "pad",
|
19 |
+
"initializer_range": 0.02,
|
20 |
+
"intermediate_size": 14336,
|
21 |
+
"max_position_embeddings": 8192,
|
22 |
+
"mm_hidden_size": 3456,
|
23 |
+
"mm_projector_lr": null,
|
24 |
+
"mm_projector_type": "mlp2x_gelu",
|
25 |
+
"mm_vision_tower": "./weights/siglip-so400m-patch14-384",
|
26 |
+
"model_type": "bunny-llama",
|
27 |
+
"num_attention_heads": 32,
|
28 |
+
"num_hidden_layers": 32,
|
29 |
+
"num_key_value_heads": 8,
|
30 |
+
"pretraining_tp": 1,
|
31 |
+
"rms_norm_eps": 1e-05,
|
32 |
+
"rope_scaling": null,
|
33 |
+
"rope_theta": 500000.0,
|
34 |
+
"tie_word_embeddings": false,
|
35 |
+
"tokenizer_model_max_length": 2048,
|
36 |
+
"tokenizer_padding_side": "right",
|
37 |
+
"torch_dtype": "float16",
|
38 |
+
"transformers_version": "4.41.2",
|
39 |
+
"tune_mm_mlp_adapter": false,
|
40 |
+
"unfreeze_vision_tower": true,
|
41 |
+
"use_cache": true,
|
42 |
+
"use_mm_proj": true,
|
43 |
+
"use_s2": true,
|
44 |
+
"vocab_size": 128256
|
45 |
+
}
|
single_dataset/gpt4o_conversations/VideoGameBunny_v1_1-Llama-3-8B-V-gpt4o_conversations_dataset_2000_epochs_2_lora/non_lora_trainables.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e626b7ff4f509eb7086f12ddce72968709b200a65e1ae2f8112e00a05200d71e
|
3 |
+
size 918507402
|
single_dataset/gpt4o_conversations/VideoGameBunny_v1_1-Llama-3-8B-V-gpt4o_conversations_dataset_2000_epochs_2_lora/trainer_state.json
ADDED
@@ -0,0 +1,1792 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 2.0,
|
5 |
+
"eval_steps": 500,
|
6 |
+
"global_step": 250,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.008,
|
13 |
+
"grad_norm": 1.0906556698514653,
|
14 |
+
"learning_rate": 2.5e-05,
|
15 |
+
"loss": 1.4204,
|
16 |
+
"step": 1
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.016,
|
20 |
+
"grad_norm": 0.9857349066149346,
|
21 |
+
"learning_rate": 5e-05,
|
22 |
+
"loss": 1.2175,
|
23 |
+
"step": 2
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"epoch": 0.024,
|
27 |
+
"grad_norm": 0.8615599929924261,
|
28 |
+
"learning_rate": 7.500000000000001e-05,
|
29 |
+
"loss": 1.3035,
|
30 |
+
"step": 3
|
31 |
+
},
|
32 |
+
{
|
33 |
+
"epoch": 0.032,
|
34 |
+
"grad_norm": 0.7690914837028592,
|
35 |
+
"learning_rate": 0.0001,
|
36 |
+
"loss": 1.2571,
|
37 |
+
"step": 4
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"epoch": 0.04,
|
41 |
+
"grad_norm": 1.0401337718522603,
|
42 |
+
"learning_rate": 0.000125,
|
43 |
+
"loss": 1.2383,
|
44 |
+
"step": 5
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"epoch": 0.048,
|
48 |
+
"grad_norm": 0.9277157219721284,
|
49 |
+
"learning_rate": 0.00015000000000000001,
|
50 |
+
"loss": 1.253,
|
51 |
+
"step": 6
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"epoch": 0.056,
|
55 |
+
"grad_norm": 0.7611097693761704,
|
56 |
+
"learning_rate": 0.000175,
|
57 |
+
"loss": 1.2298,
|
58 |
+
"step": 7
|
59 |
+
},
|
60 |
+
{
|
61 |
+
"epoch": 0.064,
|
62 |
+
"grad_norm": 0.7467727205084197,
|
63 |
+
"learning_rate": 0.0002,
|
64 |
+
"loss": 1.2594,
|
65 |
+
"step": 8
|
66 |
+
},
|
67 |
+
{
|
68 |
+
"epoch": 0.072,
|
69 |
+
"grad_norm": 0.6443610988856757,
|
70 |
+
"learning_rate": 0.0001999915737775817,
|
71 |
+
"loss": 1.2015,
|
72 |
+
"step": 9
|
73 |
+
},
|
74 |
+
{
|
75 |
+
"epoch": 0.08,
|
76 |
+
"grad_norm": 0.7890743435032062,
|
77 |
+
"learning_rate": 0.00019996629653035126,
|
78 |
+
"loss": 1.1815,
|
79 |
+
"step": 10
|
80 |
+
},
|
81 |
+
{
|
82 |
+
"epoch": 0.088,
|
83 |
+
"grad_norm": 0.7765333577639731,
|
84 |
+
"learning_rate": 0.00019992417251814282,
|
85 |
+
"loss": 1.1301,
|
86 |
+
"step": 11
|
87 |
+
},
|
88 |
+
{
|
89 |
+
"epoch": 0.096,
|
90 |
+
"grad_norm": 0.7965071182224438,
|
91 |
+
"learning_rate": 0.00019986520883988232,
|
92 |
+
"loss": 1.1537,
|
93 |
+
"step": 12
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"epoch": 0.104,
|
97 |
+
"grad_norm": 0.7348769990385856,
|
98 |
+
"learning_rate": 0.0001997894154323911,
|
99 |
+
"loss": 1.1746,
|
100 |
+
"step": 13
|
101 |
+
},
|
102 |
+
{
|
103 |
+
"epoch": 0.112,
|
104 |
+
"grad_norm": 0.7643746584209018,
|
105 |
+
"learning_rate": 0.00019969680506871137,
|
106 |
+
"loss": 1.2597,
|
107 |
+
"step": 14
|
108 |
+
},
|
109 |
+
{
|
110 |
+
"epoch": 0.12,
|
111 |
+
"grad_norm": 0.8509186289214853,
|
112 |
+
"learning_rate": 0.0001995873933559535,
|
113 |
+
"loss": 1.0828,
|
114 |
+
"step": 15
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 0.128,
|
118 |
+
"grad_norm": 0.6590660613580283,
|
119 |
+
"learning_rate": 0.00019946119873266613,
|
120 |
+
"loss": 1.1688,
|
121 |
+
"step": 16
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"epoch": 0.136,
|
125 |
+
"grad_norm": 0.6908530470091816,
|
126 |
+
"learning_rate": 0.0001993182424657285,
|
127 |
+
"loss": 1.0842,
|
128 |
+
"step": 17
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"epoch": 0.144,
|
132 |
+
"grad_norm": 0.777278529092561,
|
133 |
+
"learning_rate": 0.00019915854864676664,
|
134 |
+
"loss": 1.2296,
|
135 |
+
"step": 18
|
136 |
+
},
|
137 |
+
{
|
138 |
+
"epoch": 0.152,
|
139 |
+
"grad_norm": 0.6297881039801307,
|
140 |
+
"learning_rate": 0.0001989821441880933,
|
141 |
+
"loss": 1.1193,
|
142 |
+
"step": 19
|
143 |
+
},
|
144 |
+
{
|
145 |
+
"epoch": 0.16,
|
146 |
+
"grad_norm": 0.646049560969531,
|
147 |
+
"learning_rate": 0.00019878905881817252,
|
148 |
+
"loss": 1.1809,
|
149 |
+
"step": 20
|
150 |
+
},
|
151 |
+
{
|
152 |
+
"epoch": 0.168,
|
153 |
+
"grad_norm": 0.70453563966353,
|
154 |
+
"learning_rate": 0.0001985793250766098,
|
155 |
+
"loss": 1.2028,
|
156 |
+
"step": 21
|
157 |
+
},
|
158 |
+
{
|
159 |
+
"epoch": 0.176,
|
160 |
+
"grad_norm": 0.6216762423800736,
|
161 |
+
"learning_rate": 0.00019835297830866826,
|
162 |
+
"loss": 1.1419,
|
163 |
+
"step": 22
|
164 |
+
},
|
165 |
+
{
|
166 |
+
"epoch": 0.184,
|
167 |
+
"grad_norm": 0.6748615041776291,
|
168 |
+
"learning_rate": 0.00019811005665931205,
|
169 |
+
"loss": 1.1702,
|
170 |
+
"step": 23
|
171 |
+
},
|
172 |
+
{
|
173 |
+
"epoch": 0.192,
|
174 |
+
"grad_norm": 0.6462797823043912,
|
175 |
+
"learning_rate": 0.00019785060106677818,
|
176 |
+
"loss": 1.1681,
|
177 |
+
"step": 24
|
178 |
+
},
|
179 |
+
{
|
180 |
+
"epoch": 0.2,
|
181 |
+
"grad_norm": 0.6639668928998315,
|
182 |
+
"learning_rate": 0.0001975746552556772,
|
183 |
+
"loss": 1.1807,
|
184 |
+
"step": 25
|
185 |
+
},
|
186 |
+
{
|
187 |
+
"epoch": 0.208,
|
188 |
+
"grad_norm": 0.6201202500087949,
|
189 |
+
"learning_rate": 0.00019728226572962473,
|
190 |
+
"loss": 1.0909,
|
191 |
+
"step": 26
|
192 |
+
},
|
193 |
+
{
|
194 |
+
"epoch": 0.216,
|
195 |
+
"grad_norm": 0.6179247844982341,
|
196 |
+
"learning_rate": 0.0001969734817634044,
|
197 |
+
"loss": 1.1761,
|
198 |
+
"step": 27
|
199 |
+
},
|
200 |
+
{
|
201 |
+
"epoch": 0.224,
|
202 |
+
"grad_norm": 0.6490118886653817,
|
203 |
+
"learning_rate": 0.0001966483553946637,
|
204 |
+
"loss": 1.0643,
|
205 |
+
"step": 28
|
206 |
+
},
|
207 |
+
{
|
208 |
+
"epoch": 0.232,
|
209 |
+
"grad_norm": 0.6590708173604165,
|
210 |
+
"learning_rate": 0.00019630694141514464,
|
211 |
+
"loss": 1.1333,
|
212 |
+
"step": 29
|
213 |
+
},
|
214 |
+
{
|
215 |
+
"epoch": 0.24,
|
216 |
+
"grad_norm": 0.6815264154798509,
|
217 |
+
"learning_rate": 0.00019594929736144976,
|
218 |
+
"loss": 1.1031,
|
219 |
+
"step": 30
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 0.248,
|
223 |
+
"grad_norm": 0.7390307701064562,
|
224 |
+
"learning_rate": 0.0001955754835053459,
|
225 |
+
"loss": 1.2164,
|
226 |
+
"step": 31
|
227 |
+
},
|
228 |
+
{
|
229 |
+
"epoch": 0.256,
|
230 |
+
"grad_norm": 0.6598152894051182,
|
231 |
+
"learning_rate": 0.00019518556284360696,
|
232 |
+
"loss": 1.1077,
|
233 |
+
"step": 32
|
234 |
+
},
|
235 |
+
{
|
236 |
+
"epoch": 0.264,
|
237 |
+
"grad_norm": 0.6217047883076768,
|
238 |
+
"learning_rate": 0.0001947796010873974,
|
239 |
+
"loss": 1.0874,
|
240 |
+
"step": 33
|
241 |
+
},
|
242 |
+
{
|
243 |
+
"epoch": 0.272,
|
244 |
+
"grad_norm": 0.6260867883739055,
|
245 |
+
"learning_rate": 0.0001943576666511982,
|
246 |
+
"loss": 1.0549,
|
247 |
+
"step": 34
|
248 |
+
},
|
249 |
+
{
|
250 |
+
"epoch": 0.28,
|
251 |
+
"grad_norm": 0.6505612935212982,
|
252 |
+
"learning_rate": 0.0001939198306412775,
|
253 |
+
"loss": 1.1254,
|
254 |
+
"step": 35
|
255 |
+
},
|
256 |
+
{
|
257 |
+
"epoch": 0.288,
|
258 |
+
"grad_norm": 0.6638582395118996,
|
259 |
+
"learning_rate": 0.0001934661668437073,
|
260 |
+
"loss": 1.1729,
|
261 |
+
"step": 36
|
262 |
+
},
|
263 |
+
{
|
264 |
+
"epoch": 0.296,
|
265 |
+
"grad_norm": 0.6760355472513383,
|
266 |
+
"learning_rate": 0.0001929967517119289,
|
267 |
+
"loss": 1.1392,
|
268 |
+
"step": 37
|
269 |
+
},
|
270 |
+
{
|
271 |
+
"epoch": 0.304,
|
272 |
+
"grad_norm": 0.689419394536968,
|
273 |
+
"learning_rate": 0.0001925116643538684,
|
274 |
+
"loss": 1.1996,
|
275 |
+
"step": 38
|
276 |
+
},
|
277 |
+
{
|
278 |
+
"epoch": 0.312,
|
279 |
+
"grad_norm": 0.643046392793243,
|
280 |
+
"learning_rate": 0.0001920109865186052,
|
281 |
+
"loss": 1.2519,
|
282 |
+
"step": 39
|
283 |
+
},
|
284 |
+
{
|
285 |
+
"epoch": 0.32,
|
286 |
+
"grad_norm": 0.6737071109245297,
|
287 |
+
"learning_rate": 0.00019149480258259533,
|
288 |
+
"loss": 1.1533,
|
289 |
+
"step": 40
|
290 |
+
},
|
291 |
+
{
|
292 |
+
"epoch": 0.328,
|
293 |
+
"grad_norm": 0.6041984234865607,
|
294 |
+
"learning_rate": 0.00019096319953545185,
|
295 |
+
"loss": 1.1374,
|
296 |
+
"step": 41
|
297 |
+
},
|
298 |
+
{
|
299 |
+
"epoch": 0.336,
|
300 |
+
"grad_norm": 0.6340061670489825,
|
301 |
+
"learning_rate": 0.00019041626696528503,
|
302 |
+
"loss": 1.0871,
|
303 |
+
"step": 42
|
304 |
+
},
|
305 |
+
{
|
306 |
+
"epoch": 0.344,
|
307 |
+
"grad_norm": 0.6792970281555901,
|
308 |
+
"learning_rate": 0.00018985409704360456,
|
309 |
+
"loss": 1.138,
|
310 |
+
"step": 43
|
311 |
+
},
|
312 |
+
{
|
313 |
+
"epoch": 0.352,
|
314 |
+
"grad_norm": 0.6675168072446115,
|
315 |
+
"learning_rate": 0.0001892767845097864,
|
316 |
+
"loss": 1.0906,
|
317 |
+
"step": 44
|
318 |
+
},
|
319 |
+
{
|
320 |
+
"epoch": 0.36,
|
321 |
+
"grad_norm": 0.6459838379601136,
|
322 |
+
"learning_rate": 0.00018868442665510678,
|
323 |
+
"loss": 1.1354,
|
324 |
+
"step": 45
|
325 |
+
},
|
326 |
+
{
|
327 |
+
"epoch": 0.368,
|
328 |
+
"grad_norm": 0.6654945017142322,
|
329 |
+
"learning_rate": 0.00018807712330634642,
|
330 |
+
"loss": 1.2151,
|
331 |
+
"step": 46
|
332 |
+
},
|
333 |
+
{
|
334 |
+
"epoch": 0.376,
|
335 |
+
"grad_norm": 0.6504567057295806,
|
336 |
+
"learning_rate": 0.00018745497680896722,
|
337 |
+
"loss": 1.1807,
|
338 |
+
"step": 47
|
339 |
+
},
|
340 |
+
{
|
341 |
+
"epoch": 0.384,
|
342 |
+
"grad_norm": 0.6707619740477763,
|
343 |
+
"learning_rate": 0.0001868180920098644,
|
344 |
+
"loss": 1.1407,
|
345 |
+
"step": 48
|
346 |
+
},
|
347 |
+
{
|
348 |
+
"epoch": 0.392,
|
349 |
+
"grad_norm": 0.6838401347017035,
|
350 |
+
"learning_rate": 0.0001861665762396974,
|
351 |
+
"loss": 1.0861,
|
352 |
+
"step": 49
|
353 |
+
},
|
354 |
+
{
|
355 |
+
"epoch": 0.4,
|
356 |
+
"grad_norm": 0.6408245265616914,
|
357 |
+
"learning_rate": 0.00018550053929480202,
|
358 |
+
"loss": 1.1278,
|
359 |
+
"step": 50
|
360 |
+
},
|
361 |
+
{
|
362 |
+
"epoch": 0.408,
|
363 |
+
"grad_norm": 0.5920380892978044,
|
364 |
+
"learning_rate": 0.00018482009341868697,
|
365 |
+
"loss": 1.0847,
|
366 |
+
"step": 51
|
367 |
+
},
|
368 |
+
{
|
369 |
+
"epoch": 0.416,
|
370 |
+
"grad_norm": 0.6843282752275007,
|
371 |
+
"learning_rate": 0.00018412535328311814,
|
372 |
+
"loss": 1.1665,
|
373 |
+
"step": 52
|
374 |
+
},
|
375 |
+
{
|
376 |
+
"epoch": 0.424,
|
377 |
+
"grad_norm": 0.6412113867201495,
|
378 |
+
"learning_rate": 0.00018341643596879367,
|
379 |
+
"loss": 1.0581,
|
380 |
+
"step": 53
|
381 |
+
},
|
382 |
+
{
|
383 |
+
"epoch": 0.432,
|
384 |
+
"grad_norm": 0.616003151361979,
|
385 |
+
"learning_rate": 0.0001826934609456129,
|
386 |
+
"loss": 1.1037,
|
387 |
+
"step": 54
|
388 |
+
},
|
389 |
+
{
|
390 |
+
"epoch": 0.44,
|
391 |
+
"grad_norm": 0.6951255358669098,
|
392 |
+
"learning_rate": 0.00018195655005254273,
|
393 |
+
"loss": 1.1601,
|
394 |
+
"step": 55
|
395 |
+
},
|
396 |
+
{
|
397 |
+
"epoch": 0.448,
|
398 |
+
"grad_norm": 0.6429783633007734,
|
399 |
+
"learning_rate": 0.00018120582747708502,
|
400 |
+
"loss": 1.1597,
|
401 |
+
"step": 56
|
402 |
+
},
|
403 |
+
{
|
404 |
+
"epoch": 0.456,
|
405 |
+
"grad_norm": 0.6067825702732784,
|
406 |
+
"learning_rate": 0.00018044141973434758,
|
407 |
+
"loss": 1.0717,
|
408 |
+
"step": 57
|
409 |
+
},
|
410 |
+
{
|
411 |
+
"epoch": 0.464,
|
412 |
+
"grad_norm": 0.6698768363154343,
|
413 |
+
"learning_rate": 0.0001796634556457236,
|
414 |
+
"loss": 1.1689,
|
415 |
+
"step": 58
|
416 |
+
},
|
417 |
+
{
|
418 |
+
"epoch": 0.472,
|
419 |
+
"grad_norm": 0.6217186674790761,
|
420 |
+
"learning_rate": 0.00017887206631718203,
|
421 |
+
"loss": 1.1173,
|
422 |
+
"step": 59
|
423 |
+
},
|
424 |
+
{
|
425 |
+
"epoch": 0.48,
|
426 |
+
"grad_norm": 0.6508142702807356,
|
427 |
+
"learning_rate": 0.0001780673851171728,
|
428 |
+
"loss": 1.1203,
|
429 |
+
"step": 60
|
430 |
+
},
|
431 |
+
{
|
432 |
+
"epoch": 0.488,
|
433 |
+
"grad_norm": 0.588948225712465,
|
434 |
+
"learning_rate": 0.00017724954765415137,
|
435 |
+
"loss": 1.1332,
|
436 |
+
"step": 61
|
437 |
+
},
|
438 |
+
{
|
439 |
+
"epoch": 0.496,
|
440 |
+
"grad_norm": 0.6632354263972068,
|
441 |
+
"learning_rate": 0.00017641869175372493,
|
442 |
+
"loss": 1.176,
|
443 |
+
"step": 62
|
444 |
+
},
|
445 |
+
{
|
446 |
+
"epoch": 0.504,
|
447 |
+
"grad_norm": 0.7029142534588849,
|
448 |
+
"learning_rate": 0.00017557495743542585,
|
449 |
+
"loss": 1.1699,
|
450 |
+
"step": 63
|
451 |
+
},
|
452 |
+
{
|
453 |
+
"epoch": 0.512,
|
454 |
+
"grad_norm": 0.622116683049225,
|
455 |
+
"learning_rate": 0.00017471848688911464,
|
456 |
+
"loss": 1.1055,
|
457 |
+
"step": 64
|
458 |
+
},
|
459 |
+
{
|
460 |
+
"epoch": 0.52,
|
461 |
+
"grad_norm": 0.6151441614463127,
|
462 |
+
"learning_rate": 0.00017384942445101772,
|
463 |
+
"loss": 1.2301,
|
464 |
+
"step": 65
|
465 |
+
},
|
466 |
+
{
|
467 |
+
"epoch": 0.528,
|
468 |
+
"grad_norm": 0.6717386555525499,
|
469 |
+
"learning_rate": 0.000172967916579403,
|
470 |
+
"loss": 1.2032,
|
471 |
+
"step": 66
|
472 |
+
},
|
473 |
+
{
|
474 |
+
"epoch": 0.536,
|
475 |
+
"grad_norm": 0.6081467264082907,
|
476 |
+
"learning_rate": 0.00017207411182989832,
|
477 |
+
"loss": 1.1567,
|
478 |
+
"step": 67
|
479 |
+
},
|
480 |
+
{
|
481 |
+
"epoch": 0.544,
|
482 |
+
"grad_norm": 0.6204888422023926,
|
483 |
+
"learning_rate": 0.00017116816083045602,
|
484 |
+
"loss": 1.1106,
|
485 |
+
"step": 68
|
486 |
+
},
|
487 |
+
{
|
488 |
+
"epoch": 0.552,
|
489 |
+
"grad_norm": 0.6404949562625138,
|
490 |
+
"learning_rate": 0.00017025021625596853,
|
491 |
+
"loss": 1.0956,
|
492 |
+
"step": 69
|
493 |
+
},
|
494 |
+
{
|
495 |
+
"epoch": 0.56,
|
496 |
+
"grad_norm": 0.6417814085898819,
|
497 |
+
"learning_rate": 0.0001693204328025389,
|
498 |
+
"loss": 1.1356,
|
499 |
+
"step": 70
|
500 |
+
},
|
501 |
+
{
|
502 |
+
"epoch": 0.568,
|
503 |
+
"grad_norm": 0.635016572212586,
|
504 |
+
"learning_rate": 0.0001683789671614107,
|
505 |
+
"loss": 1.1492,
|
506 |
+
"step": 71
|
507 |
+
},
|
508 |
+
{
|
509 |
+
"epoch": 0.576,
|
510 |
+
"grad_norm": 0.6308134251683191,
|
511 |
+
"learning_rate": 0.00016742597799256182,
|
512 |
+
"loss": 1.128,
|
513 |
+
"step": 72
|
514 |
+
},
|
515 |
+
{
|
516 |
+
"epoch": 0.584,
|
517 |
+
"grad_norm": 1.0838315900856792,
|
518 |
+
"learning_rate": 0.00016646162589796615,
|
519 |
+
"loss": 1.0663,
|
520 |
+
"step": 73
|
521 |
+
},
|
522 |
+
{
|
523 |
+
"epoch": 0.592,
|
524 |
+
"grad_norm": 0.6529443760516622,
|
525 |
+
"learning_rate": 0.00016548607339452853,
|
526 |
+
"loss": 1.1941,
|
527 |
+
"step": 74
|
528 |
+
},
|
529 |
+
{
|
530 |
+
"epoch": 0.6,
|
531 |
+
"grad_norm": 0.6110384281678047,
|
532 |
+
"learning_rate": 0.00016449948488669639,
|
533 |
+
"loss": 1.0774,
|
534 |
+
"step": 75
|
535 |
+
},
|
536 |
+
{
|
537 |
+
"epoch": 0.608,
|
538 |
+
"grad_norm": 0.6384046652101805,
|
539 |
+
"learning_rate": 0.00016350202663875386,
|
540 |
+
"loss": 1.1373,
|
541 |
+
"step": 76
|
542 |
+
},
|
543 |
+
{
|
544 |
+
"epoch": 0.616,
|
545 |
+
"grad_norm": 0.5880440159147562,
|
546 |
+
"learning_rate": 0.00016249386674680184,
|
547 |
+
"loss": 1.0892,
|
548 |
+
"step": 77
|
549 |
+
},
|
550 |
+
{
|
551 |
+
"epoch": 0.624,
|
552 |
+
"grad_norm": 0.6052022720463669,
|
553 |
+
"learning_rate": 0.0001614751751104301,
|
554 |
+
"loss": 1.0997,
|
555 |
+
"step": 78
|
556 |
+
},
|
557 |
+
{
|
558 |
+
"epoch": 0.632,
|
559 |
+
"grad_norm": 0.8360588585364545,
|
560 |
+
"learning_rate": 0.00016044612340408466,
|
561 |
+
"loss": 1.1554,
|
562 |
+
"step": 79
|
563 |
+
},
|
564 |
+
{
|
565 |
+
"epoch": 0.64,
|
566 |
+
"grad_norm": 0.6064397572432122,
|
567 |
+
"learning_rate": 0.00015940688504813662,
|
568 |
+
"loss": 1.0517,
|
569 |
+
"step": 80
|
570 |
+
},
|
571 |
+
{
|
572 |
+
"epoch": 0.648,
|
573 |
+
"grad_norm": 0.5937622017131812,
|
574 |
+
"learning_rate": 0.00015835763517965673,
|
575 |
+
"loss": 1.1775,
|
576 |
+
"step": 81
|
577 |
+
},
|
578 |
+
{
|
579 |
+
"epoch": 0.656,
|
580 |
+
"grad_norm": 0.5858555438053201,
|
581 |
+
"learning_rate": 0.00015729855062290022,
|
582 |
+
"loss": 1.1757,
|
583 |
+
"step": 82
|
584 |
+
},
|
585 |
+
{
|
586 |
+
"epoch": 0.664,
|
587 |
+
"grad_norm": 0.6384214991232625,
|
588 |
+
"learning_rate": 0.0001562298098595078,
|
589 |
+
"loss": 1.202,
|
590 |
+
"step": 83
|
591 |
+
},
|
592 |
+
{
|
593 |
+
"epoch": 0.672,
|
594 |
+
"grad_norm": 0.6373560727609033,
|
595 |
+
"learning_rate": 0.00015515159299842707,
|
596 |
+
"loss": 1.1889,
|
597 |
+
"step": 84
|
598 |
+
},
|
599 |
+
{
|
600 |
+
"epoch": 0.68,
|
601 |
+
"grad_norm": 0.6221210303020743,
|
602 |
+
"learning_rate": 0.00015406408174555976,
|
603 |
+
"loss": 1.0921,
|
604 |
+
"step": 85
|
605 |
+
},
|
606 |
+
{
|
607 |
+
"epoch": 0.688,
|
608 |
+
"grad_norm": 0.5810311421752556,
|
609 |
+
"learning_rate": 0.00015296745937313987,
|
610 |
+
"loss": 1.0685,
|
611 |
+
"step": 86
|
612 |
+
},
|
613 |
+
{
|
614 |
+
"epoch": 0.696,
|
615 |
+
"grad_norm": 0.6574941541121385,
|
616 |
+
"learning_rate": 0.00015186191068884775,
|
617 |
+
"loss": 1.1256,
|
618 |
+
"step": 87
|
619 |
+
},
|
620 |
+
{
|
621 |
+
"epoch": 0.704,
|
622 |
+
"grad_norm": 0.6135880637902962,
|
623 |
+
"learning_rate": 0.00015074762200466556,
|
624 |
+
"loss": 1.2139,
|
625 |
+
"step": 88
|
626 |
+
},
|
627 |
+
{
|
628 |
+
"epoch": 0.712,
|
629 |
+
"grad_norm": 0.5887150663213712,
|
630 |
+
"learning_rate": 0.00014962478110547918,
|
631 |
+
"loss": 1.2012,
|
632 |
+
"step": 89
|
633 |
+
},
|
634 |
+
{
|
635 |
+
"epoch": 0.72,
|
636 |
+
"grad_norm": 0.5720216657559922,
|
637 |
+
"learning_rate": 0.00014849357721743168,
|
638 |
+
"loss": 1.1177,
|
639 |
+
"step": 90
|
640 |
+
},
|
641 |
+
{
|
642 |
+
"epoch": 0.728,
|
643 |
+
"grad_norm": 0.579631383034893,
|
644 |
+
"learning_rate": 0.0001473542009760343,
|
645 |
+
"loss": 1.1278,
|
646 |
+
"step": 91
|
647 |
+
},
|
648 |
+
{
|
649 |
+
"epoch": 0.736,
|
650 |
+
"grad_norm": 0.6048021015601645,
|
651 |
+
"learning_rate": 0.00014620684439403962,
|
652 |
+
"loss": 1.1421,
|
653 |
+
"step": 92
|
654 |
+
},
|
655 |
+
{
|
656 |
+
"epoch": 0.744,
|
657 |
+
"grad_norm": 0.5855942323086678,
|
658 |
+
"learning_rate": 0.0001450517008290827,
|
659 |
+
"loss": 1.0698,
|
660 |
+
"step": 93
|
661 |
+
},
|
662 |
+
{
|
663 |
+
"epoch": 0.752,
|
664 |
+
"grad_norm": 0.5992340797396072,
|
665 |
+
"learning_rate": 0.0001438889649510956,
|
666 |
+
"loss": 1.1308,
|
667 |
+
"step": 94
|
668 |
+
},
|
669 |
+
{
|
670 |
+
"epoch": 0.76,
|
671 |
+
"grad_norm": 0.657035857991531,
|
672 |
+
"learning_rate": 0.00014271883270950073,
|
673 |
+
"loss": 1.1656,
|
674 |
+
"step": 95
|
675 |
+
},
|
676 |
+
{
|
677 |
+
"epoch": 0.768,
|
678 |
+
"grad_norm": 0.5993609083935862,
|
679 |
+
"learning_rate": 0.00014154150130018866,
|
680 |
+
"loss": 1.1342,
|
681 |
+
"step": 96
|
682 |
+
},
|
683 |
+
{
|
684 |
+
"epoch": 0.776,
|
685 |
+
"grad_norm": 0.594031128592101,
|
686 |
+
"learning_rate": 0.00014035716913228568,
|
687 |
+
"loss": 1.0296,
|
688 |
+
"step": 97
|
689 |
+
},
|
690 |
+
{
|
691 |
+
"epoch": 0.784,
|
692 |
+
"grad_norm": 0.6343533146102689,
|
693 |
+
"learning_rate": 0.00013916603579471705,
|
694 |
+
"loss": 1.1021,
|
695 |
+
"step": 98
|
696 |
+
},
|
697 |
+
{
|
698 |
+
"epoch": 0.792,
|
699 |
+
"grad_norm": 0.6370282993472896,
|
700 |
+
"learning_rate": 0.0001379683020225714,
|
701 |
+
"loss": 1.1423,
|
702 |
+
"step": 99
|
703 |
+
},
|
704 |
+
{
|
705 |
+
"epoch": 0.8,
|
706 |
+
"grad_norm": 0.5999959123873777,
|
707 |
+
"learning_rate": 0.000136764169663272,
|
708 |
+
"loss": 1.1809,
|
709 |
+
"step": 100
|
710 |
+
},
|
711 |
+
{
|
712 |
+
"epoch": 0.808,
|
713 |
+
"grad_norm": 0.6052322798739889,
|
714 |
+
"learning_rate": 0.00013555384164256048,
|
715 |
+
"loss": 1.0853,
|
716 |
+
"step": 101
|
717 |
+
},
|
718 |
+
{
|
719 |
+
"epoch": 0.816,
|
720 |
+
"grad_norm": 0.627014952912481,
|
721 |
+
"learning_rate": 0.00013433752193029886,
|
722 |
+
"loss": 1.1041,
|
723 |
+
"step": 102
|
724 |
+
},
|
725 |
+
{
|
726 |
+
"epoch": 0.824,
|
727 |
+
"grad_norm": 0.6272955192024172,
|
728 |
+
"learning_rate": 0.00013311541550609565,
|
729 |
+
"loss": 1.1716,
|
730 |
+
"step": 103
|
731 |
+
},
|
732 |
+
{
|
733 |
+
"epoch": 0.832,
|
734 |
+
"grad_norm": 0.5935607523672076,
|
735 |
+
"learning_rate": 0.00013188772832476188,
|
736 |
+
"loss": 1.1208,
|
737 |
+
"step": 104
|
738 |
+
},
|
739 |
+
{
|
740 |
+
"epoch": 0.84,
|
741 |
+
"grad_norm": 0.650271337449353,
|
742 |
+
"learning_rate": 0.00013065466728160252,
|
743 |
+
"loss": 1.1299,
|
744 |
+
"step": 105
|
745 |
+
},
|
746 |
+
{
|
747 |
+
"epoch": 0.848,
|
748 |
+
"grad_norm": 0.6508898010705562,
|
749 |
+
"learning_rate": 0.00012941644017754964,
|
750 |
+
"loss": 1.0757,
|
751 |
+
"step": 106
|
752 |
+
},
|
753 |
+
{
|
754 |
+
"epoch": 0.856,
|
755 |
+
"grad_norm": 0.6307374194277771,
|
756 |
+
"learning_rate": 0.00012817325568414297,
|
757 |
+
"loss": 1.1246,
|
758 |
+
"step": 107
|
759 |
+
},
|
760 |
+
{
|
761 |
+
"epoch": 0.864,
|
762 |
+
"grad_norm": 0.5874661015571683,
|
763 |
+
"learning_rate": 0.00012692532330836346,
|
764 |
+
"loss": 1.0583,
|
765 |
+
"step": 108
|
766 |
+
},
|
767 |
+
{
|
768 |
+
"epoch": 0.872,
|
769 |
+
"grad_norm": 0.5880110073044159,
|
770 |
+
"learning_rate": 0.00012567285335732633,
|
771 |
+
"loss": 1.059,
|
772 |
+
"step": 109
|
773 |
+
},
|
774 |
+
{
|
775 |
+
"epoch": 0.88,
|
776 |
+
"grad_norm": 0.5927953736082483,
|
777 |
+
"learning_rate": 0.00012441605690283915,
|
778 |
+
"loss": 1.0698,
|
779 |
+
"step": 110
|
780 |
+
},
|
781 |
+
{
|
782 |
+
"epoch": 0.888,
|
783 |
+
"grad_norm": 0.6174223850149873,
|
784 |
+
"learning_rate": 0.00012315514574583113,
|
785 |
+
"loss": 1.1004,
|
786 |
+
"step": 111
|
787 |
+
},
|
788 |
+
{
|
789 |
+
"epoch": 0.896,
|
790 |
+
"grad_norm": 0.6401625589443253,
|
791 |
+
"learning_rate": 0.0001218903323806595,
|
792 |
+
"loss": 1.1198,
|
793 |
+
"step": 112
|
794 |
+
},
|
795 |
+
{
|
796 |
+
"epoch": 0.904,
|
797 |
+
"grad_norm": 0.6144835895939935,
|
798 |
+
"learning_rate": 0.00012062182995929882,
|
799 |
+
"loss": 1.0495,
|
800 |
+
"step": 113
|
801 |
+
},
|
802 |
+
{
|
803 |
+
"epoch": 0.912,
|
804 |
+
"grad_norm": 0.6160080819037824,
|
805 |
+
"learning_rate": 0.00011934985225541998,
|
806 |
+
"loss": 1.099,
|
807 |
+
"step": 114
|
808 |
+
},
|
809 |
+
{
|
810 |
+
"epoch": 0.92,
|
811 |
+
"grad_norm": 0.588716972446015,
|
812 |
+
"learning_rate": 0.0001180746136283638,
|
813 |
+
"loss": 1.0885,
|
814 |
+
"step": 115
|
815 |
+
},
|
816 |
+
{
|
817 |
+
"epoch": 0.928,
|
818 |
+
"grad_norm": 0.5878309914107679,
|
819 |
+
"learning_rate": 0.00011679632898701649,
|
820 |
+
"loss": 1.0793,
|
821 |
+
"step": 116
|
822 |
+
},
|
823 |
+
{
|
824 |
+
"epoch": 0.936,
|
825 |
+
"grad_norm": 0.6828359076557663,
|
826 |
+
"learning_rate": 0.00011551521375359206,
|
827 |
+
"loss": 1.1377,
|
828 |
+
"step": 117
|
829 |
+
},
|
830 |
+
{
|
831 |
+
"epoch": 0.944,
|
832 |
+
"grad_norm": 0.6583578970824269,
|
833 |
+
"learning_rate": 0.00011423148382732853,
|
834 |
+
"loss": 1.0516,
|
835 |
+
"step": 118
|
836 |
+
},
|
837 |
+
{
|
838 |
+
"epoch": 0.952,
|
839 |
+
"grad_norm": 0.6166318556513858,
|
840 |
+
"learning_rate": 0.00011294535554810354,
|
841 |
+
"loss": 1.0817,
|
842 |
+
"step": 119
|
843 |
+
},
|
844 |
+
{
|
845 |
+
"epoch": 0.96,
|
846 |
+
"grad_norm": 0.6893920168054586,
|
847 |
+
"learning_rate": 0.00011165704565997593,
|
848 |
+
"loss": 1.1034,
|
849 |
+
"step": 120
|
850 |
+
},
|
851 |
+
{
|
852 |
+
"epoch": 0.968,
|
853 |
+
"grad_norm": 0.7653561538457616,
|
854 |
+
"learning_rate": 0.00011036677127465889,
|
855 |
+
"loss": 1.1266,
|
856 |
+
"step": 121
|
857 |
+
},
|
858 |
+
{
|
859 |
+
"epoch": 0.976,
|
860 |
+
"grad_norm": 0.5801285599368534,
|
861 |
+
"learning_rate": 0.00010907474983493144,
|
862 |
+
"loss": 1.0964,
|
863 |
+
"step": 122
|
864 |
+
},
|
865 |
+
{
|
866 |
+
"epoch": 0.984,
|
867 |
+
"grad_norm": 0.6170823725640626,
|
868 |
+
"learning_rate": 0.00010778119907799398,
|
869 |
+
"loss": 1.0843,
|
870 |
+
"step": 123
|
871 |
+
},
|
872 |
+
{
|
873 |
+
"epoch": 0.992,
|
874 |
+
"grad_norm": 0.7582907445192895,
|
875 |
+
"learning_rate": 0.0001064863369987743,
|
876 |
+
"loss": 1.1703,
|
877 |
+
"step": 124
|
878 |
+
},
|
879 |
+
{
|
880 |
+
"epoch": 1.0,
|
881 |
+
"grad_norm": 0.6260013577906284,
|
882 |
+
"learning_rate": 0.00010519038181318999,
|
883 |
+
"loss": 1.0945,
|
884 |
+
"step": 125
|
885 |
+
},
|
886 |
+
{
|
887 |
+
"epoch": 1.008,
|
888 |
+
"grad_norm": 0.5494314613037083,
|
889 |
+
"learning_rate": 0.00010389355192137377,
|
890 |
+
"loss": 0.7531,
|
891 |
+
"step": 126
|
892 |
+
},
|
893 |
+
{
|
894 |
+
"epoch": 1.016,
|
895 |
+
"grad_norm": 0.5425739308066683,
|
896 |
+
"learning_rate": 0.00010259606587086783,
|
897 |
+
"loss": 0.7805,
|
898 |
+
"step": 127
|
899 |
+
},
|
900 |
+
{
|
901 |
+
"epoch": 1.024,
|
902 |
+
"grad_norm": 0.529115377582859,
|
903 |
+
"learning_rate": 0.0001012981423197931,
|
904 |
+
"loss": 0.7759,
|
905 |
+
"step": 128
|
906 |
+
},
|
907 |
+
{
|
908 |
+
"epoch": 1.032,
|
909 |
+
"grad_norm": 0.5692792123945668,
|
910 |
+
"learning_rate": 0.0001,
|
911 |
+
"loss": 0.7704,
|
912 |
+
"step": 129
|
913 |
+
},
|
914 |
+
{
|
915 |
+
"epoch": 1.04,
|
916 |
+
"grad_norm": 0.6186406508253389,
|
917 |
+
"learning_rate": 9.870185768020693e-05,
|
918 |
+
"loss": 0.7314,
|
919 |
+
"step": 130
|
920 |
+
},
|
921 |
+
{
|
922 |
+
"epoch": 1.048,
|
923 |
+
"grad_norm": 0.6721041733464441,
|
924 |
+
"learning_rate": 9.740393412913219e-05,
|
925 |
+
"loss": 0.8125,
|
926 |
+
"step": 131
|
927 |
+
},
|
928 |
+
{
|
929 |
+
"epoch": 1.056,
|
930 |
+
"grad_norm": 0.6948983333121643,
|
931 |
+
"learning_rate": 9.610644807862625e-05,
|
932 |
+
"loss": 0.7738,
|
933 |
+
"step": 132
|
934 |
+
},
|
935 |
+
{
|
936 |
+
"epoch": 1.064,
|
937 |
+
"grad_norm": 0.6916170510549642,
|
938 |
+
"learning_rate": 9.480961818681004e-05,
|
939 |
+
"loss": 0.782,
|
940 |
+
"step": 133
|
941 |
+
},
|
942 |
+
{
|
943 |
+
"epoch": 1.072,
|
944 |
+
"grad_norm": 0.6835237897842905,
|
945 |
+
"learning_rate": 9.35136630012257e-05,
|
946 |
+
"loss": 0.7564,
|
947 |
+
"step": 134
|
948 |
+
},
|
949 |
+
{
|
950 |
+
"epoch": 1.08,
|
951 |
+
"grad_norm": 0.6864061018600497,
|
952 |
+
"learning_rate": 9.221880092200601e-05,
|
953 |
+
"loss": 0.721,
|
954 |
+
"step": 135
|
955 |
+
},
|
956 |
+
{
|
957 |
+
"epoch": 1.088,
|
958 |
+
"grad_norm": 0.6676838293816894,
|
959 |
+
"learning_rate": 9.092525016506858e-05,
|
960 |
+
"loss": 0.7256,
|
961 |
+
"step": 136
|
962 |
+
},
|
963 |
+
{
|
964 |
+
"epoch": 1.096,
|
965 |
+
"grad_norm": 0.6127394586373243,
|
966 |
+
"learning_rate": 8.963322872534114e-05,
|
967 |
+
"loss": 0.6988,
|
968 |
+
"step": 137
|
969 |
+
},
|
970 |
+
{
|
971 |
+
"epoch": 1.104,
|
972 |
+
"grad_norm": 0.6589588798885051,
|
973 |
+
"learning_rate": 8.83429543400241e-05,
|
974 |
+
"loss": 0.8101,
|
975 |
+
"step": 138
|
976 |
+
},
|
977 |
+
{
|
978 |
+
"epoch": 1.112,
|
979 |
+
"grad_norm": 0.6338289492844081,
|
980 |
+
"learning_rate": 8.705464445189647e-05,
|
981 |
+
"loss": 0.7592,
|
982 |
+
"step": 139
|
983 |
+
},
|
984 |
+
{
|
985 |
+
"epoch": 1.12,
|
986 |
+
"grad_norm": 0.6681908245671879,
|
987 |
+
"learning_rate": 8.57685161726715e-05,
|
988 |
+
"loss": 0.7407,
|
989 |
+
"step": 140
|
990 |
+
},
|
991 |
+
{
|
992 |
+
"epoch": 1.1280000000000001,
|
993 |
+
"grad_norm": 0.6220519972190037,
|
994 |
+
"learning_rate": 8.448478624640797e-05,
|
995 |
+
"loss": 0.6765,
|
996 |
+
"step": 141
|
997 |
+
},
|
998 |
+
{
|
999 |
+
"epoch": 1.1360000000000001,
|
1000 |
+
"grad_norm": 0.671093719017714,
|
1001 |
+
"learning_rate": 8.320367101298351e-05,
|
1002 |
+
"loss": 0.7479,
|
1003 |
+
"step": 142
|
1004 |
+
},
|
1005 |
+
{
|
1006 |
+
"epoch": 1.144,
|
1007 |
+
"grad_norm": 0.6252540781942465,
|
1008 |
+
"learning_rate": 8.192538637163621e-05,
|
1009 |
+
"loss": 0.69,
|
1010 |
+
"step": 143
|
1011 |
+
},
|
1012 |
+
{
|
1013 |
+
"epoch": 1.152,
|
1014 |
+
"grad_norm": 0.7025608874796816,
|
1015 |
+
"learning_rate": 8.065014774458003e-05,
|
1016 |
+
"loss": 0.7372,
|
1017 |
+
"step": 144
|
1018 |
+
},
|
1019 |
+
{
|
1020 |
+
"epoch": 1.16,
|
1021 |
+
"grad_norm": 0.8710246282526877,
|
1022 |
+
"learning_rate": 7.93781700407012e-05,
|
1023 |
+
"loss": 0.7009,
|
1024 |
+
"step": 145
|
1025 |
+
},
|
1026 |
+
{
|
1027 |
+
"epoch": 1.168,
|
1028 |
+
"grad_norm": 0.6957075564392686,
|
1029 |
+
"learning_rate": 7.810966761934053e-05,
|
1030 |
+
"loss": 0.7039,
|
1031 |
+
"step": 146
|
1032 |
+
},
|
1033 |
+
{
|
1034 |
+
"epoch": 1.176,
|
1035 |
+
"grad_norm": 0.7236979642981014,
|
1036 |
+
"learning_rate": 7.684485425416888e-05,
|
1037 |
+
"loss": 0.7541,
|
1038 |
+
"step": 147
|
1039 |
+
},
|
1040 |
+
{
|
1041 |
+
"epoch": 1.184,
|
1042 |
+
"grad_norm": 0.6570340780461766,
|
1043 |
+
"learning_rate": 7.558394309716088e-05,
|
1044 |
+
"loss": 0.6962,
|
1045 |
+
"step": 148
|
1046 |
+
},
|
1047 |
+
{
|
1048 |
+
"epoch": 1.192,
|
1049 |
+
"grad_norm": 0.608597796982595,
|
1050 |
+
"learning_rate": 7.432714664267373e-05,
|
1051 |
+
"loss": 0.6648,
|
1052 |
+
"step": 149
|
1053 |
+
},
|
1054 |
+
{
|
1055 |
+
"epoch": 1.2,
|
1056 |
+
"grad_norm": 0.6274556968757717,
|
1057 |
+
"learning_rate": 7.307467669163655e-05,
|
1058 |
+
"loss": 0.8017,
|
1059 |
+
"step": 150
|
1060 |
+
},
|
1061 |
+
{
|
1062 |
+
"epoch": 1.208,
|
1063 |
+
"grad_norm": 0.646045678305703,
|
1064 |
+
"learning_rate": 7.182674431585704e-05,
|
1065 |
+
"loss": 0.687,
|
1066 |
+
"step": 151
|
1067 |
+
},
|
1068 |
+
{
|
1069 |
+
"epoch": 1.216,
|
1070 |
+
"grad_norm": 0.615025745148123,
|
1071 |
+
"learning_rate": 7.058355982245037e-05,
|
1072 |
+
"loss": 0.7028,
|
1073 |
+
"step": 152
|
1074 |
+
},
|
1075 |
+
{
|
1076 |
+
"epoch": 1.224,
|
1077 |
+
"grad_norm": 0.644127006643345,
|
1078 |
+
"learning_rate": 6.934533271839752e-05,
|
1079 |
+
"loss": 0.6849,
|
1080 |
+
"step": 153
|
1081 |
+
},
|
1082 |
+
{
|
1083 |
+
"epoch": 1.232,
|
1084 |
+
"grad_norm": 0.6322032158257218,
|
1085 |
+
"learning_rate": 6.811227167523815e-05,
|
1086 |
+
"loss": 0.6858,
|
1087 |
+
"step": 154
|
1088 |
+
},
|
1089 |
+
{
|
1090 |
+
"epoch": 1.24,
|
1091 |
+
"grad_norm": 0.7040220453985434,
|
1092 |
+
"learning_rate": 6.688458449390437e-05,
|
1093 |
+
"loss": 0.7036,
|
1094 |
+
"step": 155
|
1095 |
+
},
|
1096 |
+
{
|
1097 |
+
"epoch": 1.248,
|
1098 |
+
"grad_norm": 0.7080898961868384,
|
1099 |
+
"learning_rate": 6.566247806970119e-05,
|
1100 |
+
"loss": 0.6814,
|
1101 |
+
"step": 156
|
1102 |
+
},
|
1103 |
+
{
|
1104 |
+
"epoch": 1.256,
|
1105 |
+
"grad_norm": 0.6732544034749526,
|
1106 |
+
"learning_rate": 6.444615835743955e-05,
|
1107 |
+
"loss": 0.6868,
|
1108 |
+
"step": 157
|
1109 |
+
},
|
1110 |
+
{
|
1111 |
+
"epoch": 1.264,
|
1112 |
+
"grad_norm": 0.6197892347959479,
|
1113 |
+
"learning_rate": 6.323583033672799e-05,
|
1114 |
+
"loss": 0.6852,
|
1115 |
+
"step": 158
|
1116 |
+
},
|
1117 |
+
{
|
1118 |
+
"epoch": 1.272,
|
1119 |
+
"grad_norm": 0.665156386544487,
|
1120 |
+
"learning_rate": 6.203169797742861e-05,
|
1121 |
+
"loss": 0.6963,
|
1122 |
+
"step": 159
|
1123 |
+
},
|
1124 |
+
{
|
1125 |
+
"epoch": 1.28,
|
1126 |
+
"grad_norm": 0.6814028088410238,
|
1127 |
+
"learning_rate": 6.083396420528298e-05,
|
1128 |
+
"loss": 0.7747,
|
1129 |
+
"step": 160
|
1130 |
+
},
|
1131 |
+
{
|
1132 |
+
"epoch": 1.288,
|
1133 |
+
"grad_norm": 0.6852077562936856,
|
1134 |
+
"learning_rate": 5.964283086771435e-05,
|
1135 |
+
"loss": 0.6945,
|
1136 |
+
"step": 161
|
1137 |
+
},
|
1138 |
+
{
|
1139 |
+
"epoch": 1.296,
|
1140 |
+
"grad_norm": 0.7147333175738334,
|
1141 |
+
"learning_rate": 5.845849869981137e-05,
|
1142 |
+
"loss": 0.7479,
|
1143 |
+
"step": 162
|
1144 |
+
},
|
1145 |
+
{
|
1146 |
+
"epoch": 1.304,
|
1147 |
+
"grad_norm": 0.6688014606429251,
|
1148 |
+
"learning_rate": 5.728116729049928e-05,
|
1149 |
+
"loss": 0.6931,
|
1150 |
+
"step": 163
|
1151 |
+
},
|
1152 |
+
{
|
1153 |
+
"epoch": 1.312,
|
1154 |
+
"grad_norm": 0.6029399268866422,
|
1155 |
+
"learning_rate": 5.611103504890444e-05,
|
1156 |
+
"loss": 0.7594,
|
1157 |
+
"step": 164
|
1158 |
+
},
|
1159 |
+
{
|
1160 |
+
"epoch": 1.32,
|
1161 |
+
"grad_norm": 0.6405186403636638,
|
1162 |
+
"learning_rate": 5.4948299170917325e-05,
|
1163 |
+
"loss": 0.6861,
|
1164 |
+
"step": 165
|
1165 |
+
},
|
1166 |
+
{
|
1167 |
+
"epoch": 1.328,
|
1168 |
+
"grad_norm": 0.6153553215285271,
|
1169 |
+
"learning_rate": 5.379315560596038e-05,
|
1170 |
+
"loss": 0.7219,
|
1171 |
+
"step": 166
|
1172 |
+
},
|
1173 |
+
{
|
1174 |
+
"epoch": 1.336,
|
1175 |
+
"grad_norm": 0.6138403231780742,
|
1176 |
+
"learning_rate": 5.26457990239657e-05,
|
1177 |
+
"loss": 0.7178,
|
1178 |
+
"step": 167
|
1179 |
+
},
|
1180 |
+
{
|
1181 |
+
"epoch": 1.3439999999999999,
|
1182 |
+
"grad_norm": 0.594607451880698,
|
1183 |
+
"learning_rate": 5.1506422782568345e-05,
|
1184 |
+
"loss": 0.6499,
|
1185 |
+
"step": 168
|
1186 |
+
},
|
1187 |
+
{
|
1188 |
+
"epoch": 1.3519999999999999,
|
1189 |
+
"grad_norm": 0.6274961325954719,
|
1190 |
+
"learning_rate": 5.0375218894520834e-05,
|
1191 |
+
"loss": 0.7387,
|
1192 |
+
"step": 169
|
1193 |
+
},
|
1194 |
+
{
|
1195 |
+
"epoch": 1.3599999999999999,
|
1196 |
+
"grad_norm": 0.6428236849437015,
|
1197 |
+
"learning_rate": 4.9252377995334444e-05,
|
1198 |
+
"loss": 0.6673,
|
1199 |
+
"step": 170
|
1200 |
+
},
|
1201 |
+
{
|
1202 |
+
"epoch": 1.3679999999999999,
|
1203 |
+
"grad_norm": 0.7424922487103246,
|
1204 |
+
"learning_rate": 4.813808931115228e-05,
|
1205 |
+
"loss": 0.7083,
|
1206 |
+
"step": 171
|
1207 |
+
},
|
1208 |
+
{
|
1209 |
+
"epoch": 1.376,
|
1210 |
+
"grad_norm": 0.6413719943869135,
|
1211 |
+
"learning_rate": 4.703254062686017e-05,
|
1212 |
+
"loss": 0.7688,
|
1213 |
+
"step": 172
|
1214 |
+
},
|
1215 |
+
{
|
1216 |
+
"epoch": 1.384,
|
1217 |
+
"grad_norm": 0.6447719371076412,
|
1218 |
+
"learning_rate": 4.593591825444028e-05,
|
1219 |
+
"loss": 0.7062,
|
1220 |
+
"step": 173
|
1221 |
+
},
|
1222 |
+
{
|
1223 |
+
"epoch": 1.392,
|
1224 |
+
"grad_norm": 0.6850728968609752,
|
1225 |
+
"learning_rate": 4.484840700157295e-05,
|
1226 |
+
"loss": 0.7522,
|
1227 |
+
"step": 174
|
1228 |
+
},
|
1229 |
+
{
|
1230 |
+
"epoch": 1.4,
|
1231 |
+
"grad_norm": 0.655257297593665,
|
1232 |
+
"learning_rate": 4.377019014049223e-05,
|
1233 |
+
"loss": 0.7415,
|
1234 |
+
"step": 175
|
1235 |
+
},
|
1236 |
+
{
|
1237 |
+
"epoch": 1.408,
|
1238 |
+
"grad_norm": 0.6649918375536736,
|
1239 |
+
"learning_rate": 4.270144937709981e-05,
|
1240 |
+
"loss": 0.7079,
|
1241 |
+
"step": 176
|
1242 |
+
},
|
1243 |
+
{
|
1244 |
+
"epoch": 1.416,
|
1245 |
+
"grad_norm": 0.640170590584303,
|
1246 |
+
"learning_rate": 4.164236482034327e-05,
|
1247 |
+
"loss": 0.7246,
|
1248 |
+
"step": 177
|
1249 |
+
},
|
1250 |
+
{
|
1251 |
+
"epoch": 1.424,
|
1252 |
+
"grad_norm": 0.6797620642919888,
|
1253 |
+
"learning_rate": 4.059311495186338e-05,
|
1254 |
+
"loss": 0.6517,
|
1255 |
+
"step": 178
|
1256 |
+
},
|
1257 |
+
{
|
1258 |
+
"epoch": 1.432,
|
1259 |
+
"grad_norm": 0.680554997205006,
|
1260 |
+
"learning_rate": 3.9553876595915375e-05,
|
1261 |
+
"loss": 0.6751,
|
1262 |
+
"step": 179
|
1263 |
+
},
|
1264 |
+
{
|
1265 |
+
"epoch": 1.44,
|
1266 |
+
"grad_norm": 0.6510525823177645,
|
1267 |
+
"learning_rate": 3.852482488956992e-05,
|
1268 |
+
"loss": 0.7289,
|
1269 |
+
"step": 180
|
1270 |
+
},
|
1271 |
+
{
|
1272 |
+
"epoch": 1.448,
|
1273 |
+
"grad_norm": 0.6681387989836439,
|
1274 |
+
"learning_rate": 3.750613325319817e-05,
|
1275 |
+
"loss": 0.6989,
|
1276 |
+
"step": 181
|
1277 |
+
},
|
1278 |
+
{
|
1279 |
+
"epoch": 1.456,
|
1280 |
+
"grad_norm": 0.682820922478662,
|
1281 |
+
"learning_rate": 3.649797336124615e-05,
|
1282 |
+
"loss": 0.6846,
|
1283 |
+
"step": 182
|
1284 |
+
},
|
1285 |
+
{
|
1286 |
+
"epoch": 1.464,
|
1287 |
+
"grad_norm": 0.6669747221606931,
|
1288 |
+
"learning_rate": 3.550051511330361e-05,
|
1289 |
+
"loss": 0.7159,
|
1290 |
+
"step": 183
|
1291 |
+
},
|
1292 |
+
{
|
1293 |
+
"epoch": 1.472,
|
1294 |
+
"grad_norm": 0.6346245539679889,
|
1295 |
+
"learning_rate": 3.45139266054715e-05,
|
1296 |
+
"loss": 0.722,
|
1297 |
+
"step": 184
|
1298 |
+
},
|
1299 |
+
{
|
1300 |
+
"epoch": 1.48,
|
1301 |
+
"grad_norm": 0.6860528744206814,
|
1302 |
+
"learning_rate": 3.3538374102033866e-05,
|
1303 |
+
"loss": 0.7387,
|
1304 |
+
"step": 185
|
1305 |
+
},
|
1306 |
+
{
|
1307 |
+
"epoch": 1.488,
|
1308 |
+
"grad_norm": 0.6466559324864782,
|
1309 |
+
"learning_rate": 3.257402200743821e-05,
|
1310 |
+
"loss": 0.6739,
|
1311 |
+
"step": 186
|
1312 |
+
},
|
1313 |
+
{
|
1314 |
+
"epoch": 1.496,
|
1315 |
+
"grad_norm": 0.6023284293992224,
|
1316 |
+
"learning_rate": 3.1621032838589305e-05,
|
1317 |
+
"loss": 0.6686,
|
1318 |
+
"step": 187
|
1319 |
+
},
|
1320 |
+
{
|
1321 |
+
"epoch": 1.504,
|
1322 |
+
"grad_norm": 0.6413527159496256,
|
1323 |
+
"learning_rate": 3.0679567197461134e-05,
|
1324 |
+
"loss": 0.748,
|
1325 |
+
"step": 188
|
1326 |
+
},
|
1327 |
+
{
|
1328 |
+
"epoch": 1.512,
|
1329 |
+
"grad_norm": 0.6551109522736579,
|
1330 |
+
"learning_rate": 2.974978374403147e-05,
|
1331 |
+
"loss": 0.6868,
|
1332 |
+
"step": 189
|
1333 |
+
},
|
1334 |
+
{
|
1335 |
+
"epoch": 1.52,
|
1336 |
+
"grad_norm": 0.6326824311431275,
|
1337 |
+
"learning_rate": 2.8831839169543996e-05,
|
1338 |
+
"loss": 0.7515,
|
1339 |
+
"step": 190
|
1340 |
+
},
|
1341 |
+
{
|
1342 |
+
"epoch": 1.528,
|
1343 |
+
"grad_norm": 0.6385233894295355,
|
1344 |
+
"learning_rate": 2.7925888170101665e-05,
|
1345 |
+
"loss": 0.7054,
|
1346 |
+
"step": 191
|
1347 |
+
},
|
1348 |
+
{
|
1349 |
+
"epoch": 1.536,
|
1350 |
+
"grad_norm": 0.6662115965676328,
|
1351 |
+
"learning_rate": 2.7032083420597e-05,
|
1352 |
+
"loss": 0.7029,
|
1353 |
+
"step": 192
|
1354 |
+
},
|
1355 |
+
{
|
1356 |
+
"epoch": 1.544,
|
1357 |
+
"grad_norm": 0.6591688636277143,
|
1358 |
+
"learning_rate": 2.6150575548982292e-05,
|
1359 |
+
"loss": 0.6458,
|
1360 |
+
"step": 193
|
1361 |
+
},
|
1362 |
+
{
|
1363 |
+
"epoch": 1.552,
|
1364 |
+
"grad_norm": 0.6936966434138461,
|
1365 |
+
"learning_rate": 2.528151311088537e-05,
|
1366 |
+
"loss": 0.7114,
|
1367 |
+
"step": 194
|
1368 |
+
},
|
1369 |
+
{
|
1370 |
+
"epoch": 1.56,
|
1371 |
+
"grad_norm": 0.660940431444361,
|
1372 |
+
"learning_rate": 2.4425042564574184e-05,
|
1373 |
+
"loss": 0.7331,
|
1374 |
+
"step": 195
|
1375 |
+
},
|
1376 |
+
{
|
1377 |
+
"epoch": 1.568,
|
1378 |
+
"grad_norm": 0.6364962057855832,
|
1379 |
+
"learning_rate": 2.3581308246275103e-05,
|
1380 |
+
"loss": 0.7192,
|
1381 |
+
"step": 196
|
1382 |
+
},
|
1383 |
+
{
|
1384 |
+
"epoch": 1.576,
|
1385 |
+
"grad_norm": 0.6560039547156613,
|
1386 |
+
"learning_rate": 2.2750452345848682e-05,
|
1387 |
+
"loss": 0.7001,
|
1388 |
+
"step": 197
|
1389 |
+
},
|
1390 |
+
{
|
1391 |
+
"epoch": 1.584,
|
1392 |
+
"grad_norm": 0.6585253364363486,
|
1393 |
+
"learning_rate": 2.1932614882827197e-05,
|
1394 |
+
"loss": 0.7239,
|
1395 |
+
"step": 198
|
1396 |
+
},
|
1397 |
+
{
|
1398 |
+
"epoch": 1.592,
|
1399 |
+
"grad_norm": 0.624825451719301,
|
1400 |
+
"learning_rate": 2.112793368281799e-05,
|
1401 |
+
"loss": 0.6901,
|
1402 |
+
"step": 199
|
1403 |
+
},
|
1404 |
+
{
|
1405 |
+
"epoch": 1.6,
|
1406 |
+
"grad_norm": 0.6649961244159159,
|
1407 |
+
"learning_rate": 2.03365443542764e-05,
|
1408 |
+
"loss": 0.699,
|
1409 |
+
"step": 200
|
1410 |
+
},
|
1411 |
+
{
|
1412 |
+
"epoch": 1.608,
|
1413 |
+
"grad_norm": 0.6615988192210411,
|
1414 |
+
"learning_rate": 1.9558580265652448e-05,
|
1415 |
+
"loss": 0.731,
|
1416 |
+
"step": 201
|
1417 |
+
},
|
1418 |
+
{
|
1419 |
+
"epoch": 1.616,
|
1420 |
+
"grad_norm": 0.669000346973526,
|
1421 |
+
"learning_rate": 1.879417252291502e-05,
|
1422 |
+
"loss": 0.7515,
|
1423 |
+
"step": 202
|
1424 |
+
},
|
1425 |
+
{
|
1426 |
+
"epoch": 1.624,
|
1427 |
+
"grad_norm": 0.6625424275293328,
|
1428 |
+
"learning_rate": 1.804344994745727e-05,
|
1429 |
+
"loss": 0.7279,
|
1430 |
+
"step": 203
|
1431 |
+
},
|
1432 |
+
{
|
1433 |
+
"epoch": 1.6320000000000001,
|
1434 |
+
"grad_norm": 0.6172627479461968,
|
1435 |
+
"learning_rate": 1.730653905438714e-05,
|
1436 |
+
"loss": 0.6609,
|
1437 |
+
"step": 204
|
1438 |
+
},
|
1439 |
+
{
|
1440 |
+
"epoch": 1.6400000000000001,
|
1441 |
+
"grad_norm": 0.6968471322847645,
|
1442 |
+
"learning_rate": 1.6583564031206357e-05,
|
1443 |
+
"loss": 0.6419,
|
1444 |
+
"step": 205
|
1445 |
+
},
|
1446 |
+
{
|
1447 |
+
"epoch": 1.6480000000000001,
|
1448 |
+
"grad_norm": 0.6646091376538787,
|
1449 |
+
"learning_rate": 1.587464671688187e-05,
|
1450 |
+
"loss": 0.7074,
|
1451 |
+
"step": 206
|
1452 |
+
},
|
1453 |
+
{
|
1454 |
+
"epoch": 1.6560000000000001,
|
1455 |
+
"grad_norm": 0.7119786340374479,
|
1456 |
+
"learning_rate": 1.5179906581313064e-05,
|
1457 |
+
"loss": 0.7104,
|
1458 |
+
"step": 207
|
1459 |
+
},
|
1460 |
+
{
|
1461 |
+
"epoch": 1.6640000000000001,
|
1462 |
+
"grad_norm": 0.6182072495204601,
|
1463 |
+
"learning_rate": 1.4499460705197998e-05,
|
1464 |
+
"loss": 0.6686,
|
1465 |
+
"step": 208
|
1466 |
+
},
|
1467 |
+
{
|
1468 |
+
"epoch": 1.6720000000000002,
|
1469 |
+
"grad_norm": 0.6571653192714902,
|
1470 |
+
"learning_rate": 1.3833423760302611e-05,
|
1471 |
+
"loss": 0.6878,
|
1472 |
+
"step": 209
|
1473 |
+
},
|
1474 |
+
{
|
1475 |
+
"epoch": 1.6800000000000002,
|
1476 |
+
"grad_norm": 0.6618007770830334,
|
1477 |
+
"learning_rate": 1.3181907990135622e-05,
|
1478 |
+
"loss": 0.6461,
|
1479 |
+
"step": 210
|
1480 |
+
},
|
1481 |
+
{
|
1482 |
+
"epoch": 1.688,
|
1483 |
+
"grad_norm": 0.6817305234712389,
|
1484 |
+
"learning_rate": 1.2545023191032801e-05,
|
1485 |
+
"loss": 0.6321,
|
1486 |
+
"step": 211
|
1487 |
+
},
|
1488 |
+
{
|
1489 |
+
"epoch": 1.696,
|
1490 |
+
"grad_norm": 0.6704808086973233,
|
1491 |
+
"learning_rate": 1.1922876693653585e-05,
|
1492 |
+
"loss": 0.7268,
|
1493 |
+
"step": 212
|
1494 |
+
},
|
1495 |
+
{
|
1496 |
+
"epoch": 1.704,
|
1497 |
+
"grad_norm": 0.6185324770527085,
|
1498 |
+
"learning_rate": 1.131557334489326e-05,
|
1499 |
+
"loss": 0.7113,
|
1500 |
+
"step": 213
|
1501 |
+
},
|
1502 |
+
{
|
1503 |
+
"epoch": 1.712,
|
1504 |
+
"grad_norm": 0.6764723338003922,
|
1505 |
+
"learning_rate": 1.0723215490213634e-05,
|
1506 |
+
"loss": 0.6954,
|
1507 |
+
"step": 214
|
1508 |
+
},
|
1509 |
+
{
|
1510 |
+
"epoch": 1.72,
|
1511 |
+
"grad_norm": 0.6529991387340686,
|
1512 |
+
"learning_rate": 1.0145902956395447e-05,
|
1513 |
+
"loss": 0.6599,
|
1514 |
+
"step": 215
|
1515 |
+
},
|
1516 |
+
{
|
1517 |
+
"epoch": 1.728,
|
1518 |
+
"grad_norm": 0.6470487796656074,
|
1519 |
+
"learning_rate": 9.583733034714981e-06,
|
1520 |
+
"loss": 0.6545,
|
1521 |
+
"step": 216
|
1522 |
+
},
|
1523 |
+
{
|
1524 |
+
"epoch": 1.736,
|
1525 |
+
"grad_norm": 0.7156374080738279,
|
1526 |
+
"learning_rate": 9.036800464548157e-06,
|
1527 |
+
"loss": 0.7424,
|
1528 |
+
"step": 217
|
1529 |
+
},
|
1530 |
+
{
|
1531 |
+
"epoch": 1.744,
|
1532 |
+
"grad_norm": 0.6628825567627252,
|
1533 |
+
"learning_rate": 8.505197417404687e-06,
|
1534 |
+
"loss": 0.64,
|
1535 |
+
"step": 218
|
1536 |
+
},
|
1537 |
+
{
|
1538 |
+
"epoch": 1.752,
|
1539 |
+
"grad_norm": 0.6679173882701385,
|
1540 |
+
"learning_rate": 7.989013481394814e-06,
|
1541 |
+
"loss": 0.7379,
|
1542 |
+
"step": 219
|
1543 |
+
},
|
1544 |
+
{
|
1545 |
+
"epoch": 1.76,
|
1546 |
+
"grad_norm": 0.6590707065664086,
|
1547 |
+
"learning_rate": 7.488335646131628e-06,
|
1548 |
+
"loss": 0.5963,
|
1549 |
+
"step": 220
|
1550 |
+
},
|
1551 |
+
{
|
1552 |
+
"epoch": 1.768,
|
1553 |
+
"grad_norm": 0.6444345838715957,
|
1554 |
+
"learning_rate": 7.003248288071118e-06,
|
1555 |
+
"loss": 0.7151,
|
1556 |
+
"step": 221
|
1557 |
+
},
|
1558 |
+
{
|
1559 |
+
"epoch": 1.776,
|
1560 |
+
"grad_norm": 0.675515451229952,
|
1561 |
+
"learning_rate": 6.533833156292679e-06,
|
1562 |
+
"loss": 0.6899,
|
1563 |
+
"step": 222
|
1564 |
+
},
|
1565 |
+
{
|
1566 |
+
"epoch": 1.784,
|
1567 |
+
"grad_norm": 0.7208271256227047,
|
1568 |
+
"learning_rate": 6.08016935872251e-06,
|
1569 |
+
"loss": 0.592,
|
1570 |
+
"step": 223
|
1571 |
+
},
|
1572 |
+
{
|
1573 |
+
"epoch": 1.792,
|
1574 |
+
"grad_norm": 0.6543039778126106,
|
1575 |
+
"learning_rate": 5.6423333488018095e-06,
|
1576 |
+
"loss": 0.725,
|
1577 |
+
"step": 224
|
1578 |
+
},
|
1579 |
+
{
|
1580 |
+
"epoch": 1.8,
|
1581 |
+
"grad_norm": 0.6545834113447834,
|
1582 |
+
"learning_rate": 5.22039891260262e-06,
|
1583 |
+
"loss": 0.5796,
|
1584 |
+
"step": 225
|
1585 |
+
},
|
1586 |
+
{
|
1587 |
+
"epoch": 1.808,
|
1588 |
+
"grad_norm": 0.6413464222219671,
|
1589 |
+
"learning_rate": 4.8144371563930476e-06,
|
1590 |
+
"loss": 0.6239,
|
1591 |
+
"step": 226
|
1592 |
+
},
|
1593 |
+
{
|
1594 |
+
"epoch": 1.8159999999999998,
|
1595 |
+
"grad_norm": 0.6409389432940975,
|
1596 |
+
"learning_rate": 4.424516494654118e-06,
|
1597 |
+
"loss": 0.6732,
|
1598 |
+
"step": 227
|
1599 |
+
},
|
1600 |
+
{
|
1601 |
+
"epoch": 1.8239999999999998,
|
1602 |
+
"grad_norm": 0.6130780753603059,
|
1603 |
+
"learning_rate": 4.050702638550275e-06,
|
1604 |
+
"loss": 0.7106,
|
1605 |
+
"step": 228
|
1606 |
+
},
|
1607 |
+
{
|
1608 |
+
"epoch": 1.8319999999999999,
|
1609 |
+
"grad_norm": 0.6436868508715743,
|
1610 |
+
"learning_rate": 3.693058584855369e-06,
|
1611 |
+
"loss": 0.713,
|
1612 |
+
"step": 229
|
1613 |
+
},
|
1614 |
+
{
|
1615 |
+
"epoch": 1.8399999999999999,
|
1616 |
+
"grad_norm": 0.644610773822548,
|
1617 |
+
"learning_rate": 3.3516446053363015e-06,
|
1618 |
+
"loss": 0.6644,
|
1619 |
+
"step": 230
|
1620 |
+
},
|
1621 |
+
{
|
1622 |
+
"epoch": 1.8479999999999999,
|
1623 |
+
"grad_norm": 0.6742463101315687,
|
1624 |
+
"learning_rate": 3.026518236595621e-06,
|
1625 |
+
"loss": 0.7132,
|
1626 |
+
"step": 231
|
1627 |
+
},
|
1628 |
+
{
|
1629 |
+
"epoch": 1.8559999999999999,
|
1630 |
+
"grad_norm": 0.623708408040731,
|
1631 |
+
"learning_rate": 2.717734270375272e-06,
|
1632 |
+
"loss": 0.708,
|
1633 |
+
"step": 232
|
1634 |
+
},
|
1635 |
+
{
|
1636 |
+
"epoch": 1.8639999999999999,
|
1637 |
+
"grad_norm": 0.6353495695076489,
|
1638 |
+
"learning_rate": 2.4253447443228106e-06,
|
1639 |
+
"loss": 0.6728,
|
1640 |
+
"step": 233
|
1641 |
+
},
|
1642 |
+
{
|
1643 |
+
"epoch": 1.8719999999999999,
|
1644 |
+
"grad_norm": 0.6470934000333828,
|
1645 |
+
"learning_rate": 2.1493989332218468e-06,
|
1646 |
+
"loss": 0.6684,
|
1647 |
+
"step": 234
|
1648 |
+
},
|
1649 |
+
{
|
1650 |
+
"epoch": 1.88,
|
1651 |
+
"grad_norm": 0.6339743329664256,
|
1652 |
+
"learning_rate": 1.8899433406879608e-06,
|
1653 |
+
"loss": 0.7162,
|
1654 |
+
"step": 235
|
1655 |
+
},
|
1656 |
+
{
|
1657 |
+
"epoch": 1.888,
|
1658 |
+
"grad_norm": 0.6991547215955025,
|
1659 |
+
"learning_rate": 1.6470216913317626e-06,
|
1660 |
+
"loss": 0.6655,
|
1661 |
+
"step": 236
|
1662 |
+
},
|
1663 |
+
{
|
1664 |
+
"epoch": 1.896,
|
1665 |
+
"grad_norm": 0.6573698643261111,
|
1666 |
+
"learning_rate": 1.4206749233902084e-06,
|
1667 |
+
"loss": 0.6264,
|
1668 |
+
"step": 237
|
1669 |
+
},
|
1670 |
+
{
|
1671 |
+
"epoch": 1.904,
|
1672 |
+
"grad_norm": 0.674748855909925,
|
1673 |
+
"learning_rate": 1.2109411818274852e-06,
|
1674 |
+
"loss": 0.6998,
|
1675 |
+
"step": 238
|
1676 |
+
},
|
1677 |
+
{
|
1678 |
+
"epoch": 1.912,
|
1679 |
+
"grad_norm": 0.6717822723070102,
|
1680 |
+
"learning_rate": 1.0178558119067315e-06,
|
1681 |
+
"loss": 0.6694,
|
1682 |
+
"step": 239
|
1683 |
+
},
|
1684 |
+
{
|
1685 |
+
"epoch": 1.92,
|
1686 |
+
"grad_norm": 0.6005919528342801,
|
1687 |
+
"learning_rate": 8.41451353233369e-07,
|
1688 |
+
"loss": 0.6788,
|
1689 |
+
"step": 240
|
1690 |
+
},
|
1691 |
+
{
|
1692 |
+
"epoch": 1.928,
|
1693 |
+
"grad_norm": 0.6588728502179835,
|
1694 |
+
"learning_rate": 6.817575342714988e-07,
|
1695 |
+
"loss": 0.6907,
|
1696 |
+
"step": 241
|
1697 |
+
},
|
1698 |
+
{
|
1699 |
+
"epoch": 1.936,
|
1700 |
+
"grad_norm": 0.6399991839714124,
|
1701 |
+
"learning_rate": 5.388012673338661e-07,
|
1702 |
+
"loss": 0.7308,
|
1703 |
+
"step": 242
|
1704 |
+
},
|
1705 |
+
{
|
1706 |
+
"epoch": 1.944,
|
1707 |
+
"grad_norm": 0.6727098433398869,
|
1708 |
+
"learning_rate": 4.126066440464982e-07,
|
1709 |
+
"loss": 0.7206,
|
1710 |
+
"step": 243
|
1711 |
+
},
|
1712 |
+
{
|
1713 |
+
"epoch": 1.952,
|
1714 |
+
"grad_norm": 0.6453747666541074,
|
1715 |
+
"learning_rate": 3.0319493128866396e-07,
|
1716 |
+
"loss": 0.6922,
|
1717 |
+
"step": 244
|
1718 |
+
},
|
1719 |
+
{
|
1720 |
+
"epoch": 1.96,
|
1721 |
+
"grad_norm": 0.6826025782964477,
|
1722 |
+
"learning_rate": 2.1058456760891798e-07,
|
1723 |
+
"loss": 0.6359,
|
1724 |
+
"step": 245
|
1725 |
+
},
|
1726 |
+
{
|
1727 |
+
"epoch": 1.968,
|
1728 |
+
"grad_norm": 0.6759076178003499,
|
1729 |
+
"learning_rate": 1.3479116011769767e-07,
|
1730 |
+
"loss": 0.7169,
|
1731 |
+
"step": 246
|
1732 |
+
},
|
1733 |
+
{
|
1734 |
+
"epoch": 1.976,
|
1735 |
+
"grad_norm": 0.6557247806930547,
|
1736 |
+
"learning_rate": 7.582748185719358e-08,
|
1737 |
+
"loss": 0.662,
|
1738 |
+
"step": 247
|
1739 |
+
},
|
1740 |
+
{
|
1741 |
+
"epoch": 1.984,
|
1742 |
+
"grad_norm": 0.6905158594933963,
|
1743 |
+
"learning_rate": 3.370346964876036e-08,
|
1744 |
+
"loss": 0.639,
|
1745 |
+
"step": 248
|
1746 |
+
},
|
1747 |
+
{
|
1748 |
+
"epoch": 1.992,
|
1749 |
+
"grad_norm": 0.6703768445324131,
|
1750 |
+
"learning_rate": 8.426222418311814e-09,
|
1751 |
+
"loss": 0.7734,
|
1752 |
+
"step": 249
|
1753 |
+
},
|
1754 |
+
{
|
1755 |
+
"epoch": 2.0,
|
1756 |
+
"grad_norm": 0.6528927891706773,
|
1757 |
+
"learning_rate": 0.0,
|
1758 |
+
"loss": 0.6719,
|
1759 |
+
"step": 250
|
1760 |
+
},
|
1761 |
+
{
|
1762 |
+
"epoch": 2.0,
|
1763 |
+
"step": 250,
|
1764 |
+
"total_flos": 130603858001920.0,
|
1765 |
+
"train_loss": 0.9226167418956757,
|
1766 |
+
"train_runtime": 3038.6804,
|
1767 |
+
"train_samples_per_second": 1.316,
|
1768 |
+
"train_steps_per_second": 0.082
|
1769 |
+
}
|
1770 |
+
],
|
1771 |
+
"logging_steps": 1.0,
|
1772 |
+
"max_steps": 250,
|
1773 |
+
"num_input_tokens_seen": 0,
|
1774 |
+
"num_train_epochs": 2,
|
1775 |
+
"save_steps": 500,
|
1776 |
+
"stateful_callbacks": {
|
1777 |
+
"TrainerControl": {
|
1778 |
+
"args": {
|
1779 |
+
"should_epoch_stop": false,
|
1780 |
+
"should_evaluate": false,
|
1781 |
+
"should_log": false,
|
1782 |
+
"should_save": false,
|
1783 |
+
"should_training_stop": false
|
1784 |
+
},
|
1785 |
+
"attributes": {}
|
1786 |
+
}
|
1787 |
+
},
|
1788 |
+
"total_flos": 130603858001920.0,
|
1789 |
+
"train_batch_size": 8,
|
1790 |
+
"trial_name": null,
|
1791 |
+
"trial_params": null
|
1792 |
+
}
|
single_dataset/gpt4o_conversations/VideoGameBunny_v1_1-Llama-3-8B-V-gpt4o_conversations_dataset_5000_epochs_1_lora/README.md
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: peft
|
3 |
+
base_model: ./weights/Bunny-v1_1-Llama-3-8B-V
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.11.1
|
single_dataset/gpt4o_conversations/VideoGameBunny_v1_1-Llama-3-8B-V-gpt4o_conversations_dataset_5000_epochs_1_lora/adapter_config.json
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "./weights/Bunny-v1_1-Llama-3-8B-V",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layer_replication": null,
|
10 |
+
"layers_pattern": null,
|
11 |
+
"layers_to_transform": null,
|
12 |
+
"loftq_config": {},
|
13 |
+
"lora_alpha": 256,
|
14 |
+
"lora_dropout": 0.1,
|
15 |
+
"megatron_config": null,
|
16 |
+
"megatron_core": "megatron.core",
|
17 |
+
"modules_to_save": null,
|
18 |
+
"peft_type": "LORA",
|
19 |
+
"r": 128,
|
20 |
+
"rank_pattern": {},
|
21 |
+
"revision": null,
|
22 |
+
"target_modules": [
|
23 |
+
"q_proj",
|
24 |
+
"up_proj",
|
25 |
+
"o_proj",
|
26 |
+
"v_proj",
|
27 |
+
"k_proj",
|
28 |
+
"gate_proj",
|
29 |
+
"down_proj"
|
30 |
+
],
|
31 |
+
"task_type": "CAUSAL_LM",
|
32 |
+
"use_dora": false,
|
33 |
+
"use_rslora": false
|
34 |
+
}
|
single_dataset/gpt4o_conversations/VideoGameBunny_v1_1-Llama-3-8B-V-gpt4o_conversations_dataset_5000_epochs_1_lora/adapter_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5e94296acb549b80024e300c9a323b71ee3077e46a71b5a7f17b0f989114a6e5
|
3 |
+
size 671150064
|
single_dataset/gpt4o_conversations/VideoGameBunny_v1_1-Llama-3-8B-V-gpt4o_conversations_dataset_5000_epochs_1_lora/config.json
ADDED
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "./weights/Bunny-v1_1-Llama-3-8B-V",
|
3 |
+
"architectures": [
|
4 |
+
"BunnyLlamaForCausalLM"
|
5 |
+
],
|
6 |
+
"attention_bias": false,
|
7 |
+
"attention_dropout": 0.0,
|
8 |
+
"auto_map": {
|
9 |
+
"AutoConfig": "configuration_bunny_llama.BunnyLlamaConfig",
|
10 |
+
"AutoModelForCausalLM": "modeling_bunny_llama.BunnyLlamaForCausalLM"
|
11 |
+
},
|
12 |
+
"bos_token_id": 128000,
|
13 |
+
"continuous_training": false,
|
14 |
+
"eos_token_id": 128001,
|
15 |
+
"freeze_mm_mlp_adapter": false,
|
16 |
+
"hidden_act": "silu",
|
17 |
+
"hidden_size": 4096,
|
18 |
+
"image_aspect_ratio": "pad",
|
19 |
+
"initializer_range": 0.02,
|
20 |
+
"intermediate_size": 14336,
|
21 |
+
"max_position_embeddings": 8192,
|
22 |
+
"mm_hidden_size": 3456,
|
23 |
+
"mm_projector_lr": null,
|
24 |
+
"mm_projector_type": "mlp2x_gelu",
|
25 |
+
"mm_vision_tower": "./weights/siglip-so400m-patch14-384",
|
26 |
+
"model_type": "bunny-llama",
|
27 |
+
"num_attention_heads": 32,
|
28 |
+
"num_hidden_layers": 32,
|
29 |
+
"num_key_value_heads": 8,
|
30 |
+
"pretraining_tp": 1,
|
31 |
+
"rms_norm_eps": 1e-05,
|
32 |
+
"rope_scaling": null,
|
33 |
+
"rope_theta": 500000.0,
|
34 |
+
"tie_word_embeddings": false,
|
35 |
+
"tokenizer_model_max_length": 2048,
|
36 |
+
"tokenizer_padding_side": "right",
|
37 |
+
"torch_dtype": "float16",
|
38 |
+
"transformers_version": "4.41.2",
|
39 |
+
"tune_mm_mlp_adapter": false,
|
40 |
+
"unfreeze_vision_tower": true,
|
41 |
+
"use_cache": true,
|
42 |
+
"use_mm_proj": true,
|
43 |
+
"use_s2": true,
|
44 |
+
"vocab_size": 128256
|
45 |
+
}
|
single_dataset/gpt4o_conversations/VideoGameBunny_v1_1-Llama-3-8B-V-gpt4o_conversations_dataset_5000_epochs_1_lora/non_lora_trainables.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fd0a8733639c356cd85e403d0c948297f862e3bc719bcb1be355d5aa0fb94d57
|
3 |
+
size 918507402
|
single_dataset/gpt4o_conversations/VideoGameBunny_v1_1-Llama-3-8B-V-gpt4o_conversations_dataset_5000_epochs_1_lora/trainer_state.json
ADDED
@@ -0,0 +1,2226 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 0.9984,
|
5 |
+
"eval_steps": 500,
|
6 |
+
"global_step": 312,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.0032,
|
13 |
+
"grad_norm": 0.8934607401720872,
|
14 |
+
"learning_rate": 2e-05,
|
15 |
+
"loss": 1.3726,
|
16 |
+
"step": 1
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.0064,
|
20 |
+
"grad_norm": 0.9702764908035759,
|
21 |
+
"learning_rate": 4e-05,
|
22 |
+
"loss": 1.3514,
|
23 |
+
"step": 2
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"epoch": 0.0096,
|
27 |
+
"grad_norm": 0.8928671122403777,
|
28 |
+
"learning_rate": 6e-05,
|
29 |
+
"loss": 1.3464,
|
30 |
+
"step": 3
|
31 |
+
},
|
32 |
+
{
|
33 |
+
"epoch": 0.0128,
|
34 |
+
"grad_norm": 0.733085596985154,
|
35 |
+
"learning_rate": 8e-05,
|
36 |
+
"loss": 1.2532,
|
37 |
+
"step": 4
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"epoch": 0.016,
|
41 |
+
"grad_norm": 0.8570494872495142,
|
42 |
+
"learning_rate": 0.0001,
|
43 |
+
"loss": 1.1028,
|
44 |
+
"step": 5
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"epoch": 0.0192,
|
48 |
+
"grad_norm": 1.0400527883080488,
|
49 |
+
"learning_rate": 0.00012,
|
50 |
+
"loss": 1.2828,
|
51 |
+
"step": 6
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"epoch": 0.0224,
|
55 |
+
"grad_norm": 0.8428812825744051,
|
56 |
+
"learning_rate": 0.00014,
|
57 |
+
"loss": 1.2222,
|
58 |
+
"step": 7
|
59 |
+
},
|
60 |
+
{
|
61 |
+
"epoch": 0.0256,
|
62 |
+
"grad_norm": 0.7939623442508198,
|
63 |
+
"learning_rate": 0.00016,
|
64 |
+
"loss": 1.2832,
|
65 |
+
"step": 8
|
66 |
+
},
|
67 |
+
{
|
68 |
+
"epoch": 0.0288,
|
69 |
+
"grad_norm": 0.6664596962036828,
|
70 |
+
"learning_rate": 0.00018,
|
71 |
+
"loss": 1.2148,
|
72 |
+
"step": 9
|
73 |
+
},
|
74 |
+
{
|
75 |
+
"epoch": 0.032,
|
76 |
+
"grad_norm": 0.7655774280979413,
|
77 |
+
"learning_rate": 0.0002,
|
78 |
+
"loss": 1.2593,
|
79 |
+
"step": 10
|
80 |
+
},
|
81 |
+
{
|
82 |
+
"epoch": 0.0352,
|
83 |
+
"grad_norm": 0.9002584907773491,
|
84 |
+
"learning_rate": 0.00019999458931878073,
|
85 |
+
"loss": 1.2274,
|
86 |
+
"step": 11
|
87 |
+
},
|
88 |
+
{
|
89 |
+
"epoch": 0.0384,
|
90 |
+
"grad_norm": 0.6973696058498797,
|
91 |
+
"learning_rate": 0.0001999783578606323,
|
92 |
+
"loss": 1.1777,
|
93 |
+
"step": 12
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"epoch": 0.0416,
|
97 |
+
"grad_norm": 0.7961500621219396,
|
98 |
+
"learning_rate": 0.00019995130738201966,
|
99 |
+
"loss": 1.2384,
|
100 |
+
"step": 13
|
101 |
+
},
|
102 |
+
{
|
103 |
+
"epoch": 0.0448,
|
104 |
+
"grad_norm": 0.6934442208162789,
|
105 |
+
"learning_rate": 0.0001999134408101731,
|
106 |
+
"loss": 1.1529,
|
107 |
+
"step": 14
|
108 |
+
},
|
109 |
+
{
|
110 |
+
"epoch": 0.048,
|
111 |
+
"grad_norm": 0.7760808007197953,
|
112 |
+
"learning_rate": 0.00019986476224277165,
|
113 |
+
"loss": 1.1961,
|
114 |
+
"step": 15
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 0.0512,
|
118 |
+
"grad_norm": 0.7662958744276087,
|
119 |
+
"learning_rate": 0.00019980527694749952,
|
120 |
+
"loss": 1.2431,
|
121 |
+
"step": 16
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"epoch": 0.0544,
|
125 |
+
"grad_norm": 0.7492875679562371,
|
126 |
+
"learning_rate": 0.00019973499136147606,
|
127 |
+
"loss": 1.1853,
|
128 |
+
"step": 17
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"epoch": 0.0576,
|
132 |
+
"grad_norm": 0.6644857894549516,
|
133 |
+
"learning_rate": 0.0001996539130905593,
|
134 |
+
"loss": 1.0896,
|
135 |
+
"step": 18
|
136 |
+
},
|
137 |
+
{
|
138 |
+
"epoch": 0.0608,
|
139 |
+
"grad_norm": 0.7028291596766432,
|
140 |
+
"learning_rate": 0.0001995620509085228,
|
141 |
+
"loss": 1.1517,
|
142 |
+
"step": 19
|
143 |
+
},
|
144 |
+
{
|
145 |
+
"epoch": 0.064,
|
146 |
+
"grad_norm": 0.7151346253989167,
|
147 |
+
"learning_rate": 0.00019945941475610623,
|
148 |
+
"loss": 1.2471,
|
149 |
+
"step": 20
|
150 |
+
},
|
151 |
+
{
|
152 |
+
"epoch": 0.0672,
|
153 |
+
"grad_norm": 0.6597569217376018,
|
154 |
+
"learning_rate": 0.0001993460157399396,
|
155 |
+
"loss": 1.1051,
|
156 |
+
"step": 21
|
157 |
+
},
|
158 |
+
{
|
159 |
+
"epoch": 0.0704,
|
160 |
+
"grad_norm": 0.7876128410548371,
|
161 |
+
"learning_rate": 0.0001992218661313415,
|
162 |
+
"loss": 1.1344,
|
163 |
+
"step": 22
|
164 |
+
},
|
165 |
+
{
|
166 |
+
"epoch": 0.0736,
|
167 |
+
"grad_norm": 0.6788178829714944,
|
168 |
+
"learning_rate": 0.00019908697936499103,
|
169 |
+
"loss": 1.1579,
|
170 |
+
"step": 23
|
171 |
+
},
|
172 |
+
{
|
173 |
+
"epoch": 0.0768,
|
174 |
+
"grad_norm": 0.6959667855216832,
|
175 |
+
"learning_rate": 0.00019894137003747403,
|
176 |
+
"loss": 1.0935,
|
177 |
+
"step": 24
|
178 |
+
},
|
179 |
+
{
|
180 |
+
"epoch": 0.08,
|
181 |
+
"grad_norm": 0.6360283110594259,
|
182 |
+
"learning_rate": 0.00019878505390570362,
|
183 |
+
"loss": 1.0861,
|
184 |
+
"step": 25
|
185 |
+
},
|
186 |
+
{
|
187 |
+
"epoch": 0.0832,
|
188 |
+
"grad_norm": 0.7149481186935083,
|
189 |
+
"learning_rate": 0.00019861804788521493,
|
190 |
+
"loss": 1.2315,
|
191 |
+
"step": 26
|
192 |
+
},
|
193 |
+
{
|
194 |
+
"epoch": 0.0864,
|
195 |
+
"grad_norm": 0.7290306737510642,
|
196 |
+
"learning_rate": 0.00019844037004833473,
|
197 |
+
"loss": 1.1464,
|
198 |
+
"step": 27
|
199 |
+
},
|
200 |
+
{
|
201 |
+
"epoch": 0.0896,
|
202 |
+
"grad_norm": 0.6106941074968636,
|
203 |
+
"learning_rate": 0.00019825203962222572,
|
204 |
+
"loss": 1.165,
|
205 |
+
"step": 28
|
206 |
+
},
|
207 |
+
{
|
208 |
+
"epoch": 0.0928,
|
209 |
+
"grad_norm": 0.6171080416329583,
|
210 |
+
"learning_rate": 0.0001980530769868059,
|
211 |
+
"loss": 1.1248,
|
212 |
+
"step": 29
|
213 |
+
},
|
214 |
+
{
|
215 |
+
"epoch": 0.096,
|
216 |
+
"grad_norm": 0.6951443407479725,
|
217 |
+
"learning_rate": 0.00019784350367254322,
|
218 |
+
"loss": 1.1997,
|
219 |
+
"step": 30
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 0.0992,
|
223 |
+
"grad_norm": 0.7110530520599219,
|
224 |
+
"learning_rate": 0.0001976233423581255,
|
225 |
+
"loss": 1.0452,
|
226 |
+
"step": 31
|
227 |
+
},
|
228 |
+
{
|
229 |
+
"epoch": 0.1024,
|
230 |
+
"grad_norm": 0.6720320155074625,
|
231 |
+
"learning_rate": 0.0001973926168680066,
|
232 |
+
"loss": 1.1767,
|
233 |
+
"step": 32
|
234 |
+
},
|
235 |
+
{
|
236 |
+
"epoch": 0.1056,
|
237 |
+
"grad_norm": 0.6247290543001629,
|
238 |
+
"learning_rate": 0.00019715135216982798,
|
239 |
+
"loss": 1.1555,
|
240 |
+
"step": 33
|
241 |
+
},
|
242 |
+
{
|
243 |
+
"epoch": 0.1088,
|
244 |
+
"grad_norm": 0.6768489593434474,
|
245 |
+
"learning_rate": 0.0001968995743717171,
|
246 |
+
"loss": 1.2408,
|
247 |
+
"step": 34
|
248 |
+
},
|
249 |
+
{
|
250 |
+
"epoch": 0.112,
|
251 |
+
"grad_norm": 0.5850076189172989,
|
252 |
+
"learning_rate": 0.00019663731071946206,
|
253 |
+
"loss": 1.1552,
|
254 |
+
"step": 35
|
255 |
+
},
|
256 |
+
{
|
257 |
+
"epoch": 0.1152,
|
258 |
+
"grad_norm": 0.6272578992853955,
|
259 |
+
"learning_rate": 0.00019636458959356316,
|
260 |
+
"loss": 1.1843,
|
261 |
+
"step": 36
|
262 |
+
},
|
263 |
+
{
|
264 |
+
"epoch": 0.1184,
|
265 |
+
"grad_norm": 0.6041727331165989,
|
266 |
+
"learning_rate": 0.0001960814405061619,
|
267 |
+
"loss": 1.111,
|
268 |
+
"step": 37
|
269 |
+
},
|
270 |
+
{
|
271 |
+
"epoch": 0.1216,
|
272 |
+
"grad_norm": 0.5853996034242491,
|
273 |
+
"learning_rate": 0.00019578789409784727,
|
274 |
+
"loss": 1.2139,
|
275 |
+
"step": 38
|
276 |
+
},
|
277 |
+
{
|
278 |
+
"epoch": 0.1248,
|
279 |
+
"grad_norm": 0.6044406014017014,
|
280 |
+
"learning_rate": 0.00019548398213434007,
|
281 |
+
"loss": 1.1251,
|
282 |
+
"step": 39
|
283 |
+
},
|
284 |
+
{
|
285 |
+
"epoch": 0.128,
|
286 |
+
"grad_norm": 0.599638159597199,
|
287 |
+
"learning_rate": 0.00019516973750305532,
|
288 |
+
"loss": 1.1915,
|
289 |
+
"step": 40
|
290 |
+
},
|
291 |
+
{
|
292 |
+
"epoch": 0.1312,
|
293 |
+
"grad_norm": 0.6230215019985648,
|
294 |
+
"learning_rate": 0.00019484519420954354,
|
295 |
+
"loss": 1.1465,
|
296 |
+
"step": 41
|
297 |
+
},
|
298 |
+
{
|
299 |
+
"epoch": 0.1344,
|
300 |
+
"grad_norm": 0.6685570571892,
|
301 |
+
"learning_rate": 0.00019451038737381077,
|
302 |
+
"loss": 1.1318,
|
303 |
+
"step": 42
|
304 |
+
},
|
305 |
+
{
|
306 |
+
"epoch": 0.1376,
|
307 |
+
"grad_norm": 0.6591831305025555,
|
308 |
+
"learning_rate": 0.00019416535322651818,
|
309 |
+
"loss": 1.1549,
|
310 |
+
"step": 43
|
311 |
+
},
|
312 |
+
{
|
313 |
+
"epoch": 0.1408,
|
314 |
+
"grad_norm": 0.6302659422826664,
|
315 |
+
"learning_rate": 0.00019381012910506146,
|
316 |
+
"loss": 1.1936,
|
317 |
+
"step": 44
|
318 |
+
},
|
319 |
+
{
|
320 |
+
"epoch": 0.144,
|
321 |
+
"grad_norm": 0.6551385711236554,
|
322 |
+
"learning_rate": 0.00019344475344953012,
|
323 |
+
"loss": 1.1421,
|
324 |
+
"step": 45
|
325 |
+
},
|
326 |
+
{
|
327 |
+
"epoch": 0.1472,
|
328 |
+
"grad_norm": 0.6846744761544914,
|
329 |
+
"learning_rate": 0.00019306926579854821,
|
330 |
+
"loss": 1.1853,
|
331 |
+
"step": 46
|
332 |
+
},
|
333 |
+
{
|
334 |
+
"epoch": 0.1504,
|
335 |
+
"grad_norm": 0.5995584235958642,
|
336 |
+
"learning_rate": 0.00019268370678499533,
|
337 |
+
"loss": 1.1172,
|
338 |
+
"step": 47
|
339 |
+
},
|
340 |
+
{
|
341 |
+
"epoch": 0.1536,
|
342 |
+
"grad_norm": 0.6693072383155553,
|
343 |
+
"learning_rate": 0.0001922881181316097,
|
344 |
+
"loss": 1.0899,
|
345 |
+
"step": 48
|
346 |
+
},
|
347 |
+
{
|
348 |
+
"epoch": 0.1568,
|
349 |
+
"grad_norm": 0.5823860976342665,
|
350 |
+
"learning_rate": 0.00019188254264647337,
|
351 |
+
"loss": 1.0778,
|
352 |
+
"step": 49
|
353 |
+
},
|
354 |
+
{
|
355 |
+
"epoch": 0.16,
|
356 |
+
"grad_norm": 0.6548607686911667,
|
357 |
+
"learning_rate": 0.0001914670242183795,
|
358 |
+
"loss": 1.1292,
|
359 |
+
"step": 50
|
360 |
+
},
|
361 |
+
{
|
362 |
+
"epoch": 0.1632,
|
363 |
+
"grad_norm": 0.6455229915546238,
|
364 |
+
"learning_rate": 0.0001910416078120832,
|
365 |
+
"loss": 1.2137,
|
366 |
+
"step": 51
|
367 |
+
},
|
368 |
+
{
|
369 |
+
"epoch": 0.1664,
|
370 |
+
"grad_norm": 0.6797448562922372,
|
371 |
+
"learning_rate": 0.0001906063394634356,
|
372 |
+
"loss": 1.1747,
|
373 |
+
"step": 52
|
374 |
+
},
|
375 |
+
{
|
376 |
+
"epoch": 0.1696,
|
377 |
+
"grad_norm": 0.6169579402663269,
|
378 |
+
"learning_rate": 0.00019016126627440237,
|
379 |
+
"loss": 1.1282,
|
380 |
+
"step": 53
|
381 |
+
},
|
382 |
+
{
|
383 |
+
"epoch": 0.1728,
|
384 |
+
"grad_norm": 0.5752462685930675,
|
385 |
+
"learning_rate": 0.00018970643640796642,
|
386 |
+
"loss": 1.2357,
|
387 |
+
"step": 54
|
388 |
+
},
|
389 |
+
{
|
390 |
+
"epoch": 0.176,
|
391 |
+
"grad_norm": 0.6524878494461898,
|
392 |
+
"learning_rate": 0.000189241899082916,
|
393 |
+
"loss": 1.1178,
|
394 |
+
"step": 55
|
395 |
+
},
|
396 |
+
{
|
397 |
+
"epoch": 0.1792,
|
398 |
+
"grad_norm": 0.5803880758055884,
|
399 |
+
"learning_rate": 0.00018876770456851877,
|
400 |
+
"loss": 1.0582,
|
401 |
+
"step": 56
|
402 |
+
},
|
403 |
+
{
|
404 |
+
"epoch": 0.1824,
|
405 |
+
"grad_norm": 0.6284049891526231,
|
406 |
+
"learning_rate": 0.0001882839041790818,
|
407 |
+
"loss": 1.1503,
|
408 |
+
"step": 57
|
409 |
+
},
|
410 |
+
{
|
411 |
+
"epoch": 0.1856,
|
412 |
+
"grad_norm": 0.6429933521925236,
|
413 |
+
"learning_rate": 0.00018779055026839868,
|
414 |
+
"loss": 1.1227,
|
415 |
+
"step": 58
|
416 |
+
},
|
417 |
+
{
|
418 |
+
"epoch": 0.1888,
|
419 |
+
"grad_norm": 0.6642315948614433,
|
420 |
+
"learning_rate": 0.00018728769622408423,
|
421 |
+
"loss": 1.1491,
|
422 |
+
"step": 59
|
423 |
+
},
|
424 |
+
{
|
425 |
+
"epoch": 0.192,
|
426 |
+
"grad_norm": 0.6318270344993646,
|
427 |
+
"learning_rate": 0.00018677539646179707,
|
428 |
+
"loss": 1.0924,
|
429 |
+
"step": 60
|
430 |
+
},
|
431 |
+
{
|
432 |
+
"epoch": 0.1952,
|
433 |
+
"grad_norm": 0.6736013814160521,
|
434 |
+
"learning_rate": 0.00018625370641935129,
|
435 |
+
"loss": 1.1376,
|
436 |
+
"step": 61
|
437 |
+
},
|
438 |
+
{
|
439 |
+
"epoch": 0.1984,
|
440 |
+
"grad_norm": 0.6290487314099203,
|
441 |
+
"learning_rate": 0.00018572268255071718,
|
442 |
+
"loss": 1.1099,
|
443 |
+
"step": 62
|
444 |
+
},
|
445 |
+
{
|
446 |
+
"epoch": 0.2016,
|
447 |
+
"grad_norm": 0.5868150325072425,
|
448 |
+
"learning_rate": 0.00018518238231991218,
|
449 |
+
"loss": 1.0572,
|
450 |
+
"step": 63
|
451 |
+
},
|
452 |
+
{
|
453 |
+
"epoch": 0.2048,
|
454 |
+
"grad_norm": 0.6287361571659641,
|
455 |
+
"learning_rate": 0.00018463286419478255,
|
456 |
+
"loss": 1.1199,
|
457 |
+
"step": 64
|
458 |
+
},
|
459 |
+
{
|
460 |
+
"epoch": 0.208,
|
461 |
+
"grad_norm": 0.635478784306169,
|
462 |
+
"learning_rate": 0.00018407418764067627,
|
463 |
+
"loss": 1.1375,
|
464 |
+
"step": 65
|
465 |
+
},
|
466 |
+
{
|
467 |
+
"epoch": 0.2112,
|
468 |
+
"grad_norm": 0.6934699927576387,
|
469 |
+
"learning_rate": 0.00018350641311400812,
|
470 |
+
"loss": 1.12,
|
471 |
+
"step": 66
|
472 |
+
},
|
473 |
+
{
|
474 |
+
"epoch": 0.2144,
|
475 |
+
"grad_norm": 0.6300333641647747,
|
476 |
+
"learning_rate": 0.0001829296020557174,
|
477 |
+
"loss": 1.1237,
|
478 |
+
"step": 67
|
479 |
+
},
|
480 |
+
{
|
481 |
+
"epoch": 0.2176,
|
482 |
+
"grad_norm": 0.603806858704276,
|
483 |
+
"learning_rate": 0.00018234381688461942,
|
484 |
+
"loss": 1.1252,
|
485 |
+
"step": 68
|
486 |
+
},
|
487 |
+
{
|
488 |
+
"epoch": 0.2208,
|
489 |
+
"grad_norm": 0.6328663939650221,
|
490 |
+
"learning_rate": 0.0001817491209906506,
|
491 |
+
"loss": 1.1643,
|
492 |
+
"step": 69
|
493 |
+
},
|
494 |
+
{
|
495 |
+
"epoch": 0.224,
|
496 |
+
"grad_norm": 0.6587939462250295,
|
497 |
+
"learning_rate": 0.00018114557872800905,
|
498 |
+
"loss": 1.159,
|
499 |
+
"step": 70
|
500 |
+
},
|
501 |
+
{
|
502 |
+
"epoch": 0.2272,
|
503 |
+
"grad_norm": 0.6554856961720463,
|
504 |
+
"learning_rate": 0.00018053325540819045,
|
505 |
+
"loss": 1.0889,
|
506 |
+
"step": 71
|
507 |
+
},
|
508 |
+
{
|
509 |
+
"epoch": 0.2304,
|
510 |
+
"grad_norm": 0.7008545104931168,
|
511 |
+
"learning_rate": 0.0001799122172929206,
|
512 |
+
"loss": 1.1307,
|
513 |
+
"step": 72
|
514 |
+
},
|
515 |
+
{
|
516 |
+
"epoch": 0.2336,
|
517 |
+
"grad_norm": 0.6109951811360471,
|
518 |
+
"learning_rate": 0.00017928253158698473,
|
519 |
+
"loss": 1.1416,
|
520 |
+
"step": 73
|
521 |
+
},
|
522 |
+
{
|
523 |
+
"epoch": 0.2368,
|
524 |
+
"grad_norm": 0.5813378104951092,
|
525 |
+
"learning_rate": 0.0001786442664309554,
|
526 |
+
"loss": 1.0637,
|
527 |
+
"step": 74
|
528 |
+
},
|
529 |
+
{
|
530 |
+
"epoch": 0.24,
|
531 |
+
"grad_norm": 0.5909823532691317,
|
532 |
+
"learning_rate": 0.0001779974908938184,
|
533 |
+
"loss": 1.1533,
|
534 |
+
"step": 75
|
535 |
+
},
|
536 |
+
{
|
537 |
+
"epoch": 0.2432,
|
538 |
+
"grad_norm": 0.5928182395354943,
|
539 |
+
"learning_rate": 0.0001773422749654988,
|
540 |
+
"loss": 1.1322,
|
541 |
+
"step": 76
|
542 |
+
},
|
543 |
+
{
|
544 |
+
"epoch": 0.2464,
|
545 |
+
"grad_norm": 0.6569884577681215,
|
546 |
+
"learning_rate": 0.00017667868954928694,
|
547 |
+
"loss": 1.1574,
|
548 |
+
"step": 77
|
549 |
+
},
|
550 |
+
{
|
551 |
+
"epoch": 0.2496,
|
552 |
+
"grad_norm": 0.6278707831640676,
|
553 |
+
"learning_rate": 0.00017600680645416583,
|
554 |
+
"loss": 1.087,
|
555 |
+
"step": 78
|
556 |
+
},
|
557 |
+
{
|
558 |
+
"epoch": 0.2528,
|
559 |
+
"grad_norm": 0.640992980278925,
|
560 |
+
"learning_rate": 0.00017532669838704035,
|
561 |
+
"loss": 1.1207,
|
562 |
+
"step": 79
|
563 |
+
},
|
564 |
+
{
|
565 |
+
"epoch": 0.256,
|
566 |
+
"grad_norm": 0.668359710460776,
|
567 |
+
"learning_rate": 0.00017463843894486937,
|
568 |
+
"loss": 1.143,
|
569 |
+
"step": 80
|
570 |
+
},
|
571 |
+
{
|
572 |
+
"epoch": 0.2592,
|
573 |
+
"grad_norm": 0.6285654698383347,
|
574 |
+
"learning_rate": 0.0001739421026067017,
|
575 |
+
"loss": 1.1844,
|
576 |
+
"step": 81
|
577 |
+
},
|
578 |
+
{
|
579 |
+
"epoch": 0.2624,
|
580 |
+
"grad_norm": 0.641766909272507,
|
581 |
+
"learning_rate": 0.00017323776472561627,
|
582 |
+
"loss": 1.1131,
|
583 |
+
"step": 82
|
584 |
+
},
|
585 |
+
{
|
586 |
+
"epoch": 0.2656,
|
587 |
+
"grad_norm": 0.6393224242059528,
|
588 |
+
"learning_rate": 0.00017252550152056795,
|
589 |
+
"loss": 1.1277,
|
590 |
+
"step": 83
|
591 |
+
},
|
592 |
+
{
|
593 |
+
"epoch": 0.2688,
|
594 |
+
"grad_norm": 0.6079741134716099,
|
595 |
+
"learning_rate": 0.0001718053900681397,
|
596 |
+
"loss": 1.139,
|
597 |
+
"step": 84
|
598 |
+
},
|
599 |
+
{
|
600 |
+
"epoch": 0.272,
|
601 |
+
"grad_norm": 0.5889968838496492,
|
602 |
+
"learning_rate": 0.00017107750829420176,
|
603 |
+
"loss": 1.1896,
|
604 |
+
"step": 85
|
605 |
+
},
|
606 |
+
{
|
607 |
+
"epoch": 0.2752,
|
608 |
+
"grad_norm": 0.635708382670474,
|
609 |
+
"learning_rate": 0.00017034193496547902,
|
610 |
+
"loss": 1.1767,
|
611 |
+
"step": 86
|
612 |
+
},
|
613 |
+
{
|
614 |
+
"epoch": 0.2784,
|
615 |
+
"grad_norm": 0.6347494253926971,
|
616 |
+
"learning_rate": 0.00016959874968102735,
|
617 |
+
"loss": 1.0919,
|
618 |
+
"step": 87
|
619 |
+
},
|
620 |
+
{
|
621 |
+
"epoch": 0.2816,
|
622 |
+
"grad_norm": 0.6081714242856907,
|
623 |
+
"learning_rate": 0.00016884803286362,
|
624 |
+
"loss": 1.002,
|
625 |
+
"step": 88
|
626 |
+
},
|
627 |
+
{
|
628 |
+
"epoch": 0.2848,
|
629 |
+
"grad_norm": 0.6687524144949784,
|
630 |
+
"learning_rate": 0.00016808986575104465,
|
631 |
+
"loss": 1.1217,
|
632 |
+
"step": 89
|
633 |
+
},
|
634 |
+
{
|
635 |
+
"epoch": 0.288,
|
636 |
+
"grad_norm": 0.6367497368719929,
|
637 |
+
"learning_rate": 0.00016732433038731242,
|
638 |
+
"loss": 1.1734,
|
639 |
+
"step": 90
|
640 |
+
},
|
641 |
+
{
|
642 |
+
"epoch": 0.2912,
|
643 |
+
"grad_norm": 0.6924335068178338,
|
644 |
+
"learning_rate": 0.0001665515096137797,
|
645 |
+
"loss": 1.1005,
|
646 |
+
"step": 91
|
647 |
+
},
|
648 |
+
{
|
649 |
+
"epoch": 0.2944,
|
650 |
+
"grad_norm": 0.6407334042780027,
|
651 |
+
"learning_rate": 0.00016577148706018328,
|
652 |
+
"loss": 1.1806,
|
653 |
+
"step": 92
|
654 |
+
},
|
655 |
+
{
|
656 |
+
"epoch": 0.2976,
|
657 |
+
"grad_norm": 0.6831640002730881,
|
658 |
+
"learning_rate": 0.00016498434713559088,
|
659 |
+
"loss": 1.1643,
|
660 |
+
"step": 93
|
661 |
+
},
|
662 |
+
{
|
663 |
+
"epoch": 0.3008,
|
664 |
+
"grad_norm": 0.6818497163627971,
|
665 |
+
"learning_rate": 0.00016419017501926656,
|
666 |
+
"loss": 1.1479,
|
667 |
+
"step": 94
|
668 |
+
},
|
669 |
+
{
|
670 |
+
"epoch": 0.304,
|
671 |
+
"grad_norm": 0.6023164784286884,
|
672 |
+
"learning_rate": 0.0001633890566514535,
|
673 |
+
"loss": 1.0199,
|
674 |
+
"step": 95
|
675 |
+
},
|
676 |
+
{
|
677 |
+
"epoch": 0.3072,
|
678 |
+
"grad_norm": 0.6071162038895305,
|
679 |
+
"learning_rate": 0.00016258107872407375,
|
680 |
+
"loss": 1.1268,
|
681 |
+
"step": 96
|
682 |
+
},
|
683 |
+
{
|
684 |
+
"epoch": 0.3104,
|
685 |
+
"grad_norm": 0.6621975947969588,
|
686 |
+
"learning_rate": 0.0001617663286713474,
|
687 |
+
"loss": 1.1054,
|
688 |
+
"step": 97
|
689 |
+
},
|
690 |
+
{
|
691 |
+
"epoch": 0.3136,
|
692 |
+
"grad_norm": 0.6430349596453502,
|
693 |
+
"learning_rate": 0.00016094489466033043,
|
694 |
+
"loss": 1.185,
|
695 |
+
"step": 98
|
696 |
+
},
|
697 |
+
{
|
698 |
+
"epoch": 0.3168,
|
699 |
+
"grad_norm": 0.596716232396584,
|
700 |
+
"learning_rate": 0.00016011686558137448,
|
701 |
+
"loss": 1.1167,
|
702 |
+
"step": 99
|
703 |
+
},
|
704 |
+
{
|
705 |
+
"epoch": 0.32,
|
706 |
+
"grad_norm": 0.8030431208767496,
|
707 |
+
"learning_rate": 0.0001592823310385073,
|
708 |
+
"loss": 1.0043,
|
709 |
+
"step": 100
|
710 |
+
},
|
711 |
+
{
|
712 |
+
"epoch": 0.3232,
|
713 |
+
"grad_norm": 0.6322736824639741,
|
714 |
+
"learning_rate": 0.0001584413813397364,
|
715 |
+
"loss": 1.1156,
|
716 |
+
"step": 101
|
717 |
+
},
|
718 |
+
{
|
719 |
+
"epoch": 0.3264,
|
720 |
+
"grad_norm": 0.9683388132336448,
|
721 |
+
"learning_rate": 0.00015759410748727662,
|
722 |
+
"loss": 1.0974,
|
723 |
+
"step": 102
|
724 |
+
},
|
725 |
+
{
|
726 |
+
"epoch": 0.3296,
|
727 |
+
"grad_norm": 0.5821355886938816,
|
728 |
+
"learning_rate": 0.00015674060116770236,
|
729 |
+
"loss": 1.1224,
|
730 |
+
"step": 103
|
731 |
+
},
|
732 |
+
{
|
733 |
+
"epoch": 0.3328,
|
734 |
+
"grad_norm": 0.6319431789381217,
|
735 |
+
"learning_rate": 0.00015588095474202595,
|
736 |
+
"loss": 1.163,
|
737 |
+
"step": 104
|
738 |
+
},
|
739 |
+
{
|
740 |
+
"epoch": 0.336,
|
741 |
+
"grad_norm": 0.6020869145562134,
|
742 |
+
"learning_rate": 0.00015501526123570277,
|
743 |
+
"loss": 1.1574,
|
744 |
+
"step": 105
|
745 |
+
},
|
746 |
+
{
|
747 |
+
"epoch": 0.3392,
|
748 |
+
"grad_norm": 0.581552295038906,
|
749 |
+
"learning_rate": 0.00015414361432856475,
|
750 |
+
"loss": 1.0393,
|
751 |
+
"step": 106
|
752 |
+
},
|
753 |
+
{
|
754 |
+
"epoch": 0.3424,
|
755 |
+
"grad_norm": 0.6434562480401083,
|
756 |
+
"learning_rate": 0.0001532661083446829,
|
757 |
+
"loss": 1.1169,
|
758 |
+
"step": 107
|
759 |
+
},
|
760 |
+
{
|
761 |
+
"epoch": 0.3456,
|
762 |
+
"grad_norm": 0.6505539891186463,
|
763 |
+
"learning_rate": 0.00015238283824216015,
|
764 |
+
"loss": 1.1125,
|
765 |
+
"step": 108
|
766 |
+
},
|
767 |
+
{
|
768 |
+
"epoch": 0.3488,
|
769 |
+
"grad_norm": 0.6143461053823742,
|
770 |
+
"learning_rate": 0.00015149389960285558,
|
771 |
+
"loss": 1.1756,
|
772 |
+
"step": 109
|
773 |
+
},
|
774 |
+
{
|
775 |
+
"epoch": 0.352,
|
776 |
+
"grad_norm": 0.5678824592957399,
|
777 |
+
"learning_rate": 0.00015059938862204127,
|
778 |
+
"loss": 1.1602,
|
779 |
+
"step": 110
|
780 |
+
},
|
781 |
+
{
|
782 |
+
"epoch": 0.3552,
|
783 |
+
"grad_norm": 0.7196907483605643,
|
784 |
+
"learning_rate": 0.00014969940209799248,
|
785 |
+
"loss": 1.1461,
|
786 |
+
"step": 111
|
787 |
+
},
|
788 |
+
{
|
789 |
+
"epoch": 0.3584,
|
790 |
+
"grad_norm": 0.60872627866381,
|
791 |
+
"learning_rate": 0.00014879403742151283,
|
792 |
+
"loss": 1.0779,
|
793 |
+
"step": 112
|
794 |
+
},
|
795 |
+
{
|
796 |
+
"epoch": 0.3616,
|
797 |
+
"grad_norm": 0.6088948095827803,
|
798 |
+
"learning_rate": 0.00014788339256539544,
|
799 |
+
"loss": 1.1465,
|
800 |
+
"step": 113
|
801 |
+
},
|
802 |
+
{
|
803 |
+
"epoch": 0.3648,
|
804 |
+
"grad_norm": 0.6001452511808347,
|
805 |
+
"learning_rate": 0.0001469675660738206,
|
806 |
+
"loss": 1.0806,
|
807 |
+
"step": 114
|
808 |
+
},
|
809 |
+
{
|
810 |
+
"epoch": 0.368,
|
811 |
+
"grad_norm": 0.7237162644452426,
|
812 |
+
"learning_rate": 0.00014604665705169237,
|
813 |
+
"loss": 1.1681,
|
814 |
+
"step": 115
|
815 |
+
},
|
816 |
+
{
|
817 |
+
"epoch": 0.3712,
|
818 |
+
"grad_norm": 0.6361290323952742,
|
819 |
+
"learning_rate": 0.00014512076515391375,
|
820 |
+
"loss": 1.1262,
|
821 |
+
"step": 116
|
822 |
+
},
|
823 |
+
{
|
824 |
+
"epoch": 0.3744,
|
825 |
+
"grad_norm": 0.6042846124009682,
|
826 |
+
"learning_rate": 0.00014418999057460276,
|
827 |
+
"loss": 1.094,
|
828 |
+
"step": 117
|
829 |
+
},
|
830 |
+
{
|
831 |
+
"epoch": 0.3776,
|
832 |
+
"grad_norm": 0.6026735908383196,
|
833 |
+
"learning_rate": 0.0001432544340362501,
|
834 |
+
"loss": 1.031,
|
835 |
+
"step": 118
|
836 |
+
},
|
837 |
+
{
|
838 |
+
"epoch": 0.3808,
|
839 |
+
"grad_norm": 0.5813635120693075,
|
840 |
+
"learning_rate": 0.00014231419677881966,
|
841 |
+
"loss": 1.0934,
|
842 |
+
"step": 119
|
843 |
+
},
|
844 |
+
{
|
845 |
+
"epoch": 0.384,
|
846 |
+
"grad_norm": 0.6607505994262415,
|
847 |
+
"learning_rate": 0.00014136938054879283,
|
848 |
+
"loss": 1.1583,
|
849 |
+
"step": 120
|
850 |
+
},
|
851 |
+
{
|
852 |
+
"epoch": 0.3872,
|
853 |
+
"grad_norm": 0.5797413168500228,
|
854 |
+
"learning_rate": 0.00014042008758815818,
|
855 |
+
"loss": 1.119,
|
856 |
+
"step": 121
|
857 |
+
},
|
858 |
+
{
|
859 |
+
"epoch": 0.3904,
|
860 |
+
"grad_norm": 0.6212414913681146,
|
861 |
+
"learning_rate": 0.00013946642062334766,
|
862 |
+
"loss": 1.1696,
|
863 |
+
"step": 122
|
864 |
+
},
|
865 |
+
{
|
866 |
+
"epoch": 0.3936,
|
867 |
+
"grad_norm": 0.5874185714602815,
|
868 |
+
"learning_rate": 0.00013850848285411994,
|
869 |
+
"loss": 1.098,
|
870 |
+
"step": 123
|
871 |
+
},
|
872 |
+
{
|
873 |
+
"epoch": 0.3968,
|
874 |
+
"grad_norm": 0.6030500726178164,
|
875 |
+
"learning_rate": 0.000137546377942393,
|
876 |
+
"loss": 1.0709,
|
877 |
+
"step": 124
|
878 |
+
},
|
879 |
+
{
|
880 |
+
"epoch": 0.4,
|
881 |
+
"grad_norm": 0.5515883025449129,
|
882 |
+
"learning_rate": 0.00013658021000102636,
|
883 |
+
"loss": 1.0873,
|
884 |
+
"step": 125
|
885 |
+
},
|
886 |
+
{
|
887 |
+
"epoch": 0.4032,
|
888 |
+
"grad_norm": 0.6617058119593494,
|
889 |
+
"learning_rate": 0.00013561008358255468,
|
890 |
+
"loss": 1.0748,
|
891 |
+
"step": 126
|
892 |
+
},
|
893 |
+
{
|
894 |
+
"epoch": 0.4064,
|
895 |
+
"grad_norm": 0.6044340009807571,
|
896 |
+
"learning_rate": 0.00013463610366787392,
|
897 |
+
"loss": 1.1109,
|
898 |
+
"step": 127
|
899 |
+
},
|
900 |
+
{
|
901 |
+
"epoch": 0.4096,
|
902 |
+
"grad_norm": 0.6280824205414822,
|
903 |
+
"learning_rate": 0.00013365837565488064,
|
904 |
+
"loss": 1.1219,
|
905 |
+
"step": 128
|
906 |
+
},
|
907 |
+
{
|
908 |
+
"epoch": 0.4128,
|
909 |
+
"grad_norm": 0.6023589276763569,
|
910 |
+
"learning_rate": 0.0001326770053470668,
|
911 |
+
"loss": 1.0416,
|
912 |
+
"step": 129
|
913 |
+
},
|
914 |
+
{
|
915 |
+
"epoch": 0.416,
|
916 |
+
"grad_norm": 0.601503782550989,
|
917 |
+
"learning_rate": 0.0001316920989420703,
|
918 |
+
"loss": 1.1202,
|
919 |
+
"step": 130
|
920 |
+
},
|
921 |
+
{
|
922 |
+
"epoch": 0.4192,
|
923 |
+
"grad_norm": 0.5947810021728166,
|
924 |
+
"learning_rate": 0.00013070376302018287,
|
925 |
+
"loss": 1.0489,
|
926 |
+
"step": 131
|
927 |
+
},
|
928 |
+
{
|
929 |
+
"epoch": 0.4224,
|
930 |
+
"grad_norm": 0.5960541379516832,
|
931 |
+
"learning_rate": 0.00012971210453281674,
|
932 |
+
"loss": 1.0828,
|
933 |
+
"step": 132
|
934 |
+
},
|
935 |
+
{
|
936 |
+
"epoch": 0.4256,
|
937 |
+
"grad_norm": 0.6301040459235665,
|
938 |
+
"learning_rate": 0.000128717230790931,
|
939 |
+
"loss": 1.1456,
|
940 |
+
"step": 133
|
941 |
+
},
|
942 |
+
{
|
943 |
+
"epoch": 0.4288,
|
944 |
+
"grad_norm": 0.6218790112688984,
|
945 |
+
"learning_rate": 0.00012771924945341906,
|
946 |
+
"loss": 1.1443,
|
947 |
+
"step": 134
|
948 |
+
},
|
949 |
+
{
|
950 |
+
"epoch": 0.432,
|
951 |
+
"grad_norm": 0.6331790582677411,
|
952 |
+
"learning_rate": 0.00012671826851545851,
|
953 |
+
"loss": 1.1512,
|
954 |
+
"step": 135
|
955 |
+
},
|
956 |
+
{
|
957 |
+
"epoch": 0.4352,
|
958 |
+
"grad_norm": 0.6920164094640866,
|
959 |
+
"learning_rate": 0.0001257143962968246,
|
960 |
+
"loss": 1.0705,
|
961 |
+
"step": 136
|
962 |
+
},
|
963 |
+
{
|
964 |
+
"epoch": 0.4384,
|
965 |
+
"grad_norm": 0.6457611049577008,
|
966 |
+
"learning_rate": 0.00012470774143016853,
|
967 |
+
"loss": 1.108,
|
968 |
+
"step": 137
|
969 |
+
},
|
970 |
+
{
|
971 |
+
"epoch": 0.4416,
|
972 |
+
"grad_norm": 0.5851148684445352,
|
973 |
+
"learning_rate": 0.00012369841284926188,
|
974 |
+
"loss": 1.1249,
|
975 |
+
"step": 138
|
976 |
+
},
|
977 |
+
{
|
978 |
+
"epoch": 0.4448,
|
979 |
+
"grad_norm": 0.5616442882431073,
|
980 |
+
"learning_rate": 0.00012268651977720866,
|
981 |
+
"loss": 1.173,
|
982 |
+
"step": 139
|
983 |
+
},
|
984 |
+
{
|
985 |
+
"epoch": 0.448,
|
986 |
+
"grad_norm": 0.6029147306217549,
|
987 |
+
"learning_rate": 0.00012167217171462566,
|
988 |
+
"loss": 1.0922,
|
989 |
+
"step": 140
|
990 |
+
},
|
991 |
+
{
|
992 |
+
"epoch": 0.4512,
|
993 |
+
"grad_norm": 0.5983185759853441,
|
994 |
+
"learning_rate": 0.0001206554784277931,
|
995 |
+
"loss": 1.0569,
|
996 |
+
"step": 141
|
997 |
+
},
|
998 |
+
{
|
999 |
+
"epoch": 0.4544,
|
1000 |
+
"grad_norm": 0.6459305861705162,
|
1001 |
+
"learning_rate": 0.00011963654993677645,
|
1002 |
+
"loss": 1.1201,
|
1003 |
+
"step": 142
|
1004 |
+
},
|
1005 |
+
{
|
1006 |
+
"epoch": 0.4576,
|
1007 |
+
"grad_norm": 0.6413251599078064,
|
1008 |
+
"learning_rate": 0.00011861549650352069,
|
1009 |
+
"loss": 1.0949,
|
1010 |
+
"step": 143
|
1011 |
+
},
|
1012 |
+
{
|
1013 |
+
"epoch": 0.4608,
|
1014 |
+
"grad_norm": 0.5567459691512033,
|
1015 |
+
"learning_rate": 0.00011759242861991855,
|
1016 |
+
"loss": 1.1077,
|
1017 |
+
"step": 144
|
1018 |
+
},
|
1019 |
+
{
|
1020 |
+
"epoch": 0.464,
|
1021 |
+
"grad_norm": 0.6050063276858223,
|
1022 |
+
"learning_rate": 0.00011656745699585371,
|
1023 |
+
"loss": 1.0871,
|
1024 |
+
"step": 145
|
1025 |
+
},
|
1026 |
+
{
|
1027 |
+
"epoch": 0.4672,
|
1028 |
+
"grad_norm": 0.5768000953188527,
|
1029 |
+
"learning_rate": 0.00011554069254722051,
|
1030 |
+
"loss": 1.0336,
|
1031 |
+
"step": 146
|
1032 |
+
},
|
1033 |
+
{
|
1034 |
+
"epoch": 0.4704,
|
1035 |
+
"grad_norm": 0.58354353504979,
|
1036 |
+
"learning_rate": 0.00011451224638392129,
|
1037 |
+
"loss": 1.109,
|
1038 |
+
"step": 147
|
1039 |
+
},
|
1040 |
+
{
|
1041 |
+
"epoch": 0.4736,
|
1042 |
+
"grad_norm": 0.6239680842671043,
|
1043 |
+
"learning_rate": 0.00011348222979784289,
|
1044 |
+
"loss": 1.1406,
|
1045 |
+
"step": 148
|
1046 |
+
},
|
1047 |
+
{
|
1048 |
+
"epoch": 0.4768,
|
1049 |
+
"grad_norm": 0.5639619023664048,
|
1050 |
+
"learning_rate": 0.00011245075425081328,
|
1051 |
+
"loss": 1.1355,
|
1052 |
+
"step": 149
|
1053 |
+
},
|
1054 |
+
{
|
1055 |
+
"epoch": 0.48,
|
1056 |
+
"grad_norm": 0.5994597322729686,
|
1057 |
+
"learning_rate": 0.00011141793136253986,
|
1058 |
+
"loss": 0.9949,
|
1059 |
+
"step": 150
|
1060 |
+
},
|
1061 |
+
{
|
1062 |
+
"epoch": 0.4832,
|
1063 |
+
"grad_norm": 0.6187766287679105,
|
1064 |
+
"learning_rate": 0.0001103838728985307,
|
1065 |
+
"loss": 1.123,
|
1066 |
+
"step": 151
|
1067 |
+
},
|
1068 |
+
{
|
1069 |
+
"epoch": 0.4864,
|
1070 |
+
"grad_norm": 0.5880933746187075,
|
1071 |
+
"learning_rate": 0.000109348690758,
|
1072 |
+
"loss": 1.0811,
|
1073 |
+
"step": 152
|
1074 |
+
},
|
1075 |
+
{
|
1076 |
+
"epoch": 0.4896,
|
1077 |
+
"grad_norm": 0.5214334484876151,
|
1078 |
+
"learning_rate": 0.00010831249696175918,
|
1079 |
+
"loss": 1.04,
|
1080 |
+
"step": 153
|
1081 |
+
},
|
1082 |
+
{
|
1083 |
+
"epoch": 0.4928,
|
1084 |
+
"grad_norm": 0.6045346113069798,
|
1085 |
+
"learning_rate": 0.0001072754036400944,
|
1086 |
+
"loss": 1.1112,
|
1087 |
+
"step": 154
|
1088 |
+
},
|
1089 |
+
{
|
1090 |
+
"epoch": 0.496,
|
1091 |
+
"grad_norm": 0.5972215634171124,
|
1092 |
+
"learning_rate": 0.00010623752302063283,
|
1093 |
+
"loss": 1.1067,
|
1094 |
+
"step": 155
|
1095 |
+
},
|
1096 |
+
{
|
1097 |
+
"epoch": 0.4992,
|
1098 |
+
"grad_norm": 0.5862603509263139,
|
1099 |
+
"learning_rate": 0.00010519896741619803,
|
1100 |
+
"loss": 1.0297,
|
1101 |
+
"step": 156
|
1102 |
+
},
|
1103 |
+
{
|
1104 |
+
"epoch": 0.5024,
|
1105 |
+
"grad_norm": 0.589645718660567,
|
1106 |
+
"learning_rate": 0.00010415984921265609,
|
1107 |
+
"loss": 1.0336,
|
1108 |
+
"step": 157
|
1109 |
+
},
|
1110 |
+
{
|
1111 |
+
"epoch": 0.5056,
|
1112 |
+
"grad_norm": 0.5966492770502331,
|
1113 |
+
"learning_rate": 0.00010312028085675391,
|
1114 |
+
"loss": 1.0866,
|
1115 |
+
"step": 158
|
1116 |
+
},
|
1117 |
+
{
|
1118 |
+
"epoch": 0.5088,
|
1119 |
+
"grad_norm": 0.638493351015436,
|
1120 |
+
"learning_rate": 0.00010208037484395114,
|
1121 |
+
"loss": 1.0765,
|
1122 |
+
"step": 159
|
1123 |
+
},
|
1124 |
+
{
|
1125 |
+
"epoch": 0.512,
|
1126 |
+
"grad_norm": 0.6208601412709848,
|
1127 |
+
"learning_rate": 0.00010104024370624644,
|
1128 |
+
"loss": 1.1046,
|
1129 |
+
"step": 160
|
1130 |
+
},
|
1131 |
+
{
|
1132 |
+
"epoch": 0.5152,
|
1133 |
+
"grad_norm": 0.7456812775232595,
|
1134 |
+
"learning_rate": 0.0001,
|
1135 |
+
"loss": 0.9999,
|
1136 |
+
"step": 161
|
1137 |
+
},
|
1138 |
+
{
|
1139 |
+
"epoch": 0.5184,
|
1140 |
+
"grad_norm": 0.6175846317153577,
|
1141 |
+
"learning_rate": 9.895975629375359e-05,
|
1142 |
+
"loss": 1.0644,
|
1143 |
+
"step": 162
|
1144 |
+
},
|
1145 |
+
{
|
1146 |
+
"epoch": 0.5216,
|
1147 |
+
"grad_norm": 0.6714016144368657,
|
1148 |
+
"learning_rate": 9.791962515604887e-05,
|
1149 |
+
"loss": 1.0637,
|
1150 |
+
"step": 163
|
1151 |
+
},
|
1152 |
+
{
|
1153 |
+
"epoch": 0.5248,
|
1154 |
+
"grad_norm": 0.5837880916678994,
|
1155 |
+
"learning_rate": 9.687971914324607e-05,
|
1156 |
+
"loss": 1.1408,
|
1157 |
+
"step": 164
|
1158 |
+
},
|
1159 |
+
{
|
1160 |
+
"epoch": 0.528,
|
1161 |
+
"grad_norm": 0.5530213168075825,
|
1162 |
+
"learning_rate": 9.584015078734395e-05,
|
1163 |
+
"loss": 1.1138,
|
1164 |
+
"step": 165
|
1165 |
+
},
|
1166 |
+
{
|
1167 |
+
"epoch": 0.5312,
|
1168 |
+
"grad_norm": 0.6270056310312441,
|
1169 |
+
"learning_rate": 9.480103258380198e-05,
|
1170 |
+
"loss": 1.2315,
|
1171 |
+
"step": 166
|
1172 |
+
},
|
1173 |
+
{
|
1174 |
+
"epoch": 0.5344,
|
1175 |
+
"grad_norm": 0.5561192764658761,
|
1176 |
+
"learning_rate": 9.376247697936719e-05,
|
1177 |
+
"loss": 1.0632,
|
1178 |
+
"step": 167
|
1179 |
+
},
|
1180 |
+
{
|
1181 |
+
"epoch": 0.5376,
|
1182 |
+
"grad_norm": 0.6073371369069578,
|
1183 |
+
"learning_rate": 9.272459635990562e-05,
|
1184 |
+
"loss": 1.11,
|
1185 |
+
"step": 168
|
1186 |
+
},
|
1187 |
+
{
|
1188 |
+
"epoch": 0.5408,
|
1189 |
+
"grad_norm": 0.5944081760932085,
|
1190 |
+
"learning_rate": 9.168750303824084e-05,
|
1191 |
+
"loss": 1.048,
|
1192 |
+
"step": 169
|
1193 |
+
},
|
1194 |
+
{
|
1195 |
+
"epoch": 0.544,
|
1196 |
+
"grad_norm": 0.5848610084940267,
|
1197 |
+
"learning_rate": 9.065130924199998e-05,
|
1198 |
+
"loss": 1.1179,
|
1199 |
+
"step": 170
|
1200 |
+
},
|
1201 |
+
{
|
1202 |
+
"epoch": 0.5472,
|
1203 |
+
"grad_norm": 0.5971797062090918,
|
1204 |
+
"learning_rate": 8.961612710146934e-05,
|
1205 |
+
"loss": 1.0489,
|
1206 |
+
"step": 171
|
1207 |
+
},
|
1208 |
+
{
|
1209 |
+
"epoch": 0.5504,
|
1210 |
+
"grad_norm": 0.6027497233577513,
|
1211 |
+
"learning_rate": 8.858206863746018e-05,
|
1212 |
+
"loss": 1.1686,
|
1213 |
+
"step": 172
|
1214 |
+
},
|
1215 |
+
{
|
1216 |
+
"epoch": 0.5536,
|
1217 |
+
"grad_norm": 0.5842512985502563,
|
1218 |
+
"learning_rate": 8.754924574918675e-05,
|
1219 |
+
"loss": 1.1134,
|
1220 |
+
"step": 173
|
1221 |
+
},
|
1222 |
+
{
|
1223 |
+
"epoch": 0.5568,
|
1224 |
+
"grad_norm": 0.5790768255854168,
|
1225 |
+
"learning_rate": 8.651777020215712e-05,
|
1226 |
+
"loss": 1.0993,
|
1227 |
+
"step": 174
|
1228 |
+
},
|
1229 |
+
{
|
1230 |
+
"epoch": 0.56,
|
1231 |
+
"grad_norm": 0.6244985783771545,
|
1232 |
+
"learning_rate": 8.548775361607872e-05,
|
1233 |
+
"loss": 1.1102,
|
1234 |
+
"step": 175
|
1235 |
+
},
|
1236 |
+
{
|
1237 |
+
"epoch": 0.5632,
|
1238 |
+
"grad_norm": 0.6363066079679679,
|
1239 |
+
"learning_rate": 8.445930745277953e-05,
|
1240 |
+
"loss": 1.1054,
|
1241 |
+
"step": 176
|
1242 |
+
},
|
1243 |
+
{
|
1244 |
+
"epoch": 0.5664,
|
1245 |
+
"grad_norm": 0.5758171908775908,
|
1246 |
+
"learning_rate": 8.343254300414628e-05,
|
1247 |
+
"loss": 1.1669,
|
1248 |
+
"step": 177
|
1249 |
+
},
|
1250 |
+
{
|
1251 |
+
"epoch": 0.5696,
|
1252 |
+
"grad_norm": 0.5340947294270786,
|
1253 |
+
"learning_rate": 8.240757138008149e-05,
|
1254 |
+
"loss": 1.1309,
|
1255 |
+
"step": 178
|
1256 |
+
},
|
1257 |
+
{
|
1258 |
+
"epoch": 0.5728,
|
1259 |
+
"grad_norm": 0.5831665436537086,
|
1260 |
+
"learning_rate": 8.138450349647936e-05,
|
1261 |
+
"loss": 1.1248,
|
1262 |
+
"step": 179
|
1263 |
+
},
|
1264 |
+
{
|
1265 |
+
"epoch": 0.576,
|
1266 |
+
"grad_norm": 0.5921556048685298,
|
1267 |
+
"learning_rate": 8.036345006322359e-05,
|
1268 |
+
"loss": 1.112,
|
1269 |
+
"step": 180
|
1270 |
+
},
|
1271 |
+
{
|
1272 |
+
"epoch": 0.5792,
|
1273 |
+
"grad_norm": 0.5744251424245944,
|
1274 |
+
"learning_rate": 7.934452157220694e-05,
|
1275 |
+
"loss": 1.022,
|
1276 |
+
"step": 181
|
1277 |
+
},
|
1278 |
+
{
|
1279 |
+
"epoch": 0.5824,
|
1280 |
+
"grad_norm": 0.5554185323336767,
|
1281 |
+
"learning_rate": 7.832782828537437e-05,
|
1282 |
+
"loss": 1.0337,
|
1283 |
+
"step": 182
|
1284 |
+
},
|
1285 |
+
{
|
1286 |
+
"epoch": 0.5856,
|
1287 |
+
"grad_norm": 0.5743450858728842,
|
1288 |
+
"learning_rate": 7.731348022279134e-05,
|
1289 |
+
"loss": 1.0235,
|
1290 |
+
"step": 183
|
1291 |
+
},
|
1292 |
+
{
|
1293 |
+
"epoch": 0.5888,
|
1294 |
+
"grad_norm": 0.5602361322464704,
|
1295 |
+
"learning_rate": 7.630158715073813e-05,
|
1296 |
+
"loss": 1.1312,
|
1297 |
+
"step": 184
|
1298 |
+
},
|
1299 |
+
{
|
1300 |
+
"epoch": 0.592,
|
1301 |
+
"grad_norm": 0.5954682352280739,
|
1302 |
+
"learning_rate": 7.52922585698315e-05,
|
1303 |
+
"loss": 1.1366,
|
1304 |
+
"step": 185
|
1305 |
+
},
|
1306 |
+
{
|
1307 |
+
"epoch": 0.5952,
|
1308 |
+
"grad_norm": 0.6109690367869244,
|
1309 |
+
"learning_rate": 7.428560370317542e-05,
|
1310 |
+
"loss": 1.0795,
|
1311 |
+
"step": 186
|
1312 |
+
},
|
1313 |
+
{
|
1314 |
+
"epoch": 0.5984,
|
1315 |
+
"grad_norm": 0.564705324519998,
|
1316 |
+
"learning_rate": 7.328173148454151e-05,
|
1317 |
+
"loss": 1.0559,
|
1318 |
+
"step": 187
|
1319 |
+
},
|
1320 |
+
{
|
1321 |
+
"epoch": 0.6016,
|
1322 |
+
"grad_norm": 0.5998310026704221,
|
1323 |
+
"learning_rate": 7.228075054658096e-05,
|
1324 |
+
"loss": 1.0471,
|
1325 |
+
"step": 188
|
1326 |
+
},
|
1327 |
+
{
|
1328 |
+
"epoch": 0.6048,
|
1329 |
+
"grad_norm": 0.5923598358823705,
|
1330 |
+
"learning_rate": 7.1282769209069e-05,
|
1331 |
+
"loss": 1.0805,
|
1332 |
+
"step": 189
|
1333 |
+
},
|
1334 |
+
{
|
1335 |
+
"epoch": 0.608,
|
1336 |
+
"grad_norm": 0.5837508570039001,
|
1337 |
+
"learning_rate": 7.028789546718326e-05,
|
1338 |
+
"loss": 1.0486,
|
1339 |
+
"step": 190
|
1340 |
+
},
|
1341 |
+
{
|
1342 |
+
"epoch": 0.6112,
|
1343 |
+
"grad_norm": 0.5993515803964782,
|
1344 |
+
"learning_rate": 6.929623697981718e-05,
|
1345 |
+
"loss": 1.0758,
|
1346 |
+
"step": 191
|
1347 |
+
},
|
1348 |
+
{
|
1349 |
+
"epoch": 0.6144,
|
1350 |
+
"grad_norm": 0.5640431095353253,
|
1351 |
+
"learning_rate": 6.830790105792973e-05,
|
1352 |
+
"loss": 1.1195,
|
1353 |
+
"step": 192
|
1354 |
+
},
|
1355 |
+
{
|
1356 |
+
"epoch": 0.6176,
|
1357 |
+
"grad_norm": 0.6597258202025034,
|
1358 |
+
"learning_rate": 6.732299465293322e-05,
|
1359 |
+
"loss": 1.1206,
|
1360 |
+
"step": 193
|
1361 |
+
},
|
1362 |
+
{
|
1363 |
+
"epoch": 0.6208,
|
1364 |
+
"grad_norm": 0.5700867646836549,
|
1365 |
+
"learning_rate": 6.63416243451194e-05,
|
1366 |
+
"loss": 1.028,
|
1367 |
+
"step": 194
|
1368 |
+
},
|
1369 |
+
{
|
1370 |
+
"epoch": 0.624,
|
1371 |
+
"grad_norm": 0.5438950021648811,
|
1372 |
+
"learning_rate": 6.536389633212609e-05,
|
1373 |
+
"loss": 1.0901,
|
1374 |
+
"step": 195
|
1375 |
+
},
|
1376 |
+
{
|
1377 |
+
"epoch": 0.6272,
|
1378 |
+
"grad_norm": 0.5895697124383904,
|
1379 |
+
"learning_rate": 6.43899164174453e-05,
|
1380 |
+
"loss": 1.003,
|
1381 |
+
"step": 196
|
1382 |
+
},
|
1383 |
+
{
|
1384 |
+
"epoch": 0.6304,
|
1385 |
+
"grad_norm": 0.5531669590622527,
|
1386 |
+
"learning_rate": 6.341978999897365e-05,
|
1387 |
+
"loss": 0.9802,
|
1388 |
+
"step": 197
|
1389 |
+
},
|
1390 |
+
{
|
1391 |
+
"epoch": 0.6336,
|
1392 |
+
"grad_norm": 0.5634663273360929,
|
1393 |
+
"learning_rate": 6.245362205760704e-05,
|
1394 |
+
"loss": 1.0221,
|
1395 |
+
"step": 198
|
1396 |
+
},
|
1397 |
+
{
|
1398 |
+
"epoch": 0.6368,
|
1399 |
+
"grad_norm": 0.5852062381389797,
|
1400 |
+
"learning_rate": 6.149151714588009e-05,
|
1401 |
+
"loss": 1.16,
|
1402 |
+
"step": 199
|
1403 |
+
},
|
1404 |
+
{
|
1405 |
+
"epoch": 0.64,
|
1406 |
+
"grad_norm": 0.5937242795441198,
|
1407 |
+
"learning_rate": 6.053357937665237e-05,
|
1408 |
+
"loss": 1.0475,
|
1409 |
+
"step": 200
|
1410 |
+
},
|
1411 |
+
{
|
1412 |
+
"epoch": 0.6432,
|
1413 |
+
"grad_norm": 0.5555566589467784,
|
1414 |
+
"learning_rate": 5.957991241184184e-05,
|
1415 |
+
"loss": 1.0439,
|
1416 |
+
"step": 201
|
1417 |
+
},
|
1418 |
+
{
|
1419 |
+
"epoch": 0.6464,
|
1420 |
+
"grad_norm": 0.585204914236333,
|
1421 |
+
"learning_rate": 5.863061945120719e-05,
|
1422 |
+
"loss": 1.0635,
|
1423 |
+
"step": 202
|
1424 |
+
},
|
1425 |
+
{
|
1426 |
+
"epoch": 0.6496,
|
1427 |
+
"grad_norm": 0.574624666649916,
|
1428 |
+
"learning_rate": 5.768580322118034e-05,
|
1429 |
+
"loss": 1.1461,
|
1430 |
+
"step": 203
|
1431 |
+
},
|
1432 |
+
{
|
1433 |
+
"epoch": 0.6528,
|
1434 |
+
"grad_norm": 0.5895005838586477,
|
1435 |
+
"learning_rate": 5.6745565963749925e-05,
|
1436 |
+
"loss": 1.0533,
|
1437 |
+
"step": 204
|
1438 |
+
},
|
1439 |
+
{
|
1440 |
+
"epoch": 0.656,
|
1441 |
+
"grad_norm": 0.568531621396431,
|
1442 |
+
"learning_rate": 5.5810009425397294e-05,
|
1443 |
+
"loss": 1.0117,
|
1444 |
+
"step": 205
|
1445 |
+
},
|
1446 |
+
{
|
1447 |
+
"epoch": 0.6592,
|
1448 |
+
"grad_norm": 0.5713855868879502,
|
1449 |
+
"learning_rate": 5.487923484608629e-05,
|
1450 |
+
"loss": 1.0869,
|
1451 |
+
"step": 206
|
1452 |
+
},
|
1453 |
+
{
|
1454 |
+
"epoch": 0.6624,
|
1455 |
+
"grad_norm": 0.533463283372751,
|
1456 |
+
"learning_rate": 5.395334294830765e-05,
|
1457 |
+
"loss": 1.0669,
|
1458 |
+
"step": 207
|
1459 |
+
},
|
1460 |
+
{
|
1461 |
+
"epoch": 0.6656,
|
1462 |
+
"grad_norm": 0.596191800876185,
|
1463 |
+
"learning_rate": 5.3032433926179395e-05,
|
1464 |
+
"loss": 1.0889,
|
1465 |
+
"step": 208
|
1466 |
+
},
|
1467 |
+
{
|
1468 |
+
"epoch": 0.6688,
|
1469 |
+
"grad_norm": 0.6033094935134793,
|
1470 |
+
"learning_rate": 5.211660743460458e-05,
|
1471 |
+
"loss": 1.0037,
|
1472 |
+
"step": 209
|
1473 |
+
},
|
1474 |
+
{
|
1475 |
+
"epoch": 0.672,
|
1476 |
+
"grad_norm": 0.547758452785834,
|
1477 |
+
"learning_rate": 5.1205962578487155e-05,
|
1478 |
+
"loss": 1.0326,
|
1479 |
+
"step": 210
|
1480 |
+
},
|
1481 |
+
{
|
1482 |
+
"epoch": 0.6752,
|
1483 |
+
"grad_norm": 0.5674015427230111,
|
1484 |
+
"learning_rate": 5.030059790200756e-05,
|
1485 |
+
"loss": 1.0642,
|
1486 |
+
"step": 211
|
1487 |
+
},
|
1488 |
+
{
|
1489 |
+
"epoch": 0.6784,
|
1490 |
+
"grad_norm": 0.5564959453988821,
|
1491 |
+
"learning_rate": 4.940061137795876e-05,
|
1492 |
+
"loss": 1.1004,
|
1493 |
+
"step": 212
|
1494 |
+
},
|
1495 |
+
{
|
1496 |
+
"epoch": 0.6816,
|
1497 |
+
"grad_norm": 0.5510907797932991,
|
1498 |
+
"learning_rate": 4.850610039714444e-05,
|
1499 |
+
"loss": 1.0383,
|
1500 |
+
"step": 213
|
1501 |
+
},
|
1502 |
+
{
|
1503 |
+
"epoch": 0.6848,
|
1504 |
+
"grad_norm": 0.5364931725607687,
|
1505 |
+
"learning_rate": 4.761716175783989e-05,
|
1506 |
+
"loss": 1.0421,
|
1507 |
+
"step": 214
|
1508 |
+
},
|
1509 |
+
{
|
1510 |
+
"epoch": 0.688,
|
1511 |
+
"grad_norm": 0.5494121878521853,
|
1512 |
+
"learning_rate": 4.673389165531714e-05,
|
1513 |
+
"loss": 1.0529,
|
1514 |
+
"step": 215
|
1515 |
+
},
|
1516 |
+
{
|
1517 |
+
"epoch": 0.6912,
|
1518 |
+
"grad_norm": 0.5363726515242464,
|
1519 |
+
"learning_rate": 4.585638567143529e-05,
|
1520 |
+
"loss": 1.0332,
|
1521 |
+
"step": 216
|
1522 |
+
},
|
1523 |
+
{
|
1524 |
+
"epoch": 0.6944,
|
1525 |
+
"grad_norm": 0.5465442810140333,
|
1526 |
+
"learning_rate": 4.498473876429726e-05,
|
1527 |
+
"loss": 1.0314,
|
1528 |
+
"step": 217
|
1529 |
+
},
|
1530 |
+
{
|
1531 |
+
"epoch": 0.6976,
|
1532 |
+
"grad_norm": 0.5739488758444642,
|
1533 |
+
"learning_rate": 4.411904525797408e-05,
|
1534 |
+
"loss": 1.0601,
|
1535 |
+
"step": 218
|
1536 |
+
},
|
1537 |
+
{
|
1538 |
+
"epoch": 0.7008,
|
1539 |
+
"grad_norm": 0.5879132221028294,
|
1540 |
+
"learning_rate": 4.325939883229766e-05,
|
1541 |
+
"loss": 1.0442,
|
1542 |
+
"step": 219
|
1543 |
+
},
|
1544 |
+
{
|
1545 |
+
"epoch": 0.704,
|
1546 |
+
"grad_norm": 0.6045995523657305,
|
1547 |
+
"learning_rate": 4.240589251272342e-05,
|
1548 |
+
"loss": 1.0801,
|
1549 |
+
"step": 220
|
1550 |
+
},
|
1551 |
+
{
|
1552 |
+
"epoch": 0.7072,
|
1553 |
+
"grad_norm": 0.5617927988946498,
|
1554 |
+
"learning_rate": 4.155861866026364e-05,
|
1555 |
+
"loss": 1.0536,
|
1556 |
+
"step": 221
|
1557 |
+
},
|
1558 |
+
{
|
1559 |
+
"epoch": 0.7104,
|
1560 |
+
"grad_norm": 0.7006136765663606,
|
1561 |
+
"learning_rate": 4.071766896149273e-05,
|
1562 |
+
"loss": 1.1709,
|
1563 |
+
"step": 222
|
1564 |
+
},
|
1565 |
+
{
|
1566 |
+
"epoch": 0.7136,
|
1567 |
+
"grad_norm": 0.5519226190976758,
|
1568 |
+
"learning_rate": 3.988313441862553e-05,
|
1569 |
+
"loss": 1.0035,
|
1570 |
+
"step": 223
|
1571 |
+
},
|
1572 |
+
{
|
1573 |
+
"epoch": 0.7168,
|
1574 |
+
"grad_norm": 0.5722678337036814,
|
1575 |
+
"learning_rate": 3.9055105339669595e-05,
|
1576 |
+
"loss": 1.0321,
|
1577 |
+
"step": 224
|
1578 |
+
},
|
1579 |
+
{
|
1580 |
+
"epoch": 0.72,
|
1581 |
+
"grad_norm": 0.546356073899012,
|
1582 |
+
"learning_rate": 3.823367132865265e-05,
|
1583 |
+
"loss": 1.063,
|
1584 |
+
"step": 225
|
1585 |
+
},
|
1586 |
+
{
|
1587 |
+
"epoch": 0.7232,
|
1588 |
+
"grad_norm": 0.5572189973946577,
|
1589 |
+
"learning_rate": 3.741892127592625e-05,
|
1590 |
+
"loss": 1.0493,
|
1591 |
+
"step": 226
|
1592 |
+
},
|
1593 |
+
{
|
1594 |
+
"epoch": 0.7264,
|
1595 |
+
"grad_norm": 0.5609326202853951,
|
1596 |
+
"learning_rate": 3.6610943348546526e-05,
|
1597 |
+
"loss": 1.0401,
|
1598 |
+
"step": 227
|
1599 |
+
},
|
1600 |
+
{
|
1601 |
+
"epoch": 0.7296,
|
1602 |
+
"grad_norm": 0.5573693239077621,
|
1603 |
+
"learning_rate": 3.580982498073344e-05,
|
1604 |
+
"loss": 1.0633,
|
1605 |
+
"step": 228
|
1606 |
+
},
|
1607 |
+
{
|
1608 |
+
"epoch": 0.7328,
|
1609 |
+
"grad_norm": 0.6120271145151069,
|
1610 |
+
"learning_rate": 3.501565286440914e-05,
|
1611 |
+
"loss": 1.0247,
|
1612 |
+
"step": 229
|
1613 |
+
},
|
1614 |
+
{
|
1615 |
+
"epoch": 0.736,
|
1616 |
+
"grad_norm": 0.5556112139031892,
|
1617 |
+
"learning_rate": 3.422851293981676e-05,
|
1618 |
+
"loss": 1.0004,
|
1619 |
+
"step": 230
|
1620 |
+
},
|
1621 |
+
{
|
1622 |
+
"epoch": 0.7392,
|
1623 |
+
"grad_norm": 0.5442180530300604,
|
1624 |
+
"learning_rate": 3.3448490386220355e-05,
|
1625 |
+
"loss": 1.0231,
|
1626 |
+
"step": 231
|
1627 |
+
},
|
1628 |
+
{
|
1629 |
+
"epoch": 0.7424,
|
1630 |
+
"grad_norm": 0.5642744910174119,
|
1631 |
+
"learning_rate": 3.2675669612687565e-05,
|
1632 |
+
"loss": 1.0598,
|
1633 |
+
"step": 232
|
1634 |
+
},
|
1635 |
+
{
|
1636 |
+
"epoch": 0.7456,
|
1637 |
+
"grad_norm": 0.5301873588771624,
|
1638 |
+
"learning_rate": 3.191013424895536e-05,
|
1639 |
+
"loss": 1.0609,
|
1640 |
+
"step": 233
|
1641 |
+
},
|
1642 |
+
{
|
1643 |
+
"epoch": 0.7488,
|
1644 |
+
"grad_norm": 0.5270404145127983,
|
1645 |
+
"learning_rate": 3.115196713638e-05,
|
1646 |
+
"loss": 1.1029,
|
1647 |
+
"step": 234
|
1648 |
+
},
|
1649 |
+
{
|
1650 |
+
"epoch": 0.752,
|
1651 |
+
"grad_norm": 0.5792631918257901,
|
1652 |
+
"learning_rate": 3.040125031897264e-05,
|
1653 |
+
"loss": 1.0148,
|
1654 |
+
"step": 235
|
1655 |
+
},
|
1656 |
+
{
|
1657 |
+
"epoch": 0.7552,
|
1658 |
+
"grad_norm": 0.5870979627317701,
|
1659 |
+
"learning_rate": 2.9658065034520978e-05,
|
1660 |
+
"loss": 1.0717,
|
1661 |
+
"step": 236
|
1662 |
+
},
|
1663 |
+
{
|
1664 |
+
"epoch": 0.7584,
|
1665 |
+
"grad_norm": 0.5785722600525429,
|
1666 |
+
"learning_rate": 2.892249170579826e-05,
|
1667 |
+
"loss": 1.0672,
|
1668 |
+
"step": 237
|
1669 |
+
},
|
1670 |
+
{
|
1671 |
+
"epoch": 0.7616,
|
1672 |
+
"grad_norm": 0.5709981460824844,
|
1673 |
+
"learning_rate": 2.8194609931860316e-05,
|
1674 |
+
"loss": 1.1185,
|
1675 |
+
"step": 238
|
1676 |
+
},
|
1677 |
+
{
|
1678 |
+
"epoch": 0.7648,
|
1679 |
+
"grad_norm": 0.6217871274009109,
|
1680 |
+
"learning_rate": 2.7474498479432087e-05,
|
1681 |
+
"loss": 1.0541,
|
1682 |
+
"step": 239
|
1683 |
+
},
|
1684 |
+
{
|
1685 |
+
"epoch": 0.768,
|
1686 |
+
"grad_norm": 0.5502163111083991,
|
1687 |
+
"learning_rate": 2.6762235274383772e-05,
|
1688 |
+
"loss": 1.037,
|
1689 |
+
"step": 240
|
1690 |
+
},
|
1691 |
+
{
|
1692 |
+
"epoch": 0.7712,
|
1693 |
+
"grad_norm": 0.6939068470167971,
|
1694 |
+
"learning_rate": 2.6057897393298324e-05,
|
1695 |
+
"loss": 0.9026,
|
1696 |
+
"step": 241
|
1697 |
+
},
|
1698 |
+
{
|
1699 |
+
"epoch": 0.7744,
|
1700 |
+
"grad_norm": 0.5348805571120492,
|
1701 |
+
"learning_rate": 2.536156105513062e-05,
|
1702 |
+
"loss": 1.0644,
|
1703 |
+
"step": 242
|
1704 |
+
},
|
1705 |
+
{
|
1706 |
+
"epoch": 0.7776,
|
1707 |
+
"grad_norm": 0.5851088907445847,
|
1708 |
+
"learning_rate": 2.4673301612959654e-05,
|
1709 |
+
"loss": 1.0135,
|
1710 |
+
"step": 243
|
1711 |
+
},
|
1712 |
+
{
|
1713 |
+
"epoch": 0.7808,
|
1714 |
+
"grad_norm": 0.5593559807902603,
|
1715 |
+
"learning_rate": 2.399319354583418e-05,
|
1716 |
+
"loss": 1.0758,
|
1717 |
+
"step": 244
|
1718 |
+
},
|
1719 |
+
{
|
1720 |
+
"epoch": 0.784,
|
1721 |
+
"grad_norm": 0.5203188462905168,
|
1722 |
+
"learning_rate": 2.3321310450713062e-05,
|
1723 |
+
"loss": 1.0303,
|
1724 |
+
"step": 245
|
1725 |
+
},
|
1726 |
+
{
|
1727 |
+
"epoch": 0.7872,
|
1728 |
+
"grad_norm": 0.5605154105634976,
|
1729 |
+
"learning_rate": 2.265772503450122e-05,
|
1730 |
+
"loss": 1.0211,
|
1731 |
+
"step": 246
|
1732 |
+
},
|
1733 |
+
{
|
1734 |
+
"epoch": 0.7904,
|
1735 |
+
"grad_norm": 0.5664827723584672,
|
1736 |
+
"learning_rate": 2.2002509106181624e-05,
|
1737 |
+
"loss": 1.0348,
|
1738 |
+
"step": 247
|
1739 |
+
},
|
1740 |
+
{
|
1741 |
+
"epoch": 0.7936,
|
1742 |
+
"grad_norm": 0.5900057315119912,
|
1743 |
+
"learning_rate": 2.1355733569044635e-05,
|
1744 |
+
"loss": 1.0552,
|
1745 |
+
"step": 248
|
1746 |
+
},
|
1747 |
+
{
|
1748 |
+
"epoch": 0.7968,
|
1749 |
+
"grad_norm": 0.5381277090688744,
|
1750 |
+
"learning_rate": 2.0717468413015283e-05,
|
1751 |
+
"loss": 1.0548,
|
1752 |
+
"step": 249
|
1753 |
+
},
|
1754 |
+
{
|
1755 |
+
"epoch": 0.8,
|
1756 |
+
"grad_norm": 0.5710250024280842,
|
1757 |
+
"learning_rate": 2.008778270707944e-05,
|
1758 |
+
"loss": 1.0525,
|
1759 |
+
"step": 250
|
1760 |
+
},
|
1761 |
+
{
|
1762 |
+
"epoch": 0.8032,
|
1763 |
+
"grad_norm": 0.5247596985036673,
|
1764 |
+
"learning_rate": 1.946674459180955e-05,
|
1765 |
+
"loss": 1.0817,
|
1766 |
+
"step": 251
|
1767 |
+
},
|
1768 |
+
{
|
1769 |
+
"epoch": 0.8064,
|
1770 |
+
"grad_norm": 0.5154307520162806,
|
1771 |
+
"learning_rate": 1.8854421271990964e-05,
|
1772 |
+
"loss": 1.0125,
|
1773 |
+
"step": 252
|
1774 |
+
},
|
1775 |
+
{
|
1776 |
+
"epoch": 0.8096,
|
1777 |
+
"grad_norm": 0.6337614103760363,
|
1778 |
+
"learning_rate": 1.8250879009349398e-05,
|
1779 |
+
"loss": 1.0949,
|
1780 |
+
"step": 253
|
1781 |
+
},
|
1782 |
+
{
|
1783 |
+
"epoch": 0.8128,
|
1784 |
+
"grad_norm": 0.4957665878310061,
|
1785 |
+
"learning_rate": 1.7656183115380577e-05,
|
1786 |
+
"loss": 1.0451,
|
1787 |
+
"step": 254
|
1788 |
+
},
|
1789 |
+
{
|
1790 |
+
"epoch": 0.816,
|
1791 |
+
"grad_norm": 0.5308197423642265,
|
1792 |
+
"learning_rate": 1.707039794428259e-05,
|
1793 |
+
"loss": 1.0212,
|
1794 |
+
"step": 255
|
1795 |
+
},
|
1796 |
+
{
|
1797 |
+
"epoch": 0.8192,
|
1798 |
+
"grad_norm": 0.6283452572668032,
|
1799 |
+
"learning_rate": 1.649358688599191e-05,
|
1800 |
+
"loss": 1.0286,
|
1801 |
+
"step": 256
|
1802 |
+
},
|
1803 |
+
{
|
1804 |
+
"epoch": 0.8224,
|
1805 |
+
"grad_norm": 0.5277570848309738,
|
1806 |
+
"learning_rate": 1.5925812359323745e-05,
|
1807 |
+
"loss": 1.0517,
|
1808 |
+
"step": 257
|
1809 |
+
},
|
1810 |
+
{
|
1811 |
+
"epoch": 0.8256,
|
1812 |
+
"grad_norm": 0.572380991818581,
|
1813 |
+
"learning_rate": 1.5367135805217458e-05,
|
1814 |
+
"loss": 1.052,
|
1815 |
+
"step": 258
|
1816 |
+
},
|
1817 |
+
{
|
1818 |
+
"epoch": 0.8288,
|
1819 |
+
"grad_norm": 0.5459522732962143,
|
1820 |
+
"learning_rate": 1.4817617680087825e-05,
|
1821 |
+
"loss": 1.0256,
|
1822 |
+
"step": 259
|
1823 |
+
},
|
1824 |
+
{
|
1825 |
+
"epoch": 0.832,
|
1826 |
+
"grad_norm": 0.5818244377960141,
|
1827 |
+
"learning_rate": 1.4277317449282834e-05,
|
1828 |
+
"loss": 1.0306,
|
1829 |
+
"step": 260
|
1830 |
+
},
|
1831 |
+
{
|
1832 |
+
"epoch": 0.8352,
|
1833 |
+
"grad_norm": 0.5757150906330832,
|
1834 |
+
"learning_rate": 1.3746293580648717e-05,
|
1835 |
+
"loss": 1.0161,
|
1836 |
+
"step": 261
|
1837 |
+
},
|
1838 |
+
{
|
1839 |
+
"epoch": 0.8384,
|
1840 |
+
"grad_norm": 0.5612123216943989,
|
1841 |
+
"learning_rate": 1.3224603538202929e-05,
|
1842 |
+
"loss": 0.9974,
|
1843 |
+
"step": 262
|
1844 |
+
},
|
1845 |
+
{
|
1846 |
+
"epoch": 0.8416,
|
1847 |
+
"grad_norm": 0.5361229678609986,
|
1848 |
+
"learning_rate": 1.2712303775915802e-05,
|
1849 |
+
"loss": 1.054,
|
1850 |
+
"step": 263
|
1851 |
+
},
|
1852 |
+
{
|
1853 |
+
"epoch": 0.8448,
|
1854 |
+
"grad_norm": 0.5826837681269577,
|
1855 |
+
"learning_rate": 1.220944973160133e-05,
|
1856 |
+
"loss": 1.0603,
|
1857 |
+
"step": 264
|
1858 |
+
},
|
1859 |
+
{
|
1860 |
+
"epoch": 0.848,
|
1861 |
+
"grad_norm": 0.5402287917678977,
|
1862 |
+
"learning_rate": 1.1716095820918216e-05,
|
1863 |
+
"loss": 1.0676,
|
1864 |
+
"step": 265
|
1865 |
+
},
|
1866 |
+
{
|
1867 |
+
"epoch": 0.8512,
|
1868 |
+
"grad_norm": 0.5155809923846763,
|
1869 |
+
"learning_rate": 1.1232295431481222e-05,
|
1870 |
+
"loss": 1.1004,
|
1871 |
+
"step": 266
|
1872 |
+
},
|
1873 |
+
{
|
1874 |
+
"epoch": 0.8544,
|
1875 |
+
"grad_norm": 0.6178311815438159,
|
1876 |
+
"learning_rate": 1.0758100917083991e-05,
|
1877 |
+
"loss": 1.0745,
|
1878 |
+
"step": 267
|
1879 |
+
},
|
1880 |
+
{
|
1881 |
+
"epoch": 0.8576,
|
1882 |
+
"grad_norm": 0.5804058648418592,
|
1883 |
+
"learning_rate": 1.0293563592033595e-05,
|
1884 |
+
"loss": 1.0794,
|
1885 |
+
"step": 268
|
1886 |
+
},
|
1887 |
+
{
|
1888 |
+
"epoch": 0.8608,
|
1889 |
+
"grad_norm": 0.6096364520049162,
|
1890 |
+
"learning_rate": 9.838733725597615e-06,
|
1891 |
+
"loss": 1.008,
|
1892 |
+
"step": 269
|
1893 |
+
},
|
1894 |
+
{
|
1895 |
+
"epoch": 0.864,
|
1896 |
+
"grad_norm": 0.5638671810187824,
|
1897 |
+
"learning_rate": 9.393660536564408e-06,
|
1898 |
+
"loss": 1.059,
|
1899 |
+
"step": 270
|
1900 |
+
},
|
1901 |
+
{
|
1902 |
+
"epoch": 0.8672,
|
1903 |
+
"grad_norm": 0.551134037205924,
|
1904 |
+
"learning_rate": 8.958392187916841e-06,
|
1905 |
+
"loss": 1.0661,
|
1906 |
+
"step": 271
|
1907 |
+
},
|
1908 |
+
{
|
1909 |
+
"epoch": 0.8704,
|
1910 |
+
"grad_norm": 0.5476576939761192,
|
1911 |
+
"learning_rate": 8.532975781620512e-06,
|
1912 |
+
"loss": 1.0599,
|
1913 |
+
"step": 272
|
1914 |
+
},
|
1915 |
+
{
|
1916 |
+
"epoch": 0.8736,
|
1917 |
+
"grad_norm": 0.5618097858382183,
|
1918 |
+
"learning_rate": 8.117457353526625e-06,
|
1919 |
+
"loss": 1.128,
|
1920 |
+
"step": 273
|
1921 |
+
},
|
1922 |
+
{
|
1923 |
+
"epoch": 0.8768,
|
1924 |
+
"grad_norm": 0.5545956623834618,
|
1925 |
+
"learning_rate": 7.711881868390291e-06,
|
1926 |
+
"loss": 1.0403,
|
1927 |
+
"step": 274
|
1928 |
+
},
|
1929 |
+
{
|
1930 |
+
"epoch": 0.88,
|
1931 |
+
"grad_norm": 0.5585106863409853,
|
1932 |
+
"learning_rate": 7.3162932150046885e-06,
|
1933 |
+
"loss": 1.0839,
|
1934 |
+
"step": 275
|
1935 |
+
},
|
1936 |
+
{
|
1937 |
+
"epoch": 0.8832,
|
1938 |
+
"grad_norm": 0.5777158619246178,
|
1939 |
+
"learning_rate": 6.930734201451816e-06,
|
1940 |
+
"loss": 1.1582,
|
1941 |
+
"step": 276
|
1942 |
+
},
|
1943 |
+
{
|
1944 |
+
"epoch": 0.8864,
|
1945 |
+
"grad_norm": 0.5312338291560674,
|
1946 |
+
"learning_rate": 6.555246550469907e-06,
|
1947 |
+
"loss": 1.1125,
|
1948 |
+
"step": 277
|
1949 |
+
},
|
1950 |
+
{
|
1951 |
+
"epoch": 0.8896,
|
1952 |
+
"grad_norm": 0.6019089227782868,
|
1953 |
+
"learning_rate": 6.189870894938587e-06,
|
1954 |
+
"loss": 1.0226,
|
1955 |
+
"step": 278
|
1956 |
+
},
|
1957 |
+
{
|
1958 |
+
"epoch": 0.8928,
|
1959 |
+
"grad_norm": 0.5385907521451545,
|
1960 |
+
"learning_rate": 5.834646773481811e-06,
|
1961 |
+
"loss": 1.0428,
|
1962 |
+
"step": 279
|
1963 |
+
},
|
1964 |
+
{
|
1965 |
+
"epoch": 0.896,
|
1966 |
+
"grad_norm": 0.5929711954637248,
|
1967 |
+
"learning_rate": 5.489612626189245e-06,
|
1968 |
+
"loss": 1.0584,
|
1969 |
+
"step": 280
|
1970 |
+
},
|
1971 |
+
{
|
1972 |
+
"epoch": 0.8992,
|
1973 |
+
"grad_norm": 0.5352372798399714,
|
1974 |
+
"learning_rate": 5.154805790456485e-06,
|
1975 |
+
"loss": 1.0398,
|
1976 |
+
"step": 281
|
1977 |
+
},
|
1978 |
+
{
|
1979 |
+
"epoch": 0.9024,
|
1980 |
+
"grad_norm": 0.533249413457343,
|
1981 |
+
"learning_rate": 4.830262496944693e-06,
|
1982 |
+
"loss": 0.9853,
|
1983 |
+
"step": 282
|
1984 |
+
},
|
1985 |
+
{
|
1986 |
+
"epoch": 0.9056,
|
1987 |
+
"grad_norm": 0.5325098845257755,
|
1988 |
+
"learning_rate": 4.516017865659949e-06,
|
1989 |
+
"loss": 1.1217,
|
1990 |
+
"step": 283
|
1991 |
+
},
|
1992 |
+
{
|
1993 |
+
"epoch": 0.9088,
|
1994 |
+
"grad_norm": 0.544616418598338,
|
1995 |
+
"learning_rate": 4.21210590215273e-06,
|
1996 |
+
"loss": 1.0499,
|
1997 |
+
"step": 284
|
1998 |
+
},
|
1999 |
+
{
|
2000 |
+
"epoch": 0.912,
|
2001 |
+
"grad_norm": 0.5389805914927016,
|
2002 |
+
"learning_rate": 3.918559493838114e-06,
|
2003 |
+
"loss": 1.0955,
|
2004 |
+
"step": 285
|
2005 |
+
},
|
2006 |
+
{
|
2007 |
+
"epoch": 0.9152,
|
2008 |
+
"grad_norm": 0.5992479750486914,
|
2009 |
+
"learning_rate": 3.6354104064368566e-06,
|
2010 |
+
"loss": 1.0344,
|
2011 |
+
"step": 286
|
2012 |
+
},
|
2013 |
+
{
|
2014 |
+
"epoch": 0.9184,
|
2015 |
+
"grad_norm": 0.5563032838951335,
|
2016 |
+
"learning_rate": 3.3626892805379562e-06,
|
2017 |
+
"loss": 1.1259,
|
2018 |
+
"step": 287
|
2019 |
+
},
|
2020 |
+
{
|
2021 |
+
"epoch": 0.9216,
|
2022 |
+
"grad_norm": 0.5344650297317594,
|
2023 |
+
"learning_rate": 3.100425628282899e-06,
|
2024 |
+
"loss": 1.1222,
|
2025 |
+
"step": 288
|
2026 |
+
},
|
2027 |
+
{
|
2028 |
+
"epoch": 0.9248,
|
2029 |
+
"grad_norm": 0.6026066762936244,
|
2030 |
+
"learning_rate": 2.848647830172024e-06,
|
2031 |
+
"loss": 1.048,
|
2032 |
+
"step": 289
|
2033 |
+
},
|
2034 |
+
{
|
2035 |
+
"epoch": 0.928,
|
2036 |
+
"grad_norm": 0.5380734238182887,
|
2037 |
+
"learning_rate": 2.607383131993424e-06,
|
2038 |
+
"loss": 1.0735,
|
2039 |
+
"step": 290
|
2040 |
+
},
|
2041 |
+
{
|
2042 |
+
"epoch": 0.9312,
|
2043 |
+
"grad_norm": 0.539269851195273,
|
2044 |
+
"learning_rate": 2.3766576418745022e-06,
|
2045 |
+
"loss": 1.0271,
|
2046 |
+
"step": 291
|
2047 |
+
},
|
2048 |
+
{
|
2049 |
+
"epoch": 0.9344,
|
2050 |
+
"grad_norm": 0.5101331087182588,
|
2051 |
+
"learning_rate": 2.1564963274568027e-06,
|
2052 |
+
"loss": 1.0877,
|
2053 |
+
"step": 292
|
2054 |
+
},
|
2055 |
+
{
|
2056 |
+
"epoch": 0.9376,
|
2057 |
+
"grad_norm": 0.5260284887574873,
|
2058 |
+
"learning_rate": 1.9469230131940907e-06,
|
2059 |
+
"loss": 1.1117,
|
2060 |
+
"step": 293
|
2061 |
+
},
|
2062 |
+
{
|
2063 |
+
"epoch": 0.9408,
|
2064 |
+
"grad_norm": 0.6165360335006401,
|
2065 |
+
"learning_rate": 1.7479603777742938e-06,
|
2066 |
+
"loss": 1.1343,
|
2067 |
+
"step": 294
|
2068 |
+
},
|
2069 |
+
{
|
2070 |
+
"epoch": 0.944,
|
2071 |
+
"grad_norm": 0.518362085552097,
|
2072 |
+
"learning_rate": 1.559629951665298e-06,
|
2073 |
+
"loss": 1.0402,
|
2074 |
+
"step": 295
|
2075 |
+
},
|
2076 |
+
{
|
2077 |
+
"epoch": 0.9472,
|
2078 |
+
"grad_norm": 0.569371845816852,
|
2079 |
+
"learning_rate": 1.3819521147851123e-06,
|
2080 |
+
"loss": 1.0454,
|
2081 |
+
"step": 296
|
2082 |
+
},
|
2083 |
+
{
|
2084 |
+
"epoch": 0.9504,
|
2085 |
+
"grad_norm": 0.5281615447976709,
|
2086 |
+
"learning_rate": 1.2149460942964098e-06,
|
2087 |
+
"loss": 1.1065,
|
2088 |
+
"step": 297
|
2089 |
+
},
|
2090 |
+
{
|
2091 |
+
"epoch": 0.9536,
|
2092 |
+
"grad_norm": 0.6341864106370607,
|
2093 |
+
"learning_rate": 1.05862996252597e-06,
|
2094 |
+
"loss": 1.0237,
|
2095 |
+
"step": 298
|
2096 |
+
},
|
2097 |
+
{
|
2098 |
+
"epoch": 0.9568,
|
2099 |
+
"grad_norm": 0.5471729782472513,
|
2100 |
+
"learning_rate": 9.130206350089765e-07,
|
2101 |
+
"loss": 1.1344,
|
2102 |
+
"step": 299
|
2103 |
+
},
|
2104 |
+
{
|
2105 |
+
"epoch": 0.96,
|
2106 |
+
"grad_norm": 0.521375171737115,
|
2107 |
+
"learning_rate": 7.781338686584927e-07,
|
2108 |
+
"loss": 1.0338,
|
2109 |
+
"step": 300
|
2110 |
+
},
|
2111 |
+
{
|
2112 |
+
"epoch": 0.9632,
|
2113 |
+
"grad_norm": 0.565578997311788,
|
2114 |
+
"learning_rate": 6.539842600603918e-07,
|
2115 |
+
"loss": 1.0667,
|
2116 |
+
"step": 301
|
2117 |
+
},
|
2118 |
+
{
|
2119 |
+
"epoch": 0.9664,
|
2120 |
+
"grad_norm": 0.5650391103593894,
|
2121 |
+
"learning_rate": 5.405852438937764e-07,
|
2122 |
+
"loss": 1.0766,
|
2123 |
+
"step": 302
|
2124 |
+
},
|
2125 |
+
{
|
2126 |
+
"epoch": 0.9696,
|
2127 |
+
"grad_norm": 0.5820265479098684,
|
2128 |
+
"learning_rate": 4.3794909147720773e-07,
|
2129 |
+
"loss": 1.0305,
|
2130 |
+
"step": 303
|
2131 |
+
},
|
2132 |
+
{
|
2133 |
+
"epoch": 0.9728,
|
2134 |
+
"grad_norm": 0.5926416552467474,
|
2135 |
+
"learning_rate": 3.4608690944071263e-07,
|
2136 |
+
"loss": 0.9986,
|
2137 |
+
"step": 304
|
2138 |
+
},
|
2139 |
+
{
|
2140 |
+
"epoch": 0.976,
|
2141 |
+
"grad_norm": 0.5397571968572117,
|
2142 |
+
"learning_rate": 2.6500863852395584e-07,
|
2143 |
+
"loss": 0.986,
|
2144 |
+
"step": 305
|
2145 |
+
},
|
2146 |
+
{
|
2147 |
+
"epoch": 0.9792,
|
2148 |
+
"grad_norm": 0.5508600370370091,
|
2149 |
+
"learning_rate": 1.947230525005006e-07,
|
2150 |
+
"loss": 1.1161,
|
2151 |
+
"step": 306
|
2152 |
+
},
|
2153 |
+
{
|
2154 |
+
"epoch": 0.9824,
|
2155 |
+
"grad_norm": 0.5460513088356049,
|
2156 |
+
"learning_rate": 1.3523775722834587e-07,
|
2157 |
+
"loss": 1.0266,
|
2158 |
+
"step": 307
|
2159 |
+
},
|
2160 |
+
{
|
2161 |
+
"epoch": 0.9856,
|
2162 |
+
"grad_norm": 0.5604567327919951,
|
2163 |
+
"learning_rate": 8.655918982689581e-08,
|
2164 |
+
"loss": 0.9579,
|
2165 |
+
"step": 308
|
2166 |
+
},
|
2167 |
+
{
|
2168 |
+
"epoch": 0.9888,
|
2169 |
+
"grad_norm": 0.5383144642509582,
|
2170 |
+
"learning_rate": 4.8692617980350406e-08,
|
2171 |
+
"loss": 1.0491,
|
2172 |
+
"step": 309
|
2173 |
+
},
|
2174 |
+
{
|
2175 |
+
"epoch": 0.992,
|
2176 |
+
"grad_norm": 0.5254302419934068,
|
2177 |
+
"learning_rate": 2.164213936770576e-08,
|
2178 |
+
"loss": 1.0394,
|
2179 |
+
"step": 310
|
2180 |
+
},
|
2181 |
+
{
|
2182 |
+
"epoch": 0.9952,
|
2183 |
+
"grad_norm": 0.5885982889343618,
|
2184 |
+
"learning_rate": 5.410681219286673e-09,
|
2185 |
+
"loss": 1.0553,
|
2186 |
+
"step": 311
|
2187 |
+
},
|
2188 |
+
{
|
2189 |
+
"epoch": 0.9984,
|
2190 |
+
"grad_norm": 0.6364946352079829,
|
2191 |
+
"learning_rate": 0.0,
|
2192 |
+
"loss": 1.0507,
|
2193 |
+
"step": 312
|
2194 |
+
},
|
2195 |
+
{
|
2196 |
+
"epoch": 0.9984,
|
2197 |
+
"step": 312,
|
2198 |
+
"total_flos": 163148489719808.0,
|
2199 |
+
"train_loss": 1.1001117495008004,
|
2200 |
+
"train_runtime": 3775.7928,
|
2201 |
+
"train_samples_per_second": 1.324,
|
2202 |
+
"train_steps_per_second": 0.083
|
2203 |
+
}
|
2204 |
+
],
|
2205 |
+
"logging_steps": 1.0,
|
2206 |
+
"max_steps": 312,
|
2207 |
+
"num_input_tokens_seen": 0,
|
2208 |
+
"num_train_epochs": 1,
|
2209 |
+
"save_steps": 500,
|
2210 |
+
"stateful_callbacks": {
|
2211 |
+
"TrainerControl": {
|
2212 |
+
"args": {
|
2213 |
+
"should_epoch_stop": false,
|
2214 |
+
"should_evaluate": false,
|
2215 |
+
"should_log": false,
|
2216 |
+
"should_save": false,
|
2217 |
+
"should_training_stop": false
|
2218 |
+
},
|
2219 |
+
"attributes": {}
|
2220 |
+
}
|
2221 |
+
},
|
2222 |
+
"total_flos": 163148489719808.0,
|
2223 |
+
"train_batch_size": 8,
|
2224 |
+
"trial_name": null,
|
2225 |
+
"trial_params": null
|
2226 |
+
}
|
single_dataset/img2json/VideoGameBunny_v1_1-Llama-3-8B-V-img2json_dataset_10000_epochs_1_lora/README.md
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: peft
|
3 |
+
base_model: ./weights/Bunny-v1_1-Llama-3-8B-V
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.11.1
|
single_dataset/img2json/VideoGameBunny_v1_1-Llama-3-8B-V-img2json_dataset_10000_epochs_1_lora/adapter_config.json
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "./weights/Bunny-v1_1-Llama-3-8B-V",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layer_replication": null,
|
10 |
+
"layers_pattern": null,
|
11 |
+
"layers_to_transform": null,
|
12 |
+
"loftq_config": {},
|
13 |
+
"lora_alpha": 256,
|
14 |
+
"lora_dropout": 0.1,
|
15 |
+
"megatron_config": null,
|
16 |
+
"megatron_core": "megatron.core",
|
17 |
+
"modules_to_save": null,
|
18 |
+
"peft_type": "LORA",
|
19 |
+
"r": 128,
|
20 |
+
"rank_pattern": {},
|
21 |
+
"revision": null,
|
22 |
+
"target_modules": [
|
23 |
+
"v_proj",
|
24 |
+
"gate_proj",
|
25 |
+
"up_proj",
|
26 |
+
"o_proj",
|
27 |
+
"down_proj",
|
28 |
+
"k_proj",
|
29 |
+
"q_proj"
|
30 |
+
],
|
31 |
+
"task_type": "CAUSAL_LM",
|
32 |
+
"use_dora": false,
|
33 |
+
"use_rslora": false
|
34 |
+
}
|
single_dataset/img2json/VideoGameBunny_v1_1-Llama-3-8B-V-img2json_dataset_10000_epochs_1_lora/adapter_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8c1ca96a72a93c29ee37109b9231a208a153b02842d8988648783c09ec6b80cf
|
3 |
+
size 671150064
|
single_dataset/img2json/VideoGameBunny_v1_1-Llama-3-8B-V-img2json_dataset_10000_epochs_1_lora/config.json
ADDED
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "./weights/Bunny-v1_1-Llama-3-8B-V",
|
3 |
+
"architectures": [
|
4 |
+
"BunnyLlamaForCausalLM"
|
5 |
+
],
|
6 |
+
"attention_bias": false,
|
7 |
+
"attention_dropout": 0.0,
|
8 |
+
"auto_map": {
|
9 |
+
"AutoConfig": "configuration_bunny_llama.BunnyLlamaConfig",
|
10 |
+
"AutoModelForCausalLM": "modeling_bunny_llama.BunnyLlamaForCausalLM"
|
11 |
+
},
|
12 |
+
"bos_token_id": 128000,
|
13 |
+
"continuous_training": false,
|
14 |
+
"eos_token_id": 128001,
|
15 |
+
"freeze_mm_mlp_adapter": false,
|
16 |
+
"hidden_act": "silu",
|
17 |
+
"hidden_size": 4096,
|
18 |
+
"image_aspect_ratio": "pad",
|
19 |
+
"initializer_range": 0.02,
|
20 |
+
"intermediate_size": 14336,
|
21 |
+
"max_position_embeddings": 8192,
|
22 |
+
"mm_hidden_size": 3456,
|
23 |
+
"mm_projector_lr": null,
|
24 |
+
"mm_projector_type": "mlp2x_gelu",
|
25 |
+
"mm_vision_tower": "./weights/siglip-so400m-patch14-384",
|
26 |
+
"model_type": "bunny-llama",
|
27 |
+
"num_attention_heads": 32,
|
28 |
+
"num_hidden_layers": 32,
|
29 |
+
"num_key_value_heads": 8,
|
30 |
+
"pretraining_tp": 1,
|
31 |
+
"rms_norm_eps": 1e-05,
|
32 |
+
"rope_scaling": null,
|
33 |
+
"rope_theta": 500000.0,
|
34 |
+
"tie_word_embeddings": false,
|
35 |
+
"tokenizer_model_max_length": 2048,
|
36 |
+
"tokenizer_padding_side": "right",
|
37 |
+
"torch_dtype": "float16",
|
38 |
+
"transformers_version": "4.41.2",
|
39 |
+
"tune_mm_mlp_adapter": false,
|
40 |
+
"unfreeze_vision_tower": true,
|
41 |
+
"use_cache": true,
|
42 |
+
"use_mm_proj": true,
|
43 |
+
"use_s2": true,
|
44 |
+
"vocab_size": 128256
|
45 |
+
}
|
single_dataset/img2json/VideoGameBunny_v1_1-Llama-3-8B-V-img2json_dataset_10000_epochs_1_lora/non_lora_trainables.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7942b3ff9fdd57de7917cc18505f63252b815f5b36cbf3fe2a9df7d46706f464
|
3 |
+
size 918507402
|
single_dataset/img2json/VideoGameBunny_v1_1-Llama-3-8B-V-img2json_dataset_10000_epochs_1_lora/trainer_state.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
single_dataset/img2json/VideoGameBunny_v1_1-Llama-3-8B-V-img2json_dataset_20000_epochs_1_lora/README.md
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: peft
|
3 |
+
base_model: ./weights/Bunny-v1_1-Llama-3-8B-V
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.11.1
|
single_dataset/img2json/VideoGameBunny_v1_1-Llama-3-8B-V-img2json_dataset_20000_epochs_1_lora/adapter_config.json
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "./weights/Bunny-v1_1-Llama-3-8B-V",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layer_replication": null,
|
10 |
+
"layers_pattern": null,
|
11 |
+
"layers_to_transform": null,
|
12 |
+
"loftq_config": {},
|
13 |
+
"lora_alpha": 256,
|
14 |
+
"lora_dropout": 0.1,
|
15 |
+
"megatron_config": null,
|
16 |
+
"megatron_core": "megatron.core",
|
17 |
+
"modules_to_save": null,
|
18 |
+
"peft_type": "LORA",
|
19 |
+
"r": 128,
|
20 |
+
"rank_pattern": {},
|
21 |
+
"revision": null,
|
22 |
+
"target_modules": [
|
23 |
+
"q_proj",
|
24 |
+
"up_proj",
|
25 |
+
"down_proj",
|
26 |
+
"k_proj",
|
27 |
+
"gate_proj",
|
28 |
+
"o_proj",
|
29 |
+
"v_proj"
|
30 |
+
],
|
31 |
+
"task_type": "CAUSAL_LM",
|
32 |
+
"use_dora": false,
|
33 |
+
"use_rslora": false
|
34 |
+
}
|
single_dataset/img2json/VideoGameBunny_v1_1-Llama-3-8B-V-img2json_dataset_20000_epochs_1_lora/adapter_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:26afb8ecb361aa1573c588e61fa343d711716fbcb5c105e69dd7c57f09063e32
|
3 |
+
size 671150064
|
single_dataset/img2json/VideoGameBunny_v1_1-Llama-3-8B-V-img2json_dataset_20000_epochs_1_lora/config.json
ADDED
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "./weights/Bunny-v1_1-Llama-3-8B-V",
|
3 |
+
"architectures": [
|
4 |
+
"BunnyLlamaForCausalLM"
|
5 |
+
],
|
6 |
+
"attention_bias": false,
|
7 |
+
"attention_dropout": 0.0,
|
8 |
+
"auto_map": {
|
9 |
+
"AutoConfig": "configuration_bunny_llama.BunnyLlamaConfig",
|
10 |
+
"AutoModelForCausalLM": "modeling_bunny_llama.BunnyLlamaForCausalLM"
|
11 |
+
},
|
12 |
+
"bos_token_id": 128000,
|
13 |
+
"continuous_training": false,
|
14 |
+
"eos_token_id": 128001,
|
15 |
+
"freeze_mm_mlp_adapter": false,
|
16 |
+
"hidden_act": "silu",
|
17 |
+
"hidden_size": 4096,
|
18 |
+
"image_aspect_ratio": "pad",
|
19 |
+
"initializer_range": 0.02,
|
20 |
+
"intermediate_size": 14336,
|
21 |
+
"max_position_embeddings": 8192,
|
22 |
+
"mm_hidden_size": 3456,
|
23 |
+
"mm_projector_lr": null,
|
24 |
+
"mm_projector_type": "mlp2x_gelu",
|
25 |
+
"mm_vision_tower": "./weights/siglip-so400m-patch14-384",
|
26 |
+
"model_type": "bunny-llama",
|
27 |
+
"num_attention_heads": 32,
|
28 |
+
"num_hidden_layers": 32,
|
29 |
+
"num_key_value_heads": 8,
|
30 |
+
"pretraining_tp": 1,
|
31 |
+
"rms_norm_eps": 1e-05,
|
32 |
+
"rope_scaling": null,
|
33 |
+
"rope_theta": 500000.0,
|
34 |
+
"tie_word_embeddings": false,
|
35 |
+
"tokenizer_model_max_length": 2048,
|
36 |
+
"tokenizer_padding_side": "right",
|
37 |
+
"torch_dtype": "float16",
|
38 |
+
"transformers_version": "4.41.2",
|
39 |
+
"tune_mm_mlp_adapter": false,
|
40 |
+
"unfreeze_vision_tower": true,
|
41 |
+
"use_cache": true,
|
42 |
+
"use_mm_proj": true,
|
43 |
+
"use_s2": true,
|
44 |
+
"vocab_size": 128256
|
45 |
+
}
|
single_dataset/img2json/VideoGameBunny_v1_1-Llama-3-8B-V-img2json_dataset_20000_epochs_1_lora/non_lora_trainables.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:aff4131c4b93cdf643c1be464f218e02ad4cf80233999ed855e74ca85ce81f13
|
3 |
+
size 918507402
|
single_dataset/img2json/VideoGameBunny_v1_1-Llama-3-8B-V-img2json_dataset_20000_epochs_1_lora/trainer_state.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
single_dataset/img2json/VideoGameBunny_v1_1-Llama-3-8B-V-img2json_dataset_2000_epochs_1_lora/README.md
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: peft
|
3 |
+
base_model: ./weights/Bunny-v1_1-Llama-3-8B-V
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.11.1
|
single_dataset/img2json/VideoGameBunny_v1_1-Llama-3-8B-V-img2json_dataset_2000_epochs_1_lora/adapter_config.json
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "./weights/Bunny-v1_1-Llama-3-8B-V",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layer_replication": null,
|
10 |
+
"layers_pattern": null,
|
11 |
+
"layers_to_transform": null,
|
12 |
+
"loftq_config": {},
|
13 |
+
"lora_alpha": 256,
|
14 |
+
"lora_dropout": 0.1,
|
15 |
+
"megatron_config": null,
|
16 |
+
"megatron_core": "megatron.core",
|
17 |
+
"modules_to_save": null,
|
18 |
+
"peft_type": "LORA",
|
19 |
+
"r": 128,
|
20 |
+
"rank_pattern": {},
|
21 |
+
"revision": null,
|
22 |
+
"target_modules": [
|
23 |
+
"q_proj",
|
24 |
+
"gate_proj",
|
25 |
+
"v_proj",
|
26 |
+
"up_proj",
|
27 |
+
"o_proj",
|
28 |
+
"k_proj",
|
29 |
+
"down_proj"
|
30 |
+
],
|
31 |
+
"task_type": "CAUSAL_LM",
|
32 |
+
"use_dora": false,
|
33 |
+
"use_rslora": false
|
34 |
+
}
|
single_dataset/img2json/VideoGameBunny_v1_1-Llama-3-8B-V-img2json_dataset_2000_epochs_1_lora/adapter_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c8262ee6a0c00b8ce095b990a942055d72e79c6072afadd6521a5f42aef69fad
|
3 |
+
size 671150064
|
single_dataset/img2json/VideoGameBunny_v1_1-Llama-3-8B-V-img2json_dataset_2000_epochs_1_lora/config.json
ADDED
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "./weights/Bunny-v1_1-Llama-3-8B-V",
|
3 |
+
"architectures": [
|
4 |
+
"BunnyLlamaForCausalLM"
|
5 |
+
],
|
6 |
+
"attention_bias": false,
|
7 |
+
"attention_dropout": 0.0,
|
8 |
+
"auto_map": {
|
9 |
+
"AutoConfig": "configuration_bunny_llama.BunnyLlamaConfig",
|
10 |
+
"AutoModelForCausalLM": "modeling_bunny_llama.BunnyLlamaForCausalLM"
|
11 |
+
},
|
12 |
+
"bos_token_id": 128000,
|
13 |
+
"continuous_training": false,
|
14 |
+
"eos_token_id": 128001,
|
15 |
+
"freeze_mm_mlp_adapter": false,
|
16 |
+
"hidden_act": "silu",
|
17 |
+
"hidden_size": 4096,
|
18 |
+
"image_aspect_ratio": "pad",
|
19 |
+
"initializer_range": 0.02,
|
20 |
+
"intermediate_size": 14336,
|
21 |
+
"max_position_embeddings": 8192,
|
22 |
+
"mm_hidden_size": 3456,
|
23 |
+
"mm_projector_lr": null,
|
24 |
+
"mm_projector_type": "mlp2x_gelu",
|
25 |
+
"mm_vision_tower": "./weights/siglip-so400m-patch14-384",
|
26 |
+
"model_type": "bunny-llama",
|
27 |
+
"num_attention_heads": 32,
|
28 |
+
"num_hidden_layers": 32,
|
29 |
+
"num_key_value_heads": 8,
|
30 |
+
"pretraining_tp": 1,
|
31 |
+
"rms_norm_eps": 1e-05,
|
32 |
+
"rope_scaling": null,
|
33 |
+
"rope_theta": 500000.0,
|
34 |
+
"tie_word_embeddings": false,
|
35 |
+
"tokenizer_model_max_length": 2048,
|
36 |
+
"tokenizer_padding_side": "right",
|
37 |
+
"torch_dtype": "float16",
|
38 |
+
"transformers_version": "4.41.2",
|
39 |
+
"tune_mm_mlp_adapter": false,
|
40 |
+
"unfreeze_vision_tower": true,
|
41 |
+
"use_cache": true,
|
42 |
+
"use_mm_proj": true,
|
43 |
+
"use_s2": true,
|
44 |
+
"vocab_size": 128256
|
45 |
+
}
|
single_dataset/img2json/VideoGameBunny_v1_1-Llama-3-8B-V-img2json_dataset_2000_epochs_1_lora/non_lora_trainables.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dc232555e409ab19e56350ef2c9b0c80c0b12c30a0291e5aaa3b3d52cdb8089e
|
3 |
+
size 918507402
|
single_dataset/img2json/VideoGameBunny_v1_1-Llama-3-8B-V-img2json_dataset_2000_epochs_1_lora/trainer_state.json
ADDED
@@ -0,0 +1,917 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 1.0,
|
5 |
+
"eval_steps": 500,
|
6 |
+
"global_step": 125,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.008,
|
13 |
+
"grad_norm": 1.1618730196957123,
|
14 |
+
"learning_rate": 5e-05,
|
15 |
+
"loss": 1.5515,
|
16 |
+
"step": 1
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.016,
|
20 |
+
"grad_norm": 1.15537504646185,
|
21 |
+
"learning_rate": 0.0001,
|
22 |
+
"loss": 1.5311,
|
23 |
+
"step": 2
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"epoch": 0.024,
|
27 |
+
"grad_norm": 0.9635490214235893,
|
28 |
+
"learning_rate": 0.00015000000000000001,
|
29 |
+
"loss": 1.4312,
|
30 |
+
"step": 3
|
31 |
+
},
|
32 |
+
{
|
33 |
+
"epoch": 0.032,
|
34 |
+
"grad_norm": 1.3893228481848556,
|
35 |
+
"learning_rate": 0.0002,
|
36 |
+
"loss": 1.167,
|
37 |
+
"step": 4
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"epoch": 0.04,
|
41 |
+
"grad_norm": 1.3289968323340917,
|
42 |
+
"learning_rate": 0.00019996629653035126,
|
43 |
+
"loss": 1.0447,
|
44 |
+
"step": 5
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"epoch": 0.048,
|
48 |
+
"grad_norm": 0.8072806305690539,
|
49 |
+
"learning_rate": 0.00019986520883988232,
|
50 |
+
"loss": 1.0105,
|
51 |
+
"step": 6
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"epoch": 0.056,
|
55 |
+
"grad_norm": 0.6177964607456953,
|
56 |
+
"learning_rate": 0.00019969680506871137,
|
57 |
+
"loss": 0.8789,
|
58 |
+
"step": 7
|
59 |
+
},
|
60 |
+
{
|
61 |
+
"epoch": 0.064,
|
62 |
+
"grad_norm": 0.5524814937302823,
|
63 |
+
"learning_rate": 0.00019946119873266613,
|
64 |
+
"loss": 0.8635,
|
65 |
+
"step": 8
|
66 |
+
},
|
67 |
+
{
|
68 |
+
"epoch": 0.072,
|
69 |
+
"grad_norm": 0.5319431137217482,
|
70 |
+
"learning_rate": 0.00019915854864676664,
|
71 |
+
"loss": 0.9212,
|
72 |
+
"step": 9
|
73 |
+
},
|
74 |
+
{
|
75 |
+
"epoch": 0.08,
|
76 |
+
"grad_norm": 0.5995041018941503,
|
77 |
+
"learning_rate": 0.00019878905881817252,
|
78 |
+
"loss": 0.9419,
|
79 |
+
"step": 10
|
80 |
+
},
|
81 |
+
{
|
82 |
+
"epoch": 0.088,
|
83 |
+
"grad_norm": 0.5241617758084439,
|
84 |
+
"learning_rate": 0.00019835297830866826,
|
85 |
+
"loss": 0.8659,
|
86 |
+
"step": 11
|
87 |
+
},
|
88 |
+
{
|
89 |
+
"epoch": 0.096,
|
90 |
+
"grad_norm": 0.5203540014161351,
|
91 |
+
"learning_rate": 0.00019785060106677818,
|
92 |
+
"loss": 0.8887,
|
93 |
+
"step": 12
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"epoch": 0.104,
|
97 |
+
"grad_norm": 0.5144968235440169,
|
98 |
+
"learning_rate": 0.00019728226572962473,
|
99 |
+
"loss": 0.9298,
|
100 |
+
"step": 13
|
101 |
+
},
|
102 |
+
{
|
103 |
+
"epoch": 0.112,
|
104 |
+
"grad_norm": 0.44732252083116936,
|
105 |
+
"learning_rate": 0.0001966483553946637,
|
106 |
+
"loss": 0.8116,
|
107 |
+
"step": 14
|
108 |
+
},
|
109 |
+
{
|
110 |
+
"epoch": 0.12,
|
111 |
+
"grad_norm": 0.48923527048555243,
|
112 |
+
"learning_rate": 0.00019594929736144976,
|
113 |
+
"loss": 0.9035,
|
114 |
+
"step": 15
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 0.128,
|
118 |
+
"grad_norm": 0.4202366241305497,
|
119 |
+
"learning_rate": 0.00019518556284360696,
|
120 |
+
"loss": 0.863,
|
121 |
+
"step": 16
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"epoch": 0.136,
|
125 |
+
"grad_norm": 0.4537252189692721,
|
126 |
+
"learning_rate": 0.0001943576666511982,
|
127 |
+
"loss": 0.8725,
|
128 |
+
"step": 17
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"epoch": 0.144,
|
132 |
+
"grad_norm": 0.4306220050888526,
|
133 |
+
"learning_rate": 0.0001934661668437073,
|
134 |
+
"loss": 0.8376,
|
135 |
+
"step": 18
|
136 |
+
},
|
137 |
+
{
|
138 |
+
"epoch": 0.152,
|
139 |
+
"grad_norm": 0.3894710263894399,
|
140 |
+
"learning_rate": 0.0001925116643538684,
|
141 |
+
"loss": 0.8287,
|
142 |
+
"step": 19
|
143 |
+
},
|
144 |
+
{
|
145 |
+
"epoch": 0.16,
|
146 |
+
"grad_norm": 0.43976119402396047,
|
147 |
+
"learning_rate": 0.00019149480258259533,
|
148 |
+
"loss": 0.823,
|
149 |
+
"step": 20
|
150 |
+
},
|
151 |
+
{
|
152 |
+
"epoch": 0.168,
|
153 |
+
"grad_norm": 0.40179621147791533,
|
154 |
+
"learning_rate": 0.00019041626696528503,
|
155 |
+
"loss": 0.7952,
|
156 |
+
"step": 21
|
157 |
+
},
|
158 |
+
{
|
159 |
+
"epoch": 0.176,
|
160 |
+
"grad_norm": 0.4345187904250498,
|
161 |
+
"learning_rate": 0.0001892767845097864,
|
162 |
+
"loss": 0.8617,
|
163 |
+
"step": 22
|
164 |
+
},
|
165 |
+
{
|
166 |
+
"epoch": 0.184,
|
167 |
+
"grad_norm": 0.4131232137462944,
|
168 |
+
"learning_rate": 0.00018807712330634642,
|
169 |
+
"loss": 0.8384,
|
170 |
+
"step": 23
|
171 |
+
},
|
172 |
+
{
|
173 |
+
"epoch": 0.192,
|
174 |
+
"grad_norm": 0.40603865564196473,
|
175 |
+
"learning_rate": 0.0001868180920098644,
|
176 |
+
"loss": 0.8331,
|
177 |
+
"step": 24
|
178 |
+
},
|
179 |
+
{
|
180 |
+
"epoch": 0.2,
|
181 |
+
"grad_norm": 0.3951360345025102,
|
182 |
+
"learning_rate": 0.00018550053929480202,
|
183 |
+
"loss": 0.7836,
|
184 |
+
"step": 25
|
185 |
+
},
|
186 |
+
{
|
187 |
+
"epoch": 0.208,
|
188 |
+
"grad_norm": 0.40477643152693216,
|
189 |
+
"learning_rate": 0.00018412535328311814,
|
190 |
+
"loss": 0.7748,
|
191 |
+
"step": 26
|
192 |
+
},
|
193 |
+
{
|
194 |
+
"epoch": 0.216,
|
195 |
+
"grad_norm": 0.4251533568833813,
|
196 |
+
"learning_rate": 0.0001826934609456129,
|
197 |
+
"loss": 0.8444,
|
198 |
+
"step": 27
|
199 |
+
},
|
200 |
+
{
|
201 |
+
"epoch": 0.224,
|
202 |
+
"grad_norm": 0.4071344808654217,
|
203 |
+
"learning_rate": 0.00018120582747708502,
|
204 |
+
"loss": 0.8003,
|
205 |
+
"step": 28
|
206 |
+
},
|
207 |
+
{
|
208 |
+
"epoch": 0.232,
|
209 |
+
"grad_norm": 0.408159311901172,
|
210 |
+
"learning_rate": 0.0001796634556457236,
|
211 |
+
"loss": 0.8071,
|
212 |
+
"step": 29
|
213 |
+
},
|
214 |
+
{
|
215 |
+
"epoch": 0.24,
|
216 |
+
"grad_norm": 0.39865492737418323,
|
217 |
+
"learning_rate": 0.0001780673851171728,
|
218 |
+
"loss": 0.7849,
|
219 |
+
"step": 30
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 0.248,
|
223 |
+
"grad_norm": 0.4276310275653838,
|
224 |
+
"learning_rate": 0.00017641869175372493,
|
225 |
+
"loss": 0.8444,
|
226 |
+
"step": 31
|
227 |
+
},
|
228 |
+
{
|
229 |
+
"epoch": 0.256,
|
230 |
+
"grad_norm": 0.434386133606189,
|
231 |
+
"learning_rate": 0.00017471848688911464,
|
232 |
+
"loss": 0.8215,
|
233 |
+
"step": 32
|
234 |
+
},
|
235 |
+
{
|
236 |
+
"epoch": 0.264,
|
237 |
+
"grad_norm": 0.3822536210786355,
|
238 |
+
"learning_rate": 0.000172967916579403,
|
239 |
+
"loss": 0.8132,
|
240 |
+
"step": 33
|
241 |
+
},
|
242 |
+
{
|
243 |
+
"epoch": 0.272,
|
244 |
+
"grad_norm": 0.3913709039902287,
|
245 |
+
"learning_rate": 0.00017116816083045602,
|
246 |
+
"loss": 0.8282,
|
247 |
+
"step": 34
|
248 |
+
},
|
249 |
+
{
|
250 |
+
"epoch": 0.28,
|
251 |
+
"grad_norm": 0.4171383919051642,
|
252 |
+
"learning_rate": 0.0001693204328025389,
|
253 |
+
"loss": 0.8489,
|
254 |
+
"step": 35
|
255 |
+
},
|
256 |
+
{
|
257 |
+
"epoch": 0.288,
|
258 |
+
"grad_norm": 0.38777521576935947,
|
259 |
+
"learning_rate": 0.00016742597799256182,
|
260 |
+
"loss": 0.7557,
|
261 |
+
"step": 36
|
262 |
+
},
|
263 |
+
{
|
264 |
+
"epoch": 0.296,
|
265 |
+
"grad_norm": 0.38572156231558025,
|
266 |
+
"learning_rate": 0.00016548607339452853,
|
267 |
+
"loss": 0.7754,
|
268 |
+
"step": 37
|
269 |
+
},
|
270 |
+
{
|
271 |
+
"epoch": 0.304,
|
272 |
+
"grad_norm": 0.4104203019193881,
|
273 |
+
"learning_rate": 0.00016350202663875386,
|
274 |
+
"loss": 0.7698,
|
275 |
+
"step": 38
|
276 |
+
},
|
277 |
+
{
|
278 |
+
"epoch": 0.312,
|
279 |
+
"grad_norm": 0.5677828834671339,
|
280 |
+
"learning_rate": 0.0001614751751104301,
|
281 |
+
"loss": 0.7886,
|
282 |
+
"step": 39
|
283 |
+
},
|
284 |
+
{
|
285 |
+
"epoch": 0.32,
|
286 |
+
"grad_norm": 0.4077418306551607,
|
287 |
+
"learning_rate": 0.00015940688504813662,
|
288 |
+
"loss": 0.8048,
|
289 |
+
"step": 40
|
290 |
+
},
|
291 |
+
{
|
292 |
+
"epoch": 0.328,
|
293 |
+
"grad_norm": 0.41489722264421747,
|
294 |
+
"learning_rate": 0.00015729855062290022,
|
295 |
+
"loss": 0.7622,
|
296 |
+
"step": 41
|
297 |
+
},
|
298 |
+
{
|
299 |
+
"epoch": 0.336,
|
300 |
+
"grad_norm": 0.39615414916810177,
|
301 |
+
"learning_rate": 0.00015515159299842707,
|
302 |
+
"loss": 0.7987,
|
303 |
+
"step": 42
|
304 |
+
},
|
305 |
+
{
|
306 |
+
"epoch": 0.344,
|
307 |
+
"grad_norm": 0.40912637858839207,
|
308 |
+
"learning_rate": 0.00015296745937313987,
|
309 |
+
"loss": 0.7637,
|
310 |
+
"step": 43
|
311 |
+
},
|
312 |
+
{
|
313 |
+
"epoch": 0.352,
|
314 |
+
"grad_norm": 0.38793742176167395,
|
315 |
+
"learning_rate": 0.00015074762200466556,
|
316 |
+
"loss": 0.8198,
|
317 |
+
"step": 44
|
318 |
+
},
|
319 |
+
{
|
320 |
+
"epoch": 0.36,
|
321 |
+
"grad_norm": 0.3979430102052743,
|
322 |
+
"learning_rate": 0.00014849357721743168,
|
323 |
+
"loss": 0.8026,
|
324 |
+
"step": 45
|
325 |
+
},
|
326 |
+
{
|
327 |
+
"epoch": 0.368,
|
328 |
+
"grad_norm": 0.3788509235665202,
|
329 |
+
"learning_rate": 0.00014620684439403962,
|
330 |
+
"loss": 0.8023,
|
331 |
+
"step": 46
|
332 |
+
},
|
333 |
+
{
|
334 |
+
"epoch": 0.376,
|
335 |
+
"grad_norm": 0.39278185642418834,
|
336 |
+
"learning_rate": 0.0001438889649510956,
|
337 |
+
"loss": 0.7481,
|
338 |
+
"step": 47
|
339 |
+
},
|
340 |
+
{
|
341 |
+
"epoch": 0.384,
|
342 |
+
"grad_norm": 0.3696223706213371,
|
343 |
+
"learning_rate": 0.00014154150130018866,
|
344 |
+
"loss": 0.7609,
|
345 |
+
"step": 48
|
346 |
+
},
|
347 |
+
{
|
348 |
+
"epoch": 0.392,
|
349 |
+
"grad_norm": 0.39313607939291717,
|
350 |
+
"learning_rate": 0.00013916603579471705,
|
351 |
+
"loss": 0.8157,
|
352 |
+
"step": 49
|
353 |
+
},
|
354 |
+
{
|
355 |
+
"epoch": 0.4,
|
356 |
+
"grad_norm": 0.3855055319878002,
|
357 |
+
"learning_rate": 0.000136764169663272,
|
358 |
+
"loss": 0.7638,
|
359 |
+
"step": 50
|
360 |
+
},
|
361 |
+
{
|
362 |
+
"epoch": 0.408,
|
363 |
+
"grad_norm": 0.37066834001446136,
|
364 |
+
"learning_rate": 0.00013433752193029886,
|
365 |
+
"loss": 0.758,
|
366 |
+
"step": 51
|
367 |
+
},
|
368 |
+
{
|
369 |
+
"epoch": 0.416,
|
370 |
+
"grad_norm": 0.4170209578873234,
|
371 |
+
"learning_rate": 0.00013188772832476188,
|
372 |
+
"loss": 0.834,
|
373 |
+
"step": 52
|
374 |
+
},
|
375 |
+
{
|
376 |
+
"epoch": 0.424,
|
377 |
+
"grad_norm": 0.37700762349814604,
|
378 |
+
"learning_rate": 0.00012941644017754964,
|
379 |
+
"loss": 0.7533,
|
380 |
+
"step": 53
|
381 |
+
},
|
382 |
+
{
|
383 |
+
"epoch": 0.432,
|
384 |
+
"grad_norm": 0.3694537319289278,
|
385 |
+
"learning_rate": 0.00012692532330836346,
|
386 |
+
"loss": 0.7159,
|
387 |
+
"step": 54
|
388 |
+
},
|
389 |
+
{
|
390 |
+
"epoch": 0.44,
|
391 |
+
"grad_norm": 0.3764585488672252,
|
392 |
+
"learning_rate": 0.00012441605690283915,
|
393 |
+
"loss": 0.7762,
|
394 |
+
"step": 55
|
395 |
+
},
|
396 |
+
{
|
397 |
+
"epoch": 0.448,
|
398 |
+
"grad_norm": 0.36568785296633305,
|
399 |
+
"learning_rate": 0.0001218903323806595,
|
400 |
+
"loss": 0.7848,
|
401 |
+
"step": 56
|
402 |
+
},
|
403 |
+
{
|
404 |
+
"epoch": 0.456,
|
405 |
+
"grad_norm": 0.3642739327906848,
|
406 |
+
"learning_rate": 0.00011934985225541998,
|
407 |
+
"loss": 0.8302,
|
408 |
+
"step": 57
|
409 |
+
},
|
410 |
+
{
|
411 |
+
"epoch": 0.464,
|
412 |
+
"grad_norm": 0.38223649800753023,
|
413 |
+
"learning_rate": 0.00011679632898701649,
|
414 |
+
"loss": 0.7719,
|
415 |
+
"step": 58
|
416 |
+
},
|
417 |
+
{
|
418 |
+
"epoch": 0.472,
|
419 |
+
"grad_norm": 0.41018205417563863,
|
420 |
+
"learning_rate": 0.00011423148382732853,
|
421 |
+
"loss": 0.7676,
|
422 |
+
"step": 59
|
423 |
+
},
|
424 |
+
{
|
425 |
+
"epoch": 0.48,
|
426 |
+
"grad_norm": 0.37477718222402323,
|
427 |
+
"learning_rate": 0.00011165704565997593,
|
428 |
+
"loss": 0.7395,
|
429 |
+
"step": 60
|
430 |
+
},
|
431 |
+
{
|
432 |
+
"epoch": 0.488,
|
433 |
+
"grad_norm": 0.373178036681771,
|
434 |
+
"learning_rate": 0.00010907474983493144,
|
435 |
+
"loss": 0.7662,
|
436 |
+
"step": 61
|
437 |
+
},
|
438 |
+
{
|
439 |
+
"epoch": 0.496,
|
440 |
+
"grad_norm": 0.3869027594520346,
|
441 |
+
"learning_rate": 0.0001064863369987743,
|
442 |
+
"loss": 0.801,
|
443 |
+
"step": 62
|
444 |
+
},
|
445 |
+
{
|
446 |
+
"epoch": 0.504,
|
447 |
+
"grad_norm": 0.3525699091995798,
|
448 |
+
"learning_rate": 0.00010389355192137377,
|
449 |
+
"loss": 0.7239,
|
450 |
+
"step": 63
|
451 |
+
},
|
452 |
+
{
|
453 |
+
"epoch": 0.512,
|
454 |
+
"grad_norm": 0.37067545461002194,
|
455 |
+
"learning_rate": 0.0001012981423197931,
|
456 |
+
"loss": 0.7011,
|
457 |
+
"step": 64
|
458 |
+
},
|
459 |
+
{
|
460 |
+
"epoch": 0.52,
|
461 |
+
"grad_norm": 0.37290965245827035,
|
462 |
+
"learning_rate": 9.870185768020693e-05,
|
463 |
+
"loss": 0.7643,
|
464 |
+
"step": 65
|
465 |
+
},
|
466 |
+
{
|
467 |
+
"epoch": 0.528,
|
468 |
+
"grad_norm": 0.37698723891357505,
|
469 |
+
"learning_rate": 9.610644807862625e-05,
|
470 |
+
"loss": 0.7229,
|
471 |
+
"step": 66
|
472 |
+
},
|
473 |
+
{
|
474 |
+
"epoch": 0.536,
|
475 |
+
"grad_norm": 0.37310662528724425,
|
476 |
+
"learning_rate": 9.35136630012257e-05,
|
477 |
+
"loss": 0.7814,
|
478 |
+
"step": 67
|
479 |
+
},
|
480 |
+
{
|
481 |
+
"epoch": 0.544,
|
482 |
+
"grad_norm": 0.36161343594825424,
|
483 |
+
"learning_rate": 9.092525016506858e-05,
|
484 |
+
"loss": 0.7469,
|
485 |
+
"step": 68
|
486 |
+
},
|
487 |
+
{
|
488 |
+
"epoch": 0.552,
|
489 |
+
"grad_norm": 0.38820107691296035,
|
490 |
+
"learning_rate": 8.83429543400241e-05,
|
491 |
+
"loss": 0.8049,
|
492 |
+
"step": 69
|
493 |
+
},
|
494 |
+
{
|
495 |
+
"epoch": 0.56,
|
496 |
+
"grad_norm": 0.380257947651291,
|
497 |
+
"learning_rate": 8.57685161726715e-05,
|
498 |
+
"loss": 0.7446,
|
499 |
+
"step": 70
|
500 |
+
},
|
501 |
+
{
|
502 |
+
"epoch": 0.568,
|
503 |
+
"grad_norm": 0.3532116216773163,
|
504 |
+
"learning_rate": 8.320367101298351e-05,
|
505 |
+
"loss": 0.7377,
|
506 |
+
"step": 71
|
507 |
+
},
|
508 |
+
{
|
509 |
+
"epoch": 0.576,
|
510 |
+
"grad_norm": 0.3856516769452259,
|
511 |
+
"learning_rate": 8.065014774458003e-05,
|
512 |
+
"loss": 0.7489,
|
513 |
+
"step": 72
|
514 |
+
},
|
515 |
+
{
|
516 |
+
"epoch": 0.584,
|
517 |
+
"grad_norm": 0.37631098630814735,
|
518 |
+
"learning_rate": 7.810966761934053e-05,
|
519 |
+
"loss": 0.7719,
|
520 |
+
"step": 73
|
521 |
+
},
|
522 |
+
{
|
523 |
+
"epoch": 0.592,
|
524 |
+
"grad_norm": 0.38056900801863475,
|
525 |
+
"learning_rate": 7.558394309716088e-05,
|
526 |
+
"loss": 0.713,
|
527 |
+
"step": 74
|
528 |
+
},
|
529 |
+
{
|
530 |
+
"epoch": 0.6,
|
531 |
+
"grad_norm": 0.3475939820542006,
|
532 |
+
"learning_rate": 7.307467669163655e-05,
|
533 |
+
"loss": 0.7242,
|
534 |
+
"step": 75
|
535 |
+
},
|
536 |
+
{
|
537 |
+
"epoch": 0.608,
|
538 |
+
"grad_norm": 0.35273458966475485,
|
539 |
+
"learning_rate": 7.058355982245037e-05,
|
540 |
+
"loss": 0.748,
|
541 |
+
"step": 76
|
542 |
+
},
|
543 |
+
{
|
544 |
+
"epoch": 0.616,
|
545 |
+
"grad_norm": 0.3745939242868226,
|
546 |
+
"learning_rate": 6.811227167523815e-05,
|
547 |
+
"loss": 0.7519,
|
548 |
+
"step": 77
|
549 |
+
},
|
550 |
+
{
|
551 |
+
"epoch": 0.624,
|
552 |
+
"grad_norm": 0.3749958310986676,
|
553 |
+
"learning_rate": 6.566247806970119e-05,
|
554 |
+
"loss": 0.6751,
|
555 |
+
"step": 78
|
556 |
+
},
|
557 |
+
{
|
558 |
+
"epoch": 0.632,
|
559 |
+
"grad_norm": 0.346667180530484,
|
560 |
+
"learning_rate": 6.323583033672799e-05,
|
561 |
+
"loss": 0.6966,
|
562 |
+
"step": 79
|
563 |
+
},
|
564 |
+
{
|
565 |
+
"epoch": 0.64,
|
566 |
+
"grad_norm": 0.3747288183174455,
|
567 |
+
"learning_rate": 6.083396420528298e-05,
|
568 |
+
"loss": 0.8034,
|
569 |
+
"step": 80
|
570 |
+
},
|
571 |
+
{
|
572 |
+
"epoch": 0.648,
|
573 |
+
"grad_norm": 0.3533701171483392,
|
574 |
+
"learning_rate": 5.845849869981137e-05,
|
575 |
+
"loss": 0.7251,
|
576 |
+
"step": 81
|
577 |
+
},
|
578 |
+
{
|
579 |
+
"epoch": 0.656,
|
580 |
+
"grad_norm": 0.3591629687481598,
|
581 |
+
"learning_rate": 5.611103504890444e-05,
|
582 |
+
"loss": 0.7635,
|
583 |
+
"step": 82
|
584 |
+
},
|
585 |
+
{
|
586 |
+
"epoch": 0.664,
|
587 |
+
"grad_norm": 0.4084692648623678,
|
588 |
+
"learning_rate": 5.379315560596038e-05,
|
589 |
+
"loss": 0.6802,
|
590 |
+
"step": 83
|
591 |
+
},
|
592 |
+
{
|
593 |
+
"epoch": 0.672,
|
594 |
+
"grad_norm": 0.38688968930898393,
|
595 |
+
"learning_rate": 5.1506422782568345e-05,
|
596 |
+
"loss": 0.764,
|
597 |
+
"step": 84
|
598 |
+
},
|
599 |
+
{
|
600 |
+
"epoch": 0.68,
|
601 |
+
"grad_norm": 0.39312529151121633,
|
602 |
+
"learning_rate": 4.9252377995334444e-05,
|
603 |
+
"loss": 0.8013,
|
604 |
+
"step": 85
|
605 |
+
},
|
606 |
+
{
|
607 |
+
"epoch": 0.688,
|
608 |
+
"grad_norm": 0.3863181564669427,
|
609 |
+
"learning_rate": 4.703254062686017e-05,
|
610 |
+
"loss": 0.7498,
|
611 |
+
"step": 86
|
612 |
+
},
|
613 |
+
{
|
614 |
+
"epoch": 0.696,
|
615 |
+
"grad_norm": 0.3799061879135913,
|
616 |
+
"learning_rate": 4.484840700157295e-05,
|
617 |
+
"loss": 0.7561,
|
618 |
+
"step": 87
|
619 |
+
},
|
620 |
+
{
|
621 |
+
"epoch": 0.704,
|
622 |
+
"grad_norm": 0.3838739899745123,
|
623 |
+
"learning_rate": 4.270144937709981e-05,
|
624 |
+
"loss": 0.7573,
|
625 |
+
"step": 88
|
626 |
+
},
|
627 |
+
{
|
628 |
+
"epoch": 0.712,
|
629 |
+
"grad_norm": 0.3530265455361142,
|
630 |
+
"learning_rate": 4.059311495186338e-05,
|
631 |
+
"loss": 0.7013,
|
632 |
+
"step": 89
|
633 |
+
},
|
634 |
+
{
|
635 |
+
"epoch": 0.72,
|
636 |
+
"grad_norm": 0.33230437953255176,
|
637 |
+
"learning_rate": 3.852482488956992e-05,
|
638 |
+
"loss": 0.7152,
|
639 |
+
"step": 90
|
640 |
+
},
|
641 |
+
{
|
642 |
+
"epoch": 0.728,
|
643 |
+
"grad_norm": 0.3833248244274872,
|
644 |
+
"learning_rate": 3.649797336124615e-05,
|
645 |
+
"loss": 0.7238,
|
646 |
+
"step": 91
|
647 |
+
},
|
648 |
+
{
|
649 |
+
"epoch": 0.736,
|
650 |
+
"grad_norm": 0.39464827998307495,
|
651 |
+
"learning_rate": 3.45139266054715e-05,
|
652 |
+
"loss": 0.7773,
|
653 |
+
"step": 92
|
654 |
+
},
|
655 |
+
{
|
656 |
+
"epoch": 0.744,
|
657 |
+
"grad_norm": 0.36445590177391896,
|
658 |
+
"learning_rate": 3.257402200743821e-05,
|
659 |
+
"loss": 0.7877,
|
660 |
+
"step": 93
|
661 |
+
},
|
662 |
+
{
|
663 |
+
"epoch": 0.752,
|
664 |
+
"grad_norm": 0.357480514684254,
|
665 |
+
"learning_rate": 3.0679567197461134e-05,
|
666 |
+
"loss": 0.6932,
|
667 |
+
"step": 94
|
668 |
+
},
|
669 |
+
{
|
670 |
+
"epoch": 0.76,
|
671 |
+
"grad_norm": 0.37544630400071793,
|
672 |
+
"learning_rate": 2.8831839169543996e-05,
|
673 |
+
"loss": 0.7565,
|
674 |
+
"step": 95
|
675 |
+
},
|
676 |
+
{
|
677 |
+
"epoch": 0.768,
|
678 |
+
"grad_norm": 0.36203062045464296,
|
679 |
+
"learning_rate": 2.7032083420597e-05,
|
680 |
+
"loss": 0.6979,
|
681 |
+
"step": 96
|
682 |
+
},
|
683 |
+
{
|
684 |
+
"epoch": 0.776,
|
685 |
+
"grad_norm": 0.3729928884427148,
|
686 |
+
"learning_rate": 2.528151311088537e-05,
|
687 |
+
"loss": 0.6918,
|
688 |
+
"step": 97
|
689 |
+
},
|
690 |
+
{
|
691 |
+
"epoch": 0.784,
|
692 |
+
"grad_norm": 0.3649485582808177,
|
693 |
+
"learning_rate": 2.3581308246275103e-05,
|
694 |
+
"loss": 0.7278,
|
695 |
+
"step": 98
|
696 |
+
},
|
697 |
+
{
|
698 |
+
"epoch": 0.792,
|
699 |
+
"grad_norm": 0.3908594146852727,
|
700 |
+
"learning_rate": 2.1932614882827197e-05,
|
701 |
+
"loss": 0.7761,
|
702 |
+
"step": 99
|
703 |
+
},
|
704 |
+
{
|
705 |
+
"epoch": 0.8,
|
706 |
+
"grad_norm": 0.3642904141026686,
|
707 |
+
"learning_rate": 2.03365443542764e-05,
|
708 |
+
"loss": 0.6851,
|
709 |
+
"step": 100
|
710 |
+
},
|
711 |
+
{
|
712 |
+
"epoch": 0.808,
|
713 |
+
"grad_norm": 0.44262214768350755,
|
714 |
+
"learning_rate": 1.879417252291502e-05,
|
715 |
+
"loss": 0.6799,
|
716 |
+
"step": 101
|
717 |
+
},
|
718 |
+
{
|
719 |
+
"epoch": 0.816,
|
720 |
+
"grad_norm": 0.35993727801165104,
|
721 |
+
"learning_rate": 1.730653905438714e-05,
|
722 |
+
"loss": 0.7673,
|
723 |
+
"step": 102
|
724 |
+
},
|
725 |
+
{
|
726 |
+
"epoch": 0.824,
|
727 |
+
"grad_norm": 0.40347095599001326,
|
728 |
+
"learning_rate": 1.587464671688187e-05,
|
729 |
+
"loss": 0.716,
|
730 |
+
"step": 103
|
731 |
+
},
|
732 |
+
{
|
733 |
+
"epoch": 0.832,
|
734 |
+
"grad_norm": 0.3845207910750551,
|
735 |
+
"learning_rate": 1.4499460705197998e-05,
|
736 |
+
"loss": 0.7552,
|
737 |
+
"step": 104
|
738 |
+
},
|
739 |
+
{
|
740 |
+
"epoch": 0.84,
|
741 |
+
"grad_norm": 0.394463216691188,
|
742 |
+
"learning_rate": 1.3181907990135622e-05,
|
743 |
+
"loss": 0.7964,
|
744 |
+
"step": 105
|
745 |
+
},
|
746 |
+
{
|
747 |
+
"epoch": 0.848,
|
748 |
+
"grad_norm": 0.348375773555577,
|
749 |
+
"learning_rate": 1.1922876693653585e-05,
|
750 |
+
"loss": 0.7627,
|
751 |
+
"step": 106
|
752 |
+
},
|
753 |
+
{
|
754 |
+
"epoch": 0.856,
|
755 |
+
"grad_norm": 0.38679798921064223,
|
756 |
+
"learning_rate": 1.0723215490213634e-05,
|
757 |
+
"loss": 0.7596,
|
758 |
+
"step": 107
|
759 |
+
},
|
760 |
+
{
|
761 |
+
"epoch": 0.864,
|
762 |
+
"grad_norm": 0.34654567263972674,
|
763 |
+
"learning_rate": 9.583733034714981e-06,
|
764 |
+
"loss": 0.7239,
|
765 |
+
"step": 108
|
766 |
+
},
|
767 |
+
{
|
768 |
+
"epoch": 0.872,
|
769 |
+
"grad_norm": 0.35543614359220455,
|
770 |
+
"learning_rate": 8.505197417404687e-06,
|
771 |
+
"loss": 0.751,
|
772 |
+
"step": 109
|
773 |
+
},
|
774 |
+
{
|
775 |
+
"epoch": 0.88,
|
776 |
+
"grad_norm": 0.38143658550121157,
|
777 |
+
"learning_rate": 7.488335646131628e-06,
|
778 |
+
"loss": 0.7369,
|
779 |
+
"step": 110
|
780 |
+
},
|
781 |
+
{
|
782 |
+
"epoch": 0.888,
|
783 |
+
"grad_norm": 0.37067691582012285,
|
784 |
+
"learning_rate": 6.533833156292679e-06,
|
785 |
+
"loss": 0.7399,
|
786 |
+
"step": 111
|
787 |
+
},
|
788 |
+
{
|
789 |
+
"epoch": 0.896,
|
790 |
+
"grad_norm": 0.3488961142915352,
|
791 |
+
"learning_rate": 5.6423333488018095e-06,
|
792 |
+
"loss": 0.7192,
|
793 |
+
"step": 112
|
794 |
+
},
|
795 |
+
{
|
796 |
+
"epoch": 0.904,
|
797 |
+
"grad_norm": 0.33944638409930467,
|
798 |
+
"learning_rate": 4.8144371563930476e-06,
|
799 |
+
"loss": 0.6978,
|
800 |
+
"step": 113
|
801 |
+
},
|
802 |
+
{
|
803 |
+
"epoch": 0.912,
|
804 |
+
"grad_norm": 0.3568746231972527,
|
805 |
+
"learning_rate": 4.050702638550275e-06,
|
806 |
+
"loss": 0.7851,
|
807 |
+
"step": 114
|
808 |
+
},
|
809 |
+
{
|
810 |
+
"epoch": 0.92,
|
811 |
+
"grad_norm": 0.41401609220830243,
|
812 |
+
"learning_rate": 3.3516446053363015e-06,
|
813 |
+
"loss": 0.7084,
|
814 |
+
"step": 115
|
815 |
+
},
|
816 |
+
{
|
817 |
+
"epoch": 0.928,
|
818 |
+
"grad_norm": 0.35282787153112793,
|
819 |
+
"learning_rate": 2.717734270375272e-06,
|
820 |
+
"loss": 0.7244,
|
821 |
+
"step": 116
|
822 |
+
},
|
823 |
+
{
|
824 |
+
"epoch": 0.936,
|
825 |
+
"grad_norm": 0.3527796028448424,
|
826 |
+
"learning_rate": 2.1493989332218468e-06,
|
827 |
+
"loss": 0.6861,
|
828 |
+
"step": 117
|
829 |
+
},
|
830 |
+
{
|
831 |
+
"epoch": 0.944,
|
832 |
+
"grad_norm": 0.5300463886375664,
|
833 |
+
"learning_rate": 1.6470216913317626e-06,
|
834 |
+
"loss": 0.7752,
|
835 |
+
"step": 118
|
836 |
+
},
|
837 |
+
{
|
838 |
+
"epoch": 0.952,
|
839 |
+
"grad_norm": 0.3994773326174539,
|
840 |
+
"learning_rate": 1.2109411818274852e-06,
|
841 |
+
"loss": 0.6969,
|
842 |
+
"step": 119
|
843 |
+
},
|
844 |
+
{
|
845 |
+
"epoch": 0.96,
|
846 |
+
"grad_norm": 0.3651699090120398,
|
847 |
+
"learning_rate": 8.41451353233369e-07,
|
848 |
+
"loss": 0.7376,
|
849 |
+
"step": 120
|
850 |
+
},
|
851 |
+
{
|
852 |
+
"epoch": 0.968,
|
853 |
+
"grad_norm": 0.34676126862325934,
|
854 |
+
"learning_rate": 5.388012673338661e-07,
|
855 |
+
"loss": 0.7347,
|
856 |
+
"step": 121
|
857 |
+
},
|
858 |
+
{
|
859 |
+
"epoch": 0.976,
|
860 |
+
"grad_norm": 0.37764716508598595,
|
861 |
+
"learning_rate": 3.0319493128866396e-07,
|
862 |
+
"loss": 0.7745,
|
863 |
+
"step": 122
|
864 |
+
},
|
865 |
+
{
|
866 |
+
"epoch": 0.984,
|
867 |
+
"grad_norm": 0.3564807247913989,
|
868 |
+
"learning_rate": 1.3479116011769767e-07,
|
869 |
+
"loss": 0.7641,
|
870 |
+
"step": 123
|
871 |
+
},
|
872 |
+
{
|
873 |
+
"epoch": 0.992,
|
874 |
+
"grad_norm": 0.3742103364582621,
|
875 |
+
"learning_rate": 3.370346964876036e-08,
|
876 |
+
"loss": 0.7504,
|
877 |
+
"step": 124
|
878 |
+
},
|
879 |
+
{
|
880 |
+
"epoch": 1.0,
|
881 |
+
"grad_norm": 0.3985429773500903,
|
882 |
+
"learning_rate": 0.0,
|
883 |
+
"loss": 0.7313,
|
884 |
+
"step": 125
|
885 |
+
},
|
886 |
+
{
|
887 |
+
"epoch": 1.0,
|
888 |
+
"step": 125,
|
889 |
+
"total_flos": 114429774790656.0,
|
890 |
+
"train_loss": 0.7987350339889526,
|
891 |
+
"train_runtime": 1999.0989,
|
892 |
+
"train_samples_per_second": 1.0,
|
893 |
+
"train_steps_per_second": 0.063
|
894 |
+
}
|
895 |
+
],
|
896 |
+
"logging_steps": 1.0,
|
897 |
+
"max_steps": 125,
|
898 |
+
"num_input_tokens_seen": 0,
|
899 |
+
"num_train_epochs": 1,
|
900 |
+
"save_steps": 500,
|
901 |
+
"stateful_callbacks": {
|
902 |
+
"TrainerControl": {
|
903 |
+
"args": {
|
904 |
+
"should_epoch_stop": false,
|
905 |
+
"should_evaluate": false,
|
906 |
+
"should_log": false,
|
907 |
+
"should_save": false,
|
908 |
+
"should_training_stop": false
|
909 |
+
},
|
910 |
+
"attributes": {}
|
911 |
+
}
|
912 |
+
},
|
913 |
+
"total_flos": 114429774790656.0,
|
914 |
+
"train_batch_size": 8,
|
915 |
+
"trial_name": null,
|
916 |
+
"trial_params": null
|
917 |
+
}
|
single_dataset/img2json/VideoGameBunny_v1_1-Llama-3-8B-V-img2json_dataset_40000_epochs_1_lora/README.md
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: peft
|
3 |
+
base_model: ./weights/Bunny-v1_1-Llama-3-8B-V
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.11.1
|
single_dataset/img2json/VideoGameBunny_v1_1-Llama-3-8B-V-img2json_dataset_40000_epochs_1_lora/adapter_config.json
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "./weights/Bunny-v1_1-Llama-3-8B-V",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layer_replication": null,
|
10 |
+
"layers_pattern": null,
|
11 |
+
"layers_to_transform": null,
|
12 |
+
"loftq_config": {},
|
13 |
+
"lora_alpha": 256,
|
14 |
+
"lora_dropout": 0.1,
|
15 |
+
"megatron_config": null,
|
16 |
+
"megatron_core": "megatron.core",
|
17 |
+
"modules_to_save": null,
|
18 |
+
"peft_type": "LORA",
|
19 |
+
"r": 128,
|
20 |
+
"rank_pattern": {},
|
21 |
+
"revision": null,
|
22 |
+
"target_modules": [
|
23 |
+
"k_proj",
|
24 |
+
"o_proj",
|
25 |
+
"q_proj",
|
26 |
+
"v_proj",
|
27 |
+
"up_proj",
|
28 |
+
"gate_proj",
|
29 |
+
"down_proj"
|
30 |
+
],
|
31 |
+
"task_type": "CAUSAL_LM",
|
32 |
+
"use_dora": false,
|
33 |
+
"use_rslora": false
|
34 |
+
}
|
single_dataset/img2json/VideoGameBunny_v1_1-Llama-3-8B-V-img2json_dataset_40000_epochs_1_lora/adapter_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b9ef59283510c9e7b49e3932426b46eabb879faff3c8887c30de65c24077d5fd
|
3 |
+
size 671150064
|
single_dataset/img2json/VideoGameBunny_v1_1-Llama-3-8B-V-img2json_dataset_40000_epochs_1_lora/config.json
ADDED
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "./weights/Bunny-v1_1-Llama-3-8B-V",
|
3 |
+
"architectures": [
|
4 |
+
"BunnyLlamaForCausalLM"
|
5 |
+
],
|
6 |
+
"attention_bias": false,
|
7 |
+
"attention_dropout": 0.0,
|
8 |
+
"auto_map": {
|
9 |
+
"AutoConfig": "configuration_bunny_llama.BunnyLlamaConfig",
|
10 |
+
"AutoModelForCausalLM": "modeling_bunny_llama.BunnyLlamaForCausalLM"
|
11 |
+
},
|
12 |
+
"bos_token_id": 128000,
|
13 |
+
"continuous_training": false,
|
14 |
+
"eos_token_id": 128001,
|
15 |
+
"freeze_mm_mlp_adapter": false,
|
16 |
+
"hidden_act": "silu",
|
17 |
+
"hidden_size": 4096,
|
18 |
+
"image_aspect_ratio": "pad",
|
19 |
+
"initializer_range": 0.02,
|
20 |
+
"intermediate_size": 14336,
|
21 |
+
"max_position_embeddings": 8192,
|
22 |
+
"mm_hidden_size": 3456,
|
23 |
+
"mm_projector_lr": null,
|
24 |
+
"mm_projector_type": "mlp2x_gelu",
|
25 |
+
"mm_vision_tower": "./weights/siglip-so400m-patch14-384",
|
26 |
+
"model_type": "bunny-llama",
|
27 |
+
"num_attention_heads": 32,
|
28 |
+
"num_hidden_layers": 32,
|
29 |
+
"num_key_value_heads": 8,
|
30 |
+
"pretraining_tp": 1,
|
31 |
+
"rms_norm_eps": 1e-05,
|
32 |
+
"rope_scaling": null,
|
33 |
+
"rope_theta": 500000.0,
|
34 |
+
"tie_word_embeddings": false,
|
35 |
+
"tokenizer_model_max_length": 2048,
|
36 |
+
"tokenizer_padding_side": "right",
|
37 |
+
"torch_dtype": "float16",
|
38 |
+
"transformers_version": "4.41.2",
|
39 |
+
"tune_mm_mlp_adapter": false,
|
40 |
+
"unfreeze_vision_tower": true,
|
41 |
+
"use_cache": true,
|
42 |
+
"use_mm_proj": true,
|
43 |
+
"use_s2": true,
|
44 |
+
"vocab_size": 128256
|
45 |
+
}
|
single_dataset/img2json/VideoGameBunny_v1_1-Llama-3-8B-V-img2json_dataset_40000_epochs_1_lora/non_lora_trainables.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d3a09b73edd598b333e4c155070f11cbe643f9b38281bac20c220a35ec1c5993
|
3 |
+
size 918507402
|
single_dataset/img2json/VideoGameBunny_v1_1-Llama-3-8B-V-img2json_dataset_40000_epochs_1_lora/trainer_state.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
single_dataset/img2json/VideoGameBunny_v1_1-Llama-3-8B-V-img2json_dataset_50000_epochs_1_lora/README.md
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: peft
|
3 |
+
base_model: ./weights/Bunny-v1_1-Llama-3-8B-V
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.11.1
|
single_dataset/img2json/VideoGameBunny_v1_1-Llama-3-8B-V-img2json_dataset_50000_epochs_1_lora/adapter_config.json
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "./weights/Bunny-v1_1-Llama-3-8B-V",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layer_replication": null,
|
10 |
+
"layers_pattern": null,
|
11 |
+
"layers_to_transform": null,
|
12 |
+
"loftq_config": {},
|
13 |
+
"lora_alpha": 256,
|
14 |
+
"lora_dropout": 0.1,
|
15 |
+
"megatron_config": null,
|
16 |
+
"megatron_core": "megatron.core",
|
17 |
+
"modules_to_save": null,
|
18 |
+
"peft_type": "LORA",
|
19 |
+
"r": 128,
|
20 |
+
"rank_pattern": {},
|
21 |
+
"revision": null,
|
22 |
+
"target_modules": [
|
23 |
+
"o_proj",
|
24 |
+
"k_proj",
|
25 |
+
"up_proj",
|
26 |
+
"gate_proj",
|
27 |
+
"q_proj",
|
28 |
+
"down_proj",
|
29 |
+
"v_proj"
|
30 |
+
],
|
31 |
+
"task_type": "CAUSAL_LM",
|
32 |
+
"use_dora": false,
|
33 |
+
"use_rslora": false
|
34 |
+
}
|