taesiri commited on
Commit
7a960b9
1 Parent(s): 0458830

Upload folder using huggingface_hub

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. single_dataset/gpt4o_conversations/VideoGameBunny_v1_1-Llama-3-8B-V-gpt4o_conversations_dataset_10000_epochs_1_lora/README.md +202 -0
  2. single_dataset/gpt4o_conversations/VideoGameBunny_v1_1-Llama-3-8B-V-gpt4o_conversations_dataset_10000_epochs_1_lora/adapter_config.json +34 -0
  3. single_dataset/gpt4o_conversations/VideoGameBunny_v1_1-Llama-3-8B-V-gpt4o_conversations_dataset_10000_epochs_1_lora/adapter_model.safetensors +3 -0
  4. single_dataset/gpt4o_conversations/VideoGameBunny_v1_1-Llama-3-8B-V-gpt4o_conversations_dataset_10000_epochs_1_lora/config.json +45 -0
  5. single_dataset/gpt4o_conversations/VideoGameBunny_v1_1-Llama-3-8B-V-gpt4o_conversations_dataset_10000_epochs_1_lora/non_lora_trainables.bin +3 -0
  6. single_dataset/gpt4o_conversations/VideoGameBunny_v1_1-Llama-3-8B-V-gpt4o_conversations_dataset_10000_epochs_1_lora/trainer_state.json +0 -0
  7. single_dataset/gpt4o_conversations/VideoGameBunny_v1_1-Llama-3-8B-V-gpt4o_conversations_dataset_2000_epochs_1_lora/README.md +202 -0
  8. single_dataset/gpt4o_conversations/VideoGameBunny_v1_1-Llama-3-8B-V-gpt4o_conversations_dataset_2000_epochs_1_lora/adapter_config.json +34 -0
  9. single_dataset/gpt4o_conversations/VideoGameBunny_v1_1-Llama-3-8B-V-gpt4o_conversations_dataset_2000_epochs_1_lora/adapter_model.safetensors +3 -0
  10. single_dataset/gpt4o_conversations/VideoGameBunny_v1_1-Llama-3-8B-V-gpt4o_conversations_dataset_2000_epochs_1_lora/config.json +45 -0
  11. single_dataset/gpt4o_conversations/VideoGameBunny_v1_1-Llama-3-8B-V-gpt4o_conversations_dataset_2000_epochs_1_lora/non_lora_trainables.bin +3 -0
  12. single_dataset/gpt4o_conversations/VideoGameBunny_v1_1-Llama-3-8B-V-gpt4o_conversations_dataset_2000_epochs_1_lora/trainer_state.json +917 -0
  13. single_dataset/gpt4o_conversations/VideoGameBunny_v1_1-Llama-3-8B-V-gpt4o_conversations_dataset_2000_epochs_2_lora/README.md +202 -0
  14. single_dataset/gpt4o_conversations/VideoGameBunny_v1_1-Llama-3-8B-V-gpt4o_conversations_dataset_2000_epochs_2_lora/adapter_config.json +34 -0
  15. single_dataset/gpt4o_conversations/VideoGameBunny_v1_1-Llama-3-8B-V-gpt4o_conversations_dataset_2000_epochs_2_lora/adapter_model.safetensors +3 -0
  16. single_dataset/gpt4o_conversations/VideoGameBunny_v1_1-Llama-3-8B-V-gpt4o_conversations_dataset_2000_epochs_2_lora/config.json +45 -0
  17. single_dataset/gpt4o_conversations/VideoGameBunny_v1_1-Llama-3-8B-V-gpt4o_conversations_dataset_2000_epochs_2_lora/non_lora_trainables.bin +3 -0
  18. single_dataset/gpt4o_conversations/VideoGameBunny_v1_1-Llama-3-8B-V-gpt4o_conversations_dataset_2000_epochs_2_lora/trainer_state.json +1792 -0
  19. single_dataset/gpt4o_conversations/VideoGameBunny_v1_1-Llama-3-8B-V-gpt4o_conversations_dataset_5000_epochs_1_lora/README.md +202 -0
  20. single_dataset/gpt4o_conversations/VideoGameBunny_v1_1-Llama-3-8B-V-gpt4o_conversations_dataset_5000_epochs_1_lora/adapter_config.json +34 -0
  21. single_dataset/gpt4o_conversations/VideoGameBunny_v1_1-Llama-3-8B-V-gpt4o_conversations_dataset_5000_epochs_1_lora/adapter_model.safetensors +3 -0
  22. single_dataset/gpt4o_conversations/VideoGameBunny_v1_1-Llama-3-8B-V-gpt4o_conversations_dataset_5000_epochs_1_lora/config.json +45 -0
  23. single_dataset/gpt4o_conversations/VideoGameBunny_v1_1-Llama-3-8B-V-gpt4o_conversations_dataset_5000_epochs_1_lora/non_lora_trainables.bin +3 -0
  24. single_dataset/gpt4o_conversations/VideoGameBunny_v1_1-Llama-3-8B-V-gpt4o_conversations_dataset_5000_epochs_1_lora/trainer_state.json +2226 -0
  25. single_dataset/img2json/VideoGameBunny_v1_1-Llama-3-8B-V-img2json_dataset_10000_epochs_1_lora/README.md +202 -0
  26. single_dataset/img2json/VideoGameBunny_v1_1-Llama-3-8B-V-img2json_dataset_10000_epochs_1_lora/adapter_config.json +34 -0
  27. single_dataset/img2json/VideoGameBunny_v1_1-Llama-3-8B-V-img2json_dataset_10000_epochs_1_lora/adapter_model.safetensors +3 -0
  28. single_dataset/img2json/VideoGameBunny_v1_1-Llama-3-8B-V-img2json_dataset_10000_epochs_1_lora/config.json +45 -0
  29. single_dataset/img2json/VideoGameBunny_v1_1-Llama-3-8B-V-img2json_dataset_10000_epochs_1_lora/non_lora_trainables.bin +3 -0
  30. single_dataset/img2json/VideoGameBunny_v1_1-Llama-3-8B-V-img2json_dataset_10000_epochs_1_lora/trainer_state.json +0 -0
  31. single_dataset/img2json/VideoGameBunny_v1_1-Llama-3-8B-V-img2json_dataset_20000_epochs_1_lora/README.md +202 -0
  32. single_dataset/img2json/VideoGameBunny_v1_1-Llama-3-8B-V-img2json_dataset_20000_epochs_1_lora/adapter_config.json +34 -0
  33. single_dataset/img2json/VideoGameBunny_v1_1-Llama-3-8B-V-img2json_dataset_20000_epochs_1_lora/adapter_model.safetensors +3 -0
  34. single_dataset/img2json/VideoGameBunny_v1_1-Llama-3-8B-V-img2json_dataset_20000_epochs_1_lora/config.json +45 -0
  35. single_dataset/img2json/VideoGameBunny_v1_1-Llama-3-8B-V-img2json_dataset_20000_epochs_1_lora/non_lora_trainables.bin +3 -0
  36. single_dataset/img2json/VideoGameBunny_v1_1-Llama-3-8B-V-img2json_dataset_20000_epochs_1_lora/trainer_state.json +0 -0
  37. single_dataset/img2json/VideoGameBunny_v1_1-Llama-3-8B-V-img2json_dataset_2000_epochs_1_lora/README.md +202 -0
  38. single_dataset/img2json/VideoGameBunny_v1_1-Llama-3-8B-V-img2json_dataset_2000_epochs_1_lora/adapter_config.json +34 -0
  39. single_dataset/img2json/VideoGameBunny_v1_1-Llama-3-8B-V-img2json_dataset_2000_epochs_1_lora/adapter_model.safetensors +3 -0
  40. single_dataset/img2json/VideoGameBunny_v1_1-Llama-3-8B-V-img2json_dataset_2000_epochs_1_lora/config.json +45 -0
  41. single_dataset/img2json/VideoGameBunny_v1_1-Llama-3-8B-V-img2json_dataset_2000_epochs_1_lora/non_lora_trainables.bin +3 -0
  42. single_dataset/img2json/VideoGameBunny_v1_1-Llama-3-8B-V-img2json_dataset_2000_epochs_1_lora/trainer_state.json +917 -0
  43. single_dataset/img2json/VideoGameBunny_v1_1-Llama-3-8B-V-img2json_dataset_40000_epochs_1_lora/README.md +202 -0
  44. single_dataset/img2json/VideoGameBunny_v1_1-Llama-3-8B-V-img2json_dataset_40000_epochs_1_lora/adapter_config.json +34 -0
  45. single_dataset/img2json/VideoGameBunny_v1_1-Llama-3-8B-V-img2json_dataset_40000_epochs_1_lora/adapter_model.safetensors +3 -0
  46. single_dataset/img2json/VideoGameBunny_v1_1-Llama-3-8B-V-img2json_dataset_40000_epochs_1_lora/config.json +45 -0
  47. single_dataset/img2json/VideoGameBunny_v1_1-Llama-3-8B-V-img2json_dataset_40000_epochs_1_lora/non_lora_trainables.bin +3 -0
  48. single_dataset/img2json/VideoGameBunny_v1_1-Llama-3-8B-V-img2json_dataset_40000_epochs_1_lora/trainer_state.json +0 -0
  49. single_dataset/img2json/VideoGameBunny_v1_1-Llama-3-8B-V-img2json_dataset_50000_epochs_1_lora/README.md +202 -0
  50. single_dataset/img2json/VideoGameBunny_v1_1-Llama-3-8B-V-img2json_dataset_50000_epochs_1_lora/adapter_config.json +34 -0
single_dataset/gpt4o_conversations/VideoGameBunny_v1_1-Llama-3-8B-V-gpt4o_conversations_dataset_10000_epochs_1_lora/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: ./weights/Bunny-v1_1-Llama-3-8B-V
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.11.1
single_dataset/gpt4o_conversations/VideoGameBunny_v1_1-Llama-3-8B-V-gpt4o_conversations_dataset_10000_epochs_1_lora/adapter_config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "./weights/Bunny-v1_1-Llama-3-8B-V",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 256,
14
+ "lora_dropout": 0.1,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 128,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "gate_proj",
24
+ "up_proj",
25
+ "q_proj",
26
+ "k_proj",
27
+ "v_proj",
28
+ "down_proj",
29
+ "o_proj"
30
+ ],
31
+ "task_type": "CAUSAL_LM",
32
+ "use_dora": false,
33
+ "use_rslora": false
34
+ }
single_dataset/gpt4o_conversations/VideoGameBunny_v1_1-Llama-3-8B-V-gpt4o_conversations_dataset_10000_epochs_1_lora/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ba877586bdd14eeb401b52760ab6fcbfa98f6b86828c47f86282709dce6d6d1f
3
+ size 671150064
single_dataset/gpt4o_conversations/VideoGameBunny_v1_1-Llama-3-8B-V-gpt4o_conversations_dataset_10000_epochs_1_lora/config.json ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "./weights/Bunny-v1_1-Llama-3-8B-V",
3
+ "architectures": [
4
+ "BunnyLlamaForCausalLM"
5
+ ],
6
+ "attention_bias": false,
7
+ "attention_dropout": 0.0,
8
+ "auto_map": {
9
+ "AutoConfig": "configuration_bunny_llama.BunnyLlamaConfig",
10
+ "AutoModelForCausalLM": "modeling_bunny_llama.BunnyLlamaForCausalLM"
11
+ },
12
+ "bos_token_id": 128000,
13
+ "continuous_training": false,
14
+ "eos_token_id": 128001,
15
+ "freeze_mm_mlp_adapter": false,
16
+ "hidden_act": "silu",
17
+ "hidden_size": 4096,
18
+ "image_aspect_ratio": "pad",
19
+ "initializer_range": 0.02,
20
+ "intermediate_size": 14336,
21
+ "max_position_embeddings": 8192,
22
+ "mm_hidden_size": 3456,
23
+ "mm_projector_lr": null,
24
+ "mm_projector_type": "mlp2x_gelu",
25
+ "mm_vision_tower": "./weights/siglip-so400m-patch14-384",
26
+ "model_type": "bunny-llama",
27
+ "num_attention_heads": 32,
28
+ "num_hidden_layers": 32,
29
+ "num_key_value_heads": 8,
30
+ "pretraining_tp": 1,
31
+ "rms_norm_eps": 1e-05,
32
+ "rope_scaling": null,
33
+ "rope_theta": 500000.0,
34
+ "tie_word_embeddings": false,
35
+ "tokenizer_model_max_length": 2048,
36
+ "tokenizer_padding_side": "right",
37
+ "torch_dtype": "float16",
38
+ "transformers_version": "4.41.2",
39
+ "tune_mm_mlp_adapter": false,
40
+ "unfreeze_vision_tower": true,
41
+ "use_cache": true,
42
+ "use_mm_proj": true,
43
+ "use_s2": true,
44
+ "vocab_size": 128256
45
+ }
single_dataset/gpt4o_conversations/VideoGameBunny_v1_1-Llama-3-8B-V-gpt4o_conversations_dataset_10000_epochs_1_lora/non_lora_trainables.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d03b5e8dc93898c8165f95efc97f379e2efafe1851803ae36808a028dac30494
3
+ size 918507402
single_dataset/gpt4o_conversations/VideoGameBunny_v1_1-Llama-3-8B-V-gpt4o_conversations_dataset_10000_epochs_1_lora/trainer_state.json ADDED
The diff for this file is too large to render. See raw diff
 
single_dataset/gpt4o_conversations/VideoGameBunny_v1_1-Llama-3-8B-V-gpt4o_conversations_dataset_2000_epochs_1_lora/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: ./weights/Bunny-v1_1-Llama-3-8B-V
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.11.1
single_dataset/gpt4o_conversations/VideoGameBunny_v1_1-Llama-3-8B-V-gpt4o_conversations_dataset_2000_epochs_1_lora/adapter_config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "./weights/Bunny-v1_1-Llama-3-8B-V",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 256,
14
+ "lora_dropout": 0.1,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 128,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "k_proj",
24
+ "q_proj",
25
+ "gate_proj",
26
+ "v_proj",
27
+ "up_proj",
28
+ "o_proj",
29
+ "down_proj"
30
+ ],
31
+ "task_type": "CAUSAL_LM",
32
+ "use_dora": false,
33
+ "use_rslora": false
34
+ }
single_dataset/gpt4o_conversations/VideoGameBunny_v1_1-Llama-3-8B-V-gpt4o_conversations_dataset_2000_epochs_1_lora/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6eeb61ea8f79dbf15e1aae58c7b0170375847ec00a4f9c8ad346e2f75e5fef1c
3
+ size 671150064
single_dataset/gpt4o_conversations/VideoGameBunny_v1_1-Llama-3-8B-V-gpt4o_conversations_dataset_2000_epochs_1_lora/config.json ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "./weights/Bunny-v1_1-Llama-3-8B-V",
3
+ "architectures": [
4
+ "BunnyLlamaForCausalLM"
5
+ ],
6
+ "attention_bias": false,
7
+ "attention_dropout": 0.0,
8
+ "auto_map": {
9
+ "AutoConfig": "configuration_bunny_llama.BunnyLlamaConfig",
10
+ "AutoModelForCausalLM": "modeling_bunny_llama.BunnyLlamaForCausalLM"
11
+ },
12
+ "bos_token_id": 128000,
13
+ "continuous_training": false,
14
+ "eos_token_id": 128001,
15
+ "freeze_mm_mlp_adapter": false,
16
+ "hidden_act": "silu",
17
+ "hidden_size": 4096,
18
+ "image_aspect_ratio": "pad",
19
+ "initializer_range": 0.02,
20
+ "intermediate_size": 14336,
21
+ "max_position_embeddings": 8192,
22
+ "mm_hidden_size": 3456,
23
+ "mm_projector_lr": null,
24
+ "mm_projector_type": "mlp2x_gelu",
25
+ "mm_vision_tower": "./weights/siglip-so400m-patch14-384",
26
+ "model_type": "bunny-llama",
27
+ "num_attention_heads": 32,
28
+ "num_hidden_layers": 32,
29
+ "num_key_value_heads": 8,
30
+ "pretraining_tp": 1,
31
+ "rms_norm_eps": 1e-05,
32
+ "rope_scaling": null,
33
+ "rope_theta": 500000.0,
34
+ "tie_word_embeddings": false,
35
+ "tokenizer_model_max_length": 2048,
36
+ "tokenizer_padding_side": "right",
37
+ "torch_dtype": "float16",
38
+ "transformers_version": "4.41.2",
39
+ "tune_mm_mlp_adapter": false,
40
+ "unfreeze_vision_tower": true,
41
+ "use_cache": true,
42
+ "use_mm_proj": true,
43
+ "use_s2": true,
44
+ "vocab_size": 128256
45
+ }
single_dataset/gpt4o_conversations/VideoGameBunny_v1_1-Llama-3-8B-V-gpt4o_conversations_dataset_2000_epochs_1_lora/non_lora_trainables.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:03b75b38d4fbde04610931840aba206073356e8d0d298a4aa817d786f79f0789
3
+ size 918507402
single_dataset/gpt4o_conversations/VideoGameBunny_v1_1-Llama-3-8B-V-gpt4o_conversations_dataset_2000_epochs_1_lora/trainer_state.json ADDED
@@ -0,0 +1,917 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 1.0,
5
+ "eval_steps": 500,
6
+ "global_step": 125,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.008,
13
+ "grad_norm": 1.0877886563071673,
14
+ "learning_rate": 5e-05,
15
+ "loss": 1.4204,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.016,
20
+ "grad_norm": 0.9831963058763455,
21
+ "learning_rate": 0.0001,
22
+ "loss": 1.2175,
23
+ "step": 2
24
+ },
25
+ {
26
+ "epoch": 0.024,
27
+ "grad_norm": 0.7478913848154679,
28
+ "learning_rate": 0.00015000000000000001,
29
+ "loss": 1.2755,
30
+ "step": 3
31
+ },
32
+ {
33
+ "epoch": 0.032,
34
+ "grad_norm": 1.1851945547125557,
35
+ "learning_rate": 0.0002,
36
+ "loss": 1.294,
37
+ "step": 4
38
+ },
39
+ {
40
+ "epoch": 0.04,
41
+ "grad_norm": 0.9476134964793809,
42
+ "learning_rate": 0.00019996629653035126,
43
+ "loss": 1.2281,
44
+ "step": 5
45
+ },
46
+ {
47
+ "epoch": 0.048,
48
+ "grad_norm": 0.7133074153458693,
49
+ "learning_rate": 0.00019986520883988232,
50
+ "loss": 1.2197,
51
+ "step": 6
52
+ },
53
+ {
54
+ "epoch": 0.056,
55
+ "grad_norm": 0.7174771013040582,
56
+ "learning_rate": 0.00019969680506871137,
57
+ "loss": 1.2152,
58
+ "step": 7
59
+ },
60
+ {
61
+ "epoch": 0.064,
62
+ "grad_norm": 0.7669579161324069,
63
+ "learning_rate": 0.00019946119873266613,
64
+ "loss": 1.2647,
65
+ "step": 8
66
+ },
67
+ {
68
+ "epoch": 0.072,
69
+ "grad_norm": 1.1079413613918108,
70
+ "learning_rate": 0.00019915854864676664,
71
+ "loss": 1.2143,
72
+ "step": 9
73
+ },
74
+ {
75
+ "epoch": 0.08,
76
+ "grad_norm": 0.7583043070072526,
77
+ "learning_rate": 0.00019878905881817252,
78
+ "loss": 1.1807,
79
+ "step": 10
80
+ },
81
+ {
82
+ "epoch": 0.088,
83
+ "grad_norm": 0.8929329853128891,
84
+ "learning_rate": 0.00019835297830866826,
85
+ "loss": 1.1392,
86
+ "step": 11
87
+ },
88
+ {
89
+ "epoch": 0.096,
90
+ "grad_norm": 0.7522497944874978,
91
+ "learning_rate": 0.00019785060106677818,
92
+ "loss": 1.1502,
93
+ "step": 12
94
+ },
95
+ {
96
+ "epoch": 0.104,
97
+ "grad_norm": 0.6440337581737159,
98
+ "learning_rate": 0.00019728226572962473,
99
+ "loss": 1.1695,
100
+ "step": 13
101
+ },
102
+ {
103
+ "epoch": 0.112,
104
+ "grad_norm": 0.7692304262417425,
105
+ "learning_rate": 0.0001966483553946637,
106
+ "loss": 1.2483,
107
+ "step": 14
108
+ },
109
+ {
110
+ "epoch": 0.12,
111
+ "grad_norm": 0.6635724770585765,
112
+ "learning_rate": 0.00019594929736144976,
113
+ "loss": 1.0857,
114
+ "step": 15
115
+ },
116
+ {
117
+ "epoch": 0.128,
118
+ "grad_norm": 0.6339210471192188,
119
+ "learning_rate": 0.00019518556284360696,
120
+ "loss": 1.1672,
121
+ "step": 16
122
+ },
123
+ {
124
+ "epoch": 0.136,
125
+ "grad_norm": 0.6790889547946641,
126
+ "learning_rate": 0.0001943576666511982,
127
+ "loss": 1.088,
128
+ "step": 17
129
+ },
130
+ {
131
+ "epoch": 0.144,
132
+ "grad_norm": 0.6692175057561588,
133
+ "learning_rate": 0.0001934661668437073,
134
+ "loss": 1.2209,
135
+ "step": 18
136
+ },
137
+ {
138
+ "epoch": 0.152,
139
+ "grad_norm": 0.6437761998032046,
140
+ "learning_rate": 0.0001925116643538684,
141
+ "loss": 1.122,
142
+ "step": 19
143
+ },
144
+ {
145
+ "epoch": 0.16,
146
+ "grad_norm": 0.6525125502220214,
147
+ "learning_rate": 0.00019149480258259533,
148
+ "loss": 1.1809,
149
+ "step": 20
150
+ },
151
+ {
152
+ "epoch": 0.168,
153
+ "grad_norm": 0.7383920037847639,
154
+ "learning_rate": 0.00019041626696528503,
155
+ "loss": 1.2011,
156
+ "step": 21
157
+ },
158
+ {
159
+ "epoch": 0.176,
160
+ "grad_norm": 0.599229910744791,
161
+ "learning_rate": 0.0001892767845097864,
162
+ "loss": 1.1337,
163
+ "step": 22
164
+ },
165
+ {
166
+ "epoch": 0.184,
167
+ "grad_norm": 0.6368541820149072,
168
+ "learning_rate": 0.00018807712330634642,
169
+ "loss": 1.1691,
170
+ "step": 23
171
+ },
172
+ {
173
+ "epoch": 0.192,
174
+ "grad_norm": 0.6479968056136417,
175
+ "learning_rate": 0.0001868180920098644,
176
+ "loss": 1.1646,
177
+ "step": 24
178
+ },
179
+ {
180
+ "epoch": 0.2,
181
+ "grad_norm": 0.6492295290083023,
182
+ "learning_rate": 0.00018550053929480202,
183
+ "loss": 1.1822,
184
+ "step": 25
185
+ },
186
+ {
187
+ "epoch": 0.208,
188
+ "grad_norm": 0.6581163598715829,
189
+ "learning_rate": 0.00018412535328311814,
190
+ "loss": 1.0881,
191
+ "step": 26
192
+ },
193
+ {
194
+ "epoch": 0.216,
195
+ "grad_norm": 0.6528735853321923,
196
+ "learning_rate": 0.0001826934609456129,
197
+ "loss": 1.1763,
198
+ "step": 27
199
+ },
200
+ {
201
+ "epoch": 0.224,
202
+ "grad_norm": 0.6219951075238257,
203
+ "learning_rate": 0.00018120582747708502,
204
+ "loss": 1.0637,
205
+ "step": 28
206
+ },
207
+ {
208
+ "epoch": 0.232,
209
+ "grad_norm": 0.7509932918198108,
210
+ "learning_rate": 0.0001796634556457236,
211
+ "loss": 1.1323,
212
+ "step": 29
213
+ },
214
+ {
215
+ "epoch": 0.24,
216
+ "grad_norm": 0.6626945316885953,
217
+ "learning_rate": 0.0001780673851171728,
218
+ "loss": 1.1007,
219
+ "step": 30
220
+ },
221
+ {
222
+ "epoch": 0.248,
223
+ "grad_norm": 0.7185209593516516,
224
+ "learning_rate": 0.00017641869175372493,
225
+ "loss": 1.2184,
226
+ "step": 31
227
+ },
228
+ {
229
+ "epoch": 0.256,
230
+ "grad_norm": 0.639961093110283,
231
+ "learning_rate": 0.00017471848688911464,
232
+ "loss": 1.1013,
233
+ "step": 32
234
+ },
235
+ {
236
+ "epoch": 0.264,
237
+ "grad_norm": 0.6093800026585015,
238
+ "learning_rate": 0.000172967916579403,
239
+ "loss": 1.0853,
240
+ "step": 33
241
+ },
242
+ {
243
+ "epoch": 0.272,
244
+ "grad_norm": 0.5977982267642971,
245
+ "learning_rate": 0.00017116816083045602,
246
+ "loss": 1.0534,
247
+ "step": 34
248
+ },
249
+ {
250
+ "epoch": 0.28,
251
+ "grad_norm": 0.6585541370699558,
252
+ "learning_rate": 0.0001693204328025389,
253
+ "loss": 1.1287,
254
+ "step": 35
255
+ },
256
+ {
257
+ "epoch": 0.288,
258
+ "grad_norm": 0.6562897452410896,
259
+ "learning_rate": 0.00016742597799256182,
260
+ "loss": 1.1724,
261
+ "step": 36
262
+ },
263
+ {
264
+ "epoch": 0.296,
265
+ "grad_norm": 0.6419065162769554,
266
+ "learning_rate": 0.00016548607339452853,
267
+ "loss": 1.142,
268
+ "step": 37
269
+ },
270
+ {
271
+ "epoch": 0.304,
272
+ "grad_norm": 0.6683261695427306,
273
+ "learning_rate": 0.00016350202663875386,
274
+ "loss": 1.1943,
275
+ "step": 38
276
+ },
277
+ {
278
+ "epoch": 0.312,
279
+ "grad_norm": 0.6037906950042923,
280
+ "learning_rate": 0.0001614751751104301,
281
+ "loss": 1.2452,
282
+ "step": 39
283
+ },
284
+ {
285
+ "epoch": 0.32,
286
+ "grad_norm": 0.6722143393952856,
287
+ "learning_rate": 0.00015940688504813662,
288
+ "loss": 1.1435,
289
+ "step": 40
290
+ },
291
+ {
292
+ "epoch": 0.328,
293
+ "grad_norm": 0.5849511558342113,
294
+ "learning_rate": 0.00015729855062290022,
295
+ "loss": 1.1326,
296
+ "step": 41
297
+ },
298
+ {
299
+ "epoch": 0.336,
300
+ "grad_norm": 0.6496843215077648,
301
+ "learning_rate": 0.00015515159299842707,
302
+ "loss": 1.0871,
303
+ "step": 42
304
+ },
305
+ {
306
+ "epoch": 0.344,
307
+ "grad_norm": 0.622273267698997,
308
+ "learning_rate": 0.00015296745937313987,
309
+ "loss": 1.1245,
310
+ "step": 43
311
+ },
312
+ {
313
+ "epoch": 0.352,
314
+ "grad_norm": 0.6248801200159152,
315
+ "learning_rate": 0.00015074762200466556,
316
+ "loss": 1.0756,
317
+ "step": 44
318
+ },
319
+ {
320
+ "epoch": 0.36,
321
+ "grad_norm": 0.6350409040736777,
322
+ "learning_rate": 0.00014849357721743168,
323
+ "loss": 1.1282,
324
+ "step": 45
325
+ },
326
+ {
327
+ "epoch": 0.368,
328
+ "grad_norm": 0.6573934364037886,
329
+ "learning_rate": 0.00014620684439403962,
330
+ "loss": 1.2089,
331
+ "step": 46
332
+ },
333
+ {
334
+ "epoch": 0.376,
335
+ "grad_norm": 0.6322079151415101,
336
+ "learning_rate": 0.0001438889649510956,
337
+ "loss": 1.1702,
338
+ "step": 47
339
+ },
340
+ {
341
+ "epoch": 0.384,
342
+ "grad_norm": 0.5931281923571887,
343
+ "learning_rate": 0.00014154150130018866,
344
+ "loss": 1.1344,
345
+ "step": 48
346
+ },
347
+ {
348
+ "epoch": 0.392,
349
+ "grad_norm": 0.679086044926115,
350
+ "learning_rate": 0.00013916603579471705,
351
+ "loss": 1.0855,
352
+ "step": 49
353
+ },
354
+ {
355
+ "epoch": 0.4,
356
+ "grad_norm": 0.6250561524286053,
357
+ "learning_rate": 0.000136764169663272,
358
+ "loss": 1.1218,
359
+ "step": 50
360
+ },
361
+ {
362
+ "epoch": 0.408,
363
+ "grad_norm": 0.5455053641893781,
364
+ "learning_rate": 0.00013433752193029886,
365
+ "loss": 1.069,
366
+ "step": 51
367
+ },
368
+ {
369
+ "epoch": 0.416,
370
+ "grad_norm": 0.6315994964575306,
371
+ "learning_rate": 0.00013188772832476188,
372
+ "loss": 1.1472,
373
+ "step": 52
374
+ },
375
+ {
376
+ "epoch": 0.424,
377
+ "grad_norm": 0.6058785708917978,
378
+ "learning_rate": 0.00012941644017754964,
379
+ "loss": 1.0467,
380
+ "step": 53
381
+ },
382
+ {
383
+ "epoch": 0.432,
384
+ "grad_norm": 0.6163207183209253,
385
+ "learning_rate": 0.00012692532330836346,
386
+ "loss": 1.0946,
387
+ "step": 54
388
+ },
389
+ {
390
+ "epoch": 0.44,
391
+ "grad_norm": 0.6262642109854599,
392
+ "learning_rate": 0.00012441605690283915,
393
+ "loss": 1.1487,
394
+ "step": 55
395
+ },
396
+ {
397
+ "epoch": 0.448,
398
+ "grad_norm": 0.6959618230470047,
399
+ "learning_rate": 0.0001218903323806595,
400
+ "loss": 1.1448,
401
+ "step": 56
402
+ },
403
+ {
404
+ "epoch": 0.456,
405
+ "grad_norm": 0.5894157323220334,
406
+ "learning_rate": 0.00011934985225541998,
407
+ "loss": 1.0709,
408
+ "step": 57
409
+ },
410
+ {
411
+ "epoch": 0.464,
412
+ "grad_norm": 0.7981960617785065,
413
+ "learning_rate": 0.00011679632898701649,
414
+ "loss": 1.1515,
415
+ "step": 58
416
+ },
417
+ {
418
+ "epoch": 0.472,
419
+ "grad_norm": 0.5765858891790445,
420
+ "learning_rate": 0.00011423148382732853,
421
+ "loss": 1.0964,
422
+ "step": 59
423
+ },
424
+ {
425
+ "epoch": 0.48,
426
+ "grad_norm": 0.6046649871496205,
427
+ "learning_rate": 0.00011165704565997593,
428
+ "loss": 1.1076,
429
+ "step": 60
430
+ },
431
+ {
432
+ "epoch": 0.488,
433
+ "grad_norm": 0.5638841047377291,
434
+ "learning_rate": 0.00010907474983493144,
435
+ "loss": 1.1158,
436
+ "step": 61
437
+ },
438
+ {
439
+ "epoch": 0.496,
440
+ "grad_norm": 0.6248619311895685,
441
+ "learning_rate": 0.0001064863369987743,
442
+ "loss": 1.158,
443
+ "step": 62
444
+ },
445
+ {
446
+ "epoch": 0.504,
447
+ "grad_norm": 0.6194657217776681,
448
+ "learning_rate": 0.00010389355192137377,
449
+ "loss": 1.1525,
450
+ "step": 63
451
+ },
452
+ {
453
+ "epoch": 0.512,
454
+ "grad_norm": 0.6067740187850118,
455
+ "learning_rate": 0.0001012981423197931,
456
+ "loss": 1.0888,
457
+ "step": 64
458
+ },
459
+ {
460
+ "epoch": 0.52,
461
+ "grad_norm": 0.5867746714643287,
462
+ "learning_rate": 9.870185768020693e-05,
463
+ "loss": 1.2144,
464
+ "step": 65
465
+ },
466
+ {
467
+ "epoch": 0.528,
468
+ "grad_norm": 0.6162475621164234,
469
+ "learning_rate": 9.610644807862625e-05,
470
+ "loss": 1.187,
471
+ "step": 66
472
+ },
473
+ {
474
+ "epoch": 0.536,
475
+ "grad_norm": 0.5816260885153179,
476
+ "learning_rate": 9.35136630012257e-05,
477
+ "loss": 1.1378,
478
+ "step": 67
479
+ },
480
+ {
481
+ "epoch": 0.544,
482
+ "grad_norm": 0.6092121742013019,
483
+ "learning_rate": 9.092525016506858e-05,
484
+ "loss": 1.0935,
485
+ "step": 68
486
+ },
487
+ {
488
+ "epoch": 0.552,
489
+ "grad_norm": 0.6129047955044695,
490
+ "learning_rate": 8.83429543400241e-05,
491
+ "loss": 1.0815,
492
+ "step": 69
493
+ },
494
+ {
495
+ "epoch": 0.56,
496
+ "grad_norm": 0.5748567355209082,
497
+ "learning_rate": 8.57685161726715e-05,
498
+ "loss": 1.1137,
499
+ "step": 70
500
+ },
501
+ {
502
+ "epoch": 0.568,
503
+ "grad_norm": 0.5699053032110166,
504
+ "learning_rate": 8.320367101298351e-05,
505
+ "loss": 1.125,
506
+ "step": 71
507
+ },
508
+ {
509
+ "epoch": 0.576,
510
+ "grad_norm": 0.5943499018117111,
511
+ "learning_rate": 8.065014774458003e-05,
512
+ "loss": 1.1111,
513
+ "step": 72
514
+ },
515
+ {
516
+ "epoch": 0.584,
517
+ "grad_norm": 0.5697756101544271,
518
+ "learning_rate": 7.810966761934053e-05,
519
+ "loss": 1.0353,
520
+ "step": 73
521
+ },
522
+ {
523
+ "epoch": 0.592,
524
+ "grad_norm": 0.5987366993178018,
525
+ "learning_rate": 7.558394309716088e-05,
526
+ "loss": 1.1787,
527
+ "step": 74
528
+ },
529
+ {
530
+ "epoch": 0.6,
531
+ "grad_norm": 0.599965475322347,
532
+ "learning_rate": 7.307467669163655e-05,
533
+ "loss": 1.0606,
534
+ "step": 75
535
+ },
536
+ {
537
+ "epoch": 0.608,
538
+ "grad_norm": 0.6231622935530702,
539
+ "learning_rate": 7.058355982245037e-05,
540
+ "loss": 1.1237,
541
+ "step": 76
542
+ },
543
+ {
544
+ "epoch": 0.616,
545
+ "grad_norm": 0.5778865258296028,
546
+ "learning_rate": 6.811227167523815e-05,
547
+ "loss": 1.07,
548
+ "step": 77
549
+ },
550
+ {
551
+ "epoch": 0.624,
552
+ "grad_norm": 0.9006399353206177,
553
+ "learning_rate": 6.566247806970119e-05,
554
+ "loss": 1.0794,
555
+ "step": 78
556
+ },
557
+ {
558
+ "epoch": 0.632,
559
+ "grad_norm": 0.6080347772853175,
560
+ "learning_rate": 6.323583033672799e-05,
561
+ "loss": 1.1286,
562
+ "step": 79
563
+ },
564
+ {
565
+ "epoch": 0.64,
566
+ "grad_norm": 0.6215600441401722,
567
+ "learning_rate": 6.083396420528298e-05,
568
+ "loss": 1.0333,
569
+ "step": 80
570
+ },
571
+ {
572
+ "epoch": 0.648,
573
+ "grad_norm": 0.5532899039833619,
574
+ "learning_rate": 5.845849869981137e-05,
575
+ "loss": 1.1528,
576
+ "step": 81
577
+ },
578
+ {
579
+ "epoch": 0.656,
580
+ "grad_norm": 0.5702002946777001,
581
+ "learning_rate": 5.611103504890444e-05,
582
+ "loss": 1.1547,
583
+ "step": 82
584
+ },
585
+ {
586
+ "epoch": 0.664,
587
+ "grad_norm": 0.6414308810709265,
588
+ "learning_rate": 5.379315560596038e-05,
589
+ "loss": 1.176,
590
+ "step": 83
591
+ },
592
+ {
593
+ "epoch": 0.672,
594
+ "grad_norm": 0.6023323139281526,
595
+ "learning_rate": 5.1506422782568345e-05,
596
+ "loss": 1.1687,
597
+ "step": 84
598
+ },
599
+ {
600
+ "epoch": 0.68,
601
+ "grad_norm": 0.5892600207157096,
602
+ "learning_rate": 4.9252377995334444e-05,
603
+ "loss": 1.0763,
604
+ "step": 85
605
+ },
606
+ {
607
+ "epoch": 0.688,
608
+ "grad_norm": 0.5339341330615615,
609
+ "learning_rate": 4.703254062686017e-05,
610
+ "loss": 1.0444,
611
+ "step": 86
612
+ },
613
+ {
614
+ "epoch": 0.696,
615
+ "grad_norm": 0.6279565355094363,
616
+ "learning_rate": 4.484840700157295e-05,
617
+ "loss": 1.0997,
618
+ "step": 87
619
+ },
620
+ {
621
+ "epoch": 0.704,
622
+ "grad_norm": 0.6104692154812912,
623
+ "learning_rate": 4.270144937709981e-05,
624
+ "loss": 1.1856,
625
+ "step": 88
626
+ },
627
+ {
628
+ "epoch": 0.712,
629
+ "grad_norm": 0.6114748193401518,
630
+ "learning_rate": 4.059311495186338e-05,
631
+ "loss": 1.1813,
632
+ "step": 89
633
+ },
634
+ {
635
+ "epoch": 0.72,
636
+ "grad_norm": 0.5517958084848442,
637
+ "learning_rate": 3.852482488956992e-05,
638
+ "loss": 1.0973,
639
+ "step": 90
640
+ },
641
+ {
642
+ "epoch": 0.728,
643
+ "grad_norm": 0.5616033058541691,
644
+ "learning_rate": 3.649797336124615e-05,
645
+ "loss": 1.1052,
646
+ "step": 91
647
+ },
648
+ {
649
+ "epoch": 0.736,
650
+ "grad_norm": 0.5734895525736495,
651
+ "learning_rate": 3.45139266054715e-05,
652
+ "loss": 1.1017,
653
+ "step": 92
654
+ },
655
+ {
656
+ "epoch": 0.744,
657
+ "grad_norm": 0.5849100376601271,
658
+ "learning_rate": 3.257402200743821e-05,
659
+ "loss": 1.0507,
660
+ "step": 93
661
+ },
662
+ {
663
+ "epoch": 0.752,
664
+ "grad_norm": 0.5625815255394412,
665
+ "learning_rate": 3.0679567197461134e-05,
666
+ "loss": 1.1098,
667
+ "step": 94
668
+ },
669
+ {
670
+ "epoch": 0.76,
671
+ "grad_norm": 0.6367740796942681,
672
+ "learning_rate": 2.8831839169543996e-05,
673
+ "loss": 1.1416,
674
+ "step": 95
675
+ },
676
+ {
677
+ "epoch": 0.768,
678
+ "grad_norm": 0.5795379896457181,
679
+ "learning_rate": 2.7032083420597e-05,
680
+ "loss": 1.1132,
681
+ "step": 96
682
+ },
683
+ {
684
+ "epoch": 0.776,
685
+ "grad_norm": 0.6143227738602632,
686
+ "learning_rate": 2.528151311088537e-05,
687
+ "loss": 1.0109,
688
+ "step": 97
689
+ },
690
+ {
691
+ "epoch": 0.784,
692
+ "grad_norm": 0.6361204646970395,
693
+ "learning_rate": 2.3581308246275103e-05,
694
+ "loss": 1.0794,
695
+ "step": 98
696
+ },
697
+ {
698
+ "epoch": 0.792,
699
+ "grad_norm": 0.5930462513939105,
700
+ "learning_rate": 2.1932614882827197e-05,
701
+ "loss": 1.1248,
702
+ "step": 99
703
+ },
704
+ {
705
+ "epoch": 0.8,
706
+ "grad_norm": 0.5733572454846041,
707
+ "learning_rate": 2.03365443542764e-05,
708
+ "loss": 1.1523,
709
+ "step": 100
710
+ },
711
+ {
712
+ "epoch": 0.808,
713
+ "grad_norm": 0.6495463046060299,
714
+ "learning_rate": 1.879417252291502e-05,
715
+ "loss": 1.0592,
716
+ "step": 101
717
+ },
718
+ {
719
+ "epoch": 0.816,
720
+ "grad_norm": 0.5553303058115924,
721
+ "learning_rate": 1.730653905438714e-05,
722
+ "loss": 1.0753,
723
+ "step": 102
724
+ },
725
+ {
726
+ "epoch": 0.824,
727
+ "grad_norm": 0.5828567133941143,
728
+ "learning_rate": 1.587464671688187e-05,
729
+ "loss": 1.1418,
730
+ "step": 103
731
+ },
732
+ {
733
+ "epoch": 0.832,
734
+ "grad_norm": 0.5731686378110846,
735
+ "learning_rate": 1.4499460705197998e-05,
736
+ "loss": 1.1059,
737
+ "step": 104
738
+ },
739
+ {
740
+ "epoch": 0.84,
741
+ "grad_norm": 0.5654646756423977,
742
+ "learning_rate": 1.3181907990135622e-05,
743
+ "loss": 1.1122,
744
+ "step": 105
745
+ },
746
+ {
747
+ "epoch": 0.848,
748
+ "grad_norm": 0.6216056944469172,
749
+ "learning_rate": 1.1922876693653585e-05,
750
+ "loss": 1.0539,
751
+ "step": 106
752
+ },
753
+ {
754
+ "epoch": 0.856,
755
+ "grad_norm": 0.6030188752416026,
756
+ "learning_rate": 1.0723215490213634e-05,
757
+ "loss": 1.1155,
758
+ "step": 107
759
+ },
760
+ {
761
+ "epoch": 0.864,
762
+ "grad_norm": 0.6116320512749103,
763
+ "learning_rate": 9.583733034714981e-06,
764
+ "loss": 1.0367,
765
+ "step": 108
766
+ },
767
+ {
768
+ "epoch": 0.872,
769
+ "grad_norm": 0.6241071081816516,
770
+ "learning_rate": 8.505197417404687e-06,
771
+ "loss": 1.0317,
772
+ "step": 109
773
+ },
774
+ {
775
+ "epoch": 0.88,
776
+ "grad_norm": 0.6014326320967628,
777
+ "learning_rate": 7.488335646131628e-06,
778
+ "loss": 1.0507,
779
+ "step": 110
780
+ },
781
+ {
782
+ "epoch": 0.888,
783
+ "grad_norm": 0.6058356600728491,
784
+ "learning_rate": 6.533833156292679e-06,
785
+ "loss": 1.0841,
786
+ "step": 111
787
+ },
788
+ {
789
+ "epoch": 0.896,
790
+ "grad_norm": 0.6327026531424363,
791
+ "learning_rate": 5.6423333488018095e-06,
792
+ "loss": 1.1028,
793
+ "step": 112
794
+ },
795
+ {
796
+ "epoch": 0.904,
797
+ "grad_norm": 0.5560188144128159,
798
+ "learning_rate": 4.8144371563930476e-06,
799
+ "loss": 1.0278,
800
+ "step": 113
801
+ },
802
+ {
803
+ "epoch": 0.912,
804
+ "grad_norm": 0.683157124015512,
805
+ "learning_rate": 4.050702638550275e-06,
806
+ "loss": 1.0732,
807
+ "step": 114
808
+ },
809
+ {
810
+ "epoch": 0.92,
811
+ "grad_norm": 0.5661517981730091,
812
+ "learning_rate": 3.3516446053363015e-06,
813
+ "loss": 1.0709,
814
+ "step": 115
815
+ },
816
+ {
817
+ "epoch": 0.928,
818
+ "grad_norm": 0.5465688334036988,
819
+ "learning_rate": 2.717734270375272e-06,
820
+ "loss": 1.0601,
821
+ "step": 116
822
+ },
823
+ {
824
+ "epoch": 0.936,
825
+ "grad_norm": 0.6549818213185664,
826
+ "learning_rate": 2.1493989332218468e-06,
827
+ "loss": 1.1295,
828
+ "step": 117
829
+ },
830
+ {
831
+ "epoch": 0.944,
832
+ "grad_norm": 0.6120862014550815,
833
+ "learning_rate": 1.6470216913317626e-06,
834
+ "loss": 1.0448,
835
+ "step": 118
836
+ },
837
+ {
838
+ "epoch": 0.952,
839
+ "grad_norm": 0.5638666360794156,
840
+ "learning_rate": 1.2109411818274852e-06,
841
+ "loss": 1.0509,
842
+ "step": 119
843
+ },
844
+ {
845
+ "epoch": 0.96,
846
+ "grad_norm": 0.6363582988990896,
847
+ "learning_rate": 8.41451353233369e-07,
848
+ "loss": 1.082,
849
+ "step": 120
850
+ },
851
+ {
852
+ "epoch": 0.968,
853
+ "grad_norm": 0.5875639830126131,
854
+ "learning_rate": 5.388012673338661e-07,
855
+ "loss": 1.1082,
856
+ "step": 121
857
+ },
858
+ {
859
+ "epoch": 0.976,
860
+ "grad_norm": 0.5494186467411913,
861
+ "learning_rate": 3.0319493128866396e-07,
862
+ "loss": 1.0868,
863
+ "step": 122
864
+ },
865
+ {
866
+ "epoch": 0.984,
867
+ "grad_norm": 0.64150816142503,
868
+ "learning_rate": 1.3479116011769767e-07,
869
+ "loss": 1.0792,
870
+ "step": 123
871
+ },
872
+ {
873
+ "epoch": 0.992,
874
+ "grad_norm": 0.6834676443584711,
875
+ "learning_rate": 3.370346964876036e-08,
876
+ "loss": 1.1639,
877
+ "step": 124
878
+ },
879
+ {
880
+ "epoch": 1.0,
881
+ "grad_norm": 0.5706584527747506,
882
+ "learning_rate": 0.0,
883
+ "loss": 1.0897,
884
+ "step": 125
885
+ },
886
+ {
887
+ "epoch": 1.0,
888
+ "step": 125,
889
+ "total_flos": 65356609552384.0,
890
+ "train_loss": 1.127972110748291,
891
+ "train_runtime": 1526.5357,
892
+ "train_samples_per_second": 1.31,
893
+ "train_steps_per_second": 0.082
894
+ }
895
+ ],
896
+ "logging_steps": 1.0,
897
+ "max_steps": 125,
898
+ "num_input_tokens_seen": 0,
899
+ "num_train_epochs": 1,
900
+ "save_steps": 500,
901
+ "stateful_callbacks": {
902
+ "TrainerControl": {
903
+ "args": {
904
+ "should_epoch_stop": false,
905
+ "should_evaluate": false,
906
+ "should_log": false,
907
+ "should_save": false,
908
+ "should_training_stop": false
909
+ },
910
+ "attributes": {}
911
+ }
912
+ },
913
+ "total_flos": 65356609552384.0,
914
+ "train_batch_size": 8,
915
+ "trial_name": null,
916
+ "trial_params": null
917
+ }
single_dataset/gpt4o_conversations/VideoGameBunny_v1_1-Llama-3-8B-V-gpt4o_conversations_dataset_2000_epochs_2_lora/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: ./weights/Bunny-v1_1-Llama-3-8B-V
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.11.1
single_dataset/gpt4o_conversations/VideoGameBunny_v1_1-Llama-3-8B-V-gpt4o_conversations_dataset_2000_epochs_2_lora/adapter_config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "./weights/Bunny-v1_1-Llama-3-8B-V",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 256,
14
+ "lora_dropout": 0.1,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 128,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "o_proj",
24
+ "down_proj",
25
+ "k_proj",
26
+ "gate_proj",
27
+ "q_proj",
28
+ "up_proj",
29
+ "v_proj"
30
+ ],
31
+ "task_type": "CAUSAL_LM",
32
+ "use_dora": false,
33
+ "use_rslora": false
34
+ }
single_dataset/gpt4o_conversations/VideoGameBunny_v1_1-Llama-3-8B-V-gpt4o_conversations_dataset_2000_epochs_2_lora/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c30251737ad375f44282c19e038d1ce7a52bfcfb7c9c4e7799a2e069687d5784
3
+ size 671150064
single_dataset/gpt4o_conversations/VideoGameBunny_v1_1-Llama-3-8B-V-gpt4o_conversations_dataset_2000_epochs_2_lora/config.json ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "./weights/Bunny-v1_1-Llama-3-8B-V",
3
+ "architectures": [
4
+ "BunnyLlamaForCausalLM"
5
+ ],
6
+ "attention_bias": false,
7
+ "attention_dropout": 0.0,
8
+ "auto_map": {
9
+ "AutoConfig": "configuration_bunny_llama.BunnyLlamaConfig",
10
+ "AutoModelForCausalLM": "modeling_bunny_llama.BunnyLlamaForCausalLM"
11
+ },
12
+ "bos_token_id": 128000,
13
+ "continuous_training": false,
14
+ "eos_token_id": 128001,
15
+ "freeze_mm_mlp_adapter": false,
16
+ "hidden_act": "silu",
17
+ "hidden_size": 4096,
18
+ "image_aspect_ratio": "pad",
19
+ "initializer_range": 0.02,
20
+ "intermediate_size": 14336,
21
+ "max_position_embeddings": 8192,
22
+ "mm_hidden_size": 3456,
23
+ "mm_projector_lr": null,
24
+ "mm_projector_type": "mlp2x_gelu",
25
+ "mm_vision_tower": "./weights/siglip-so400m-patch14-384",
26
+ "model_type": "bunny-llama",
27
+ "num_attention_heads": 32,
28
+ "num_hidden_layers": 32,
29
+ "num_key_value_heads": 8,
30
+ "pretraining_tp": 1,
31
+ "rms_norm_eps": 1e-05,
32
+ "rope_scaling": null,
33
+ "rope_theta": 500000.0,
34
+ "tie_word_embeddings": false,
35
+ "tokenizer_model_max_length": 2048,
36
+ "tokenizer_padding_side": "right",
37
+ "torch_dtype": "float16",
38
+ "transformers_version": "4.41.2",
39
+ "tune_mm_mlp_adapter": false,
40
+ "unfreeze_vision_tower": true,
41
+ "use_cache": true,
42
+ "use_mm_proj": true,
43
+ "use_s2": true,
44
+ "vocab_size": 128256
45
+ }
single_dataset/gpt4o_conversations/VideoGameBunny_v1_1-Llama-3-8B-V-gpt4o_conversations_dataset_2000_epochs_2_lora/non_lora_trainables.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e626b7ff4f509eb7086f12ddce72968709b200a65e1ae2f8112e00a05200d71e
3
+ size 918507402
single_dataset/gpt4o_conversations/VideoGameBunny_v1_1-Llama-3-8B-V-gpt4o_conversations_dataset_2000_epochs_2_lora/trainer_state.json ADDED
@@ -0,0 +1,1792 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 2.0,
5
+ "eval_steps": 500,
6
+ "global_step": 250,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.008,
13
+ "grad_norm": 1.0906556698514653,
14
+ "learning_rate": 2.5e-05,
15
+ "loss": 1.4204,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.016,
20
+ "grad_norm": 0.9857349066149346,
21
+ "learning_rate": 5e-05,
22
+ "loss": 1.2175,
23
+ "step": 2
24
+ },
25
+ {
26
+ "epoch": 0.024,
27
+ "grad_norm": 0.8615599929924261,
28
+ "learning_rate": 7.500000000000001e-05,
29
+ "loss": 1.3035,
30
+ "step": 3
31
+ },
32
+ {
33
+ "epoch": 0.032,
34
+ "grad_norm": 0.7690914837028592,
35
+ "learning_rate": 0.0001,
36
+ "loss": 1.2571,
37
+ "step": 4
38
+ },
39
+ {
40
+ "epoch": 0.04,
41
+ "grad_norm": 1.0401337718522603,
42
+ "learning_rate": 0.000125,
43
+ "loss": 1.2383,
44
+ "step": 5
45
+ },
46
+ {
47
+ "epoch": 0.048,
48
+ "grad_norm": 0.9277157219721284,
49
+ "learning_rate": 0.00015000000000000001,
50
+ "loss": 1.253,
51
+ "step": 6
52
+ },
53
+ {
54
+ "epoch": 0.056,
55
+ "grad_norm": 0.7611097693761704,
56
+ "learning_rate": 0.000175,
57
+ "loss": 1.2298,
58
+ "step": 7
59
+ },
60
+ {
61
+ "epoch": 0.064,
62
+ "grad_norm": 0.7467727205084197,
63
+ "learning_rate": 0.0002,
64
+ "loss": 1.2594,
65
+ "step": 8
66
+ },
67
+ {
68
+ "epoch": 0.072,
69
+ "grad_norm": 0.6443610988856757,
70
+ "learning_rate": 0.0001999915737775817,
71
+ "loss": 1.2015,
72
+ "step": 9
73
+ },
74
+ {
75
+ "epoch": 0.08,
76
+ "grad_norm": 0.7890743435032062,
77
+ "learning_rate": 0.00019996629653035126,
78
+ "loss": 1.1815,
79
+ "step": 10
80
+ },
81
+ {
82
+ "epoch": 0.088,
83
+ "grad_norm": 0.7765333577639731,
84
+ "learning_rate": 0.00019992417251814282,
85
+ "loss": 1.1301,
86
+ "step": 11
87
+ },
88
+ {
89
+ "epoch": 0.096,
90
+ "grad_norm": 0.7965071182224438,
91
+ "learning_rate": 0.00019986520883988232,
92
+ "loss": 1.1537,
93
+ "step": 12
94
+ },
95
+ {
96
+ "epoch": 0.104,
97
+ "grad_norm": 0.7348769990385856,
98
+ "learning_rate": 0.0001997894154323911,
99
+ "loss": 1.1746,
100
+ "step": 13
101
+ },
102
+ {
103
+ "epoch": 0.112,
104
+ "grad_norm": 0.7643746584209018,
105
+ "learning_rate": 0.00019969680506871137,
106
+ "loss": 1.2597,
107
+ "step": 14
108
+ },
109
+ {
110
+ "epoch": 0.12,
111
+ "grad_norm": 0.8509186289214853,
112
+ "learning_rate": 0.0001995873933559535,
113
+ "loss": 1.0828,
114
+ "step": 15
115
+ },
116
+ {
117
+ "epoch": 0.128,
118
+ "grad_norm": 0.6590660613580283,
119
+ "learning_rate": 0.00019946119873266613,
120
+ "loss": 1.1688,
121
+ "step": 16
122
+ },
123
+ {
124
+ "epoch": 0.136,
125
+ "grad_norm": 0.6908530470091816,
126
+ "learning_rate": 0.0001993182424657285,
127
+ "loss": 1.0842,
128
+ "step": 17
129
+ },
130
+ {
131
+ "epoch": 0.144,
132
+ "grad_norm": 0.777278529092561,
133
+ "learning_rate": 0.00019915854864676664,
134
+ "loss": 1.2296,
135
+ "step": 18
136
+ },
137
+ {
138
+ "epoch": 0.152,
139
+ "grad_norm": 0.6297881039801307,
140
+ "learning_rate": 0.0001989821441880933,
141
+ "loss": 1.1193,
142
+ "step": 19
143
+ },
144
+ {
145
+ "epoch": 0.16,
146
+ "grad_norm": 0.646049560969531,
147
+ "learning_rate": 0.00019878905881817252,
148
+ "loss": 1.1809,
149
+ "step": 20
150
+ },
151
+ {
152
+ "epoch": 0.168,
153
+ "grad_norm": 0.70453563966353,
154
+ "learning_rate": 0.0001985793250766098,
155
+ "loss": 1.2028,
156
+ "step": 21
157
+ },
158
+ {
159
+ "epoch": 0.176,
160
+ "grad_norm": 0.6216762423800736,
161
+ "learning_rate": 0.00019835297830866826,
162
+ "loss": 1.1419,
163
+ "step": 22
164
+ },
165
+ {
166
+ "epoch": 0.184,
167
+ "grad_norm": 0.6748615041776291,
168
+ "learning_rate": 0.00019811005665931205,
169
+ "loss": 1.1702,
170
+ "step": 23
171
+ },
172
+ {
173
+ "epoch": 0.192,
174
+ "grad_norm": 0.6462797823043912,
175
+ "learning_rate": 0.00019785060106677818,
176
+ "loss": 1.1681,
177
+ "step": 24
178
+ },
179
+ {
180
+ "epoch": 0.2,
181
+ "grad_norm": 0.6639668928998315,
182
+ "learning_rate": 0.0001975746552556772,
183
+ "loss": 1.1807,
184
+ "step": 25
185
+ },
186
+ {
187
+ "epoch": 0.208,
188
+ "grad_norm": 0.6201202500087949,
189
+ "learning_rate": 0.00019728226572962473,
190
+ "loss": 1.0909,
191
+ "step": 26
192
+ },
193
+ {
194
+ "epoch": 0.216,
195
+ "grad_norm": 0.6179247844982341,
196
+ "learning_rate": 0.0001969734817634044,
197
+ "loss": 1.1761,
198
+ "step": 27
199
+ },
200
+ {
201
+ "epoch": 0.224,
202
+ "grad_norm": 0.6490118886653817,
203
+ "learning_rate": 0.0001966483553946637,
204
+ "loss": 1.0643,
205
+ "step": 28
206
+ },
207
+ {
208
+ "epoch": 0.232,
209
+ "grad_norm": 0.6590708173604165,
210
+ "learning_rate": 0.00019630694141514464,
211
+ "loss": 1.1333,
212
+ "step": 29
213
+ },
214
+ {
215
+ "epoch": 0.24,
216
+ "grad_norm": 0.6815264154798509,
217
+ "learning_rate": 0.00019594929736144976,
218
+ "loss": 1.1031,
219
+ "step": 30
220
+ },
221
+ {
222
+ "epoch": 0.248,
223
+ "grad_norm": 0.7390307701064562,
224
+ "learning_rate": 0.0001955754835053459,
225
+ "loss": 1.2164,
226
+ "step": 31
227
+ },
228
+ {
229
+ "epoch": 0.256,
230
+ "grad_norm": 0.6598152894051182,
231
+ "learning_rate": 0.00019518556284360696,
232
+ "loss": 1.1077,
233
+ "step": 32
234
+ },
235
+ {
236
+ "epoch": 0.264,
237
+ "grad_norm": 0.6217047883076768,
238
+ "learning_rate": 0.0001947796010873974,
239
+ "loss": 1.0874,
240
+ "step": 33
241
+ },
242
+ {
243
+ "epoch": 0.272,
244
+ "grad_norm": 0.6260867883739055,
245
+ "learning_rate": 0.0001943576666511982,
246
+ "loss": 1.0549,
247
+ "step": 34
248
+ },
249
+ {
250
+ "epoch": 0.28,
251
+ "grad_norm": 0.6505612935212982,
252
+ "learning_rate": 0.0001939198306412775,
253
+ "loss": 1.1254,
254
+ "step": 35
255
+ },
256
+ {
257
+ "epoch": 0.288,
258
+ "grad_norm": 0.6638582395118996,
259
+ "learning_rate": 0.0001934661668437073,
260
+ "loss": 1.1729,
261
+ "step": 36
262
+ },
263
+ {
264
+ "epoch": 0.296,
265
+ "grad_norm": 0.6760355472513383,
266
+ "learning_rate": 0.0001929967517119289,
267
+ "loss": 1.1392,
268
+ "step": 37
269
+ },
270
+ {
271
+ "epoch": 0.304,
272
+ "grad_norm": 0.689419394536968,
273
+ "learning_rate": 0.0001925116643538684,
274
+ "loss": 1.1996,
275
+ "step": 38
276
+ },
277
+ {
278
+ "epoch": 0.312,
279
+ "grad_norm": 0.643046392793243,
280
+ "learning_rate": 0.0001920109865186052,
281
+ "loss": 1.2519,
282
+ "step": 39
283
+ },
284
+ {
285
+ "epoch": 0.32,
286
+ "grad_norm": 0.6737071109245297,
287
+ "learning_rate": 0.00019149480258259533,
288
+ "loss": 1.1533,
289
+ "step": 40
290
+ },
291
+ {
292
+ "epoch": 0.328,
293
+ "grad_norm": 0.6041984234865607,
294
+ "learning_rate": 0.00019096319953545185,
295
+ "loss": 1.1374,
296
+ "step": 41
297
+ },
298
+ {
299
+ "epoch": 0.336,
300
+ "grad_norm": 0.6340061670489825,
301
+ "learning_rate": 0.00019041626696528503,
302
+ "loss": 1.0871,
303
+ "step": 42
304
+ },
305
+ {
306
+ "epoch": 0.344,
307
+ "grad_norm": 0.6792970281555901,
308
+ "learning_rate": 0.00018985409704360456,
309
+ "loss": 1.138,
310
+ "step": 43
311
+ },
312
+ {
313
+ "epoch": 0.352,
314
+ "grad_norm": 0.6675168072446115,
315
+ "learning_rate": 0.0001892767845097864,
316
+ "loss": 1.0906,
317
+ "step": 44
318
+ },
319
+ {
320
+ "epoch": 0.36,
321
+ "grad_norm": 0.6459838379601136,
322
+ "learning_rate": 0.00018868442665510678,
323
+ "loss": 1.1354,
324
+ "step": 45
325
+ },
326
+ {
327
+ "epoch": 0.368,
328
+ "grad_norm": 0.6654945017142322,
329
+ "learning_rate": 0.00018807712330634642,
330
+ "loss": 1.2151,
331
+ "step": 46
332
+ },
333
+ {
334
+ "epoch": 0.376,
335
+ "grad_norm": 0.6504567057295806,
336
+ "learning_rate": 0.00018745497680896722,
337
+ "loss": 1.1807,
338
+ "step": 47
339
+ },
340
+ {
341
+ "epoch": 0.384,
342
+ "grad_norm": 0.6707619740477763,
343
+ "learning_rate": 0.0001868180920098644,
344
+ "loss": 1.1407,
345
+ "step": 48
346
+ },
347
+ {
348
+ "epoch": 0.392,
349
+ "grad_norm": 0.6838401347017035,
350
+ "learning_rate": 0.0001861665762396974,
351
+ "loss": 1.0861,
352
+ "step": 49
353
+ },
354
+ {
355
+ "epoch": 0.4,
356
+ "grad_norm": 0.6408245265616914,
357
+ "learning_rate": 0.00018550053929480202,
358
+ "loss": 1.1278,
359
+ "step": 50
360
+ },
361
+ {
362
+ "epoch": 0.408,
363
+ "grad_norm": 0.5920380892978044,
364
+ "learning_rate": 0.00018482009341868697,
365
+ "loss": 1.0847,
366
+ "step": 51
367
+ },
368
+ {
369
+ "epoch": 0.416,
370
+ "grad_norm": 0.6843282752275007,
371
+ "learning_rate": 0.00018412535328311814,
372
+ "loss": 1.1665,
373
+ "step": 52
374
+ },
375
+ {
376
+ "epoch": 0.424,
377
+ "grad_norm": 0.6412113867201495,
378
+ "learning_rate": 0.00018341643596879367,
379
+ "loss": 1.0581,
380
+ "step": 53
381
+ },
382
+ {
383
+ "epoch": 0.432,
384
+ "grad_norm": 0.616003151361979,
385
+ "learning_rate": 0.0001826934609456129,
386
+ "loss": 1.1037,
387
+ "step": 54
388
+ },
389
+ {
390
+ "epoch": 0.44,
391
+ "grad_norm": 0.6951255358669098,
392
+ "learning_rate": 0.00018195655005254273,
393
+ "loss": 1.1601,
394
+ "step": 55
395
+ },
396
+ {
397
+ "epoch": 0.448,
398
+ "grad_norm": 0.6429783633007734,
399
+ "learning_rate": 0.00018120582747708502,
400
+ "loss": 1.1597,
401
+ "step": 56
402
+ },
403
+ {
404
+ "epoch": 0.456,
405
+ "grad_norm": 0.6067825702732784,
406
+ "learning_rate": 0.00018044141973434758,
407
+ "loss": 1.0717,
408
+ "step": 57
409
+ },
410
+ {
411
+ "epoch": 0.464,
412
+ "grad_norm": 0.6698768363154343,
413
+ "learning_rate": 0.0001796634556457236,
414
+ "loss": 1.1689,
415
+ "step": 58
416
+ },
417
+ {
418
+ "epoch": 0.472,
419
+ "grad_norm": 0.6217186674790761,
420
+ "learning_rate": 0.00017887206631718203,
421
+ "loss": 1.1173,
422
+ "step": 59
423
+ },
424
+ {
425
+ "epoch": 0.48,
426
+ "grad_norm": 0.6508142702807356,
427
+ "learning_rate": 0.0001780673851171728,
428
+ "loss": 1.1203,
429
+ "step": 60
430
+ },
431
+ {
432
+ "epoch": 0.488,
433
+ "grad_norm": 0.588948225712465,
434
+ "learning_rate": 0.00017724954765415137,
435
+ "loss": 1.1332,
436
+ "step": 61
437
+ },
438
+ {
439
+ "epoch": 0.496,
440
+ "grad_norm": 0.6632354263972068,
441
+ "learning_rate": 0.00017641869175372493,
442
+ "loss": 1.176,
443
+ "step": 62
444
+ },
445
+ {
446
+ "epoch": 0.504,
447
+ "grad_norm": 0.7029142534588849,
448
+ "learning_rate": 0.00017557495743542585,
449
+ "loss": 1.1699,
450
+ "step": 63
451
+ },
452
+ {
453
+ "epoch": 0.512,
454
+ "grad_norm": 0.622116683049225,
455
+ "learning_rate": 0.00017471848688911464,
456
+ "loss": 1.1055,
457
+ "step": 64
458
+ },
459
+ {
460
+ "epoch": 0.52,
461
+ "grad_norm": 0.6151441614463127,
462
+ "learning_rate": 0.00017384942445101772,
463
+ "loss": 1.2301,
464
+ "step": 65
465
+ },
466
+ {
467
+ "epoch": 0.528,
468
+ "grad_norm": 0.6717386555525499,
469
+ "learning_rate": 0.000172967916579403,
470
+ "loss": 1.2032,
471
+ "step": 66
472
+ },
473
+ {
474
+ "epoch": 0.536,
475
+ "grad_norm": 0.6081467264082907,
476
+ "learning_rate": 0.00017207411182989832,
477
+ "loss": 1.1567,
478
+ "step": 67
479
+ },
480
+ {
481
+ "epoch": 0.544,
482
+ "grad_norm": 0.6204888422023926,
483
+ "learning_rate": 0.00017116816083045602,
484
+ "loss": 1.1106,
485
+ "step": 68
486
+ },
487
+ {
488
+ "epoch": 0.552,
489
+ "grad_norm": 0.6404949562625138,
490
+ "learning_rate": 0.00017025021625596853,
491
+ "loss": 1.0956,
492
+ "step": 69
493
+ },
494
+ {
495
+ "epoch": 0.56,
496
+ "grad_norm": 0.6417814085898819,
497
+ "learning_rate": 0.0001693204328025389,
498
+ "loss": 1.1356,
499
+ "step": 70
500
+ },
501
+ {
502
+ "epoch": 0.568,
503
+ "grad_norm": 0.635016572212586,
504
+ "learning_rate": 0.0001683789671614107,
505
+ "loss": 1.1492,
506
+ "step": 71
507
+ },
508
+ {
509
+ "epoch": 0.576,
510
+ "grad_norm": 0.6308134251683191,
511
+ "learning_rate": 0.00016742597799256182,
512
+ "loss": 1.128,
513
+ "step": 72
514
+ },
515
+ {
516
+ "epoch": 0.584,
517
+ "grad_norm": 1.0838315900856792,
518
+ "learning_rate": 0.00016646162589796615,
519
+ "loss": 1.0663,
520
+ "step": 73
521
+ },
522
+ {
523
+ "epoch": 0.592,
524
+ "grad_norm": 0.6529443760516622,
525
+ "learning_rate": 0.00016548607339452853,
526
+ "loss": 1.1941,
527
+ "step": 74
528
+ },
529
+ {
530
+ "epoch": 0.6,
531
+ "grad_norm": 0.6110384281678047,
532
+ "learning_rate": 0.00016449948488669639,
533
+ "loss": 1.0774,
534
+ "step": 75
535
+ },
536
+ {
537
+ "epoch": 0.608,
538
+ "grad_norm": 0.6384046652101805,
539
+ "learning_rate": 0.00016350202663875386,
540
+ "loss": 1.1373,
541
+ "step": 76
542
+ },
543
+ {
544
+ "epoch": 0.616,
545
+ "grad_norm": 0.5880440159147562,
546
+ "learning_rate": 0.00016249386674680184,
547
+ "loss": 1.0892,
548
+ "step": 77
549
+ },
550
+ {
551
+ "epoch": 0.624,
552
+ "grad_norm": 0.6052022720463669,
553
+ "learning_rate": 0.0001614751751104301,
554
+ "loss": 1.0997,
555
+ "step": 78
556
+ },
557
+ {
558
+ "epoch": 0.632,
559
+ "grad_norm": 0.8360588585364545,
560
+ "learning_rate": 0.00016044612340408466,
561
+ "loss": 1.1554,
562
+ "step": 79
563
+ },
564
+ {
565
+ "epoch": 0.64,
566
+ "grad_norm": 0.6064397572432122,
567
+ "learning_rate": 0.00015940688504813662,
568
+ "loss": 1.0517,
569
+ "step": 80
570
+ },
571
+ {
572
+ "epoch": 0.648,
573
+ "grad_norm": 0.5937622017131812,
574
+ "learning_rate": 0.00015835763517965673,
575
+ "loss": 1.1775,
576
+ "step": 81
577
+ },
578
+ {
579
+ "epoch": 0.656,
580
+ "grad_norm": 0.5858555438053201,
581
+ "learning_rate": 0.00015729855062290022,
582
+ "loss": 1.1757,
583
+ "step": 82
584
+ },
585
+ {
586
+ "epoch": 0.664,
587
+ "grad_norm": 0.6384214991232625,
588
+ "learning_rate": 0.0001562298098595078,
589
+ "loss": 1.202,
590
+ "step": 83
591
+ },
592
+ {
593
+ "epoch": 0.672,
594
+ "grad_norm": 0.6373560727609033,
595
+ "learning_rate": 0.00015515159299842707,
596
+ "loss": 1.1889,
597
+ "step": 84
598
+ },
599
+ {
600
+ "epoch": 0.68,
601
+ "grad_norm": 0.6221210303020743,
602
+ "learning_rate": 0.00015406408174555976,
603
+ "loss": 1.0921,
604
+ "step": 85
605
+ },
606
+ {
607
+ "epoch": 0.688,
608
+ "grad_norm": 0.5810311421752556,
609
+ "learning_rate": 0.00015296745937313987,
610
+ "loss": 1.0685,
611
+ "step": 86
612
+ },
613
+ {
614
+ "epoch": 0.696,
615
+ "grad_norm": 0.6574941541121385,
616
+ "learning_rate": 0.00015186191068884775,
617
+ "loss": 1.1256,
618
+ "step": 87
619
+ },
620
+ {
621
+ "epoch": 0.704,
622
+ "grad_norm": 0.6135880637902962,
623
+ "learning_rate": 0.00015074762200466556,
624
+ "loss": 1.2139,
625
+ "step": 88
626
+ },
627
+ {
628
+ "epoch": 0.712,
629
+ "grad_norm": 0.5887150663213712,
630
+ "learning_rate": 0.00014962478110547918,
631
+ "loss": 1.2012,
632
+ "step": 89
633
+ },
634
+ {
635
+ "epoch": 0.72,
636
+ "grad_norm": 0.5720216657559922,
637
+ "learning_rate": 0.00014849357721743168,
638
+ "loss": 1.1177,
639
+ "step": 90
640
+ },
641
+ {
642
+ "epoch": 0.728,
643
+ "grad_norm": 0.579631383034893,
644
+ "learning_rate": 0.0001473542009760343,
645
+ "loss": 1.1278,
646
+ "step": 91
647
+ },
648
+ {
649
+ "epoch": 0.736,
650
+ "grad_norm": 0.6048021015601645,
651
+ "learning_rate": 0.00014620684439403962,
652
+ "loss": 1.1421,
653
+ "step": 92
654
+ },
655
+ {
656
+ "epoch": 0.744,
657
+ "grad_norm": 0.5855942323086678,
658
+ "learning_rate": 0.0001450517008290827,
659
+ "loss": 1.0698,
660
+ "step": 93
661
+ },
662
+ {
663
+ "epoch": 0.752,
664
+ "grad_norm": 0.5992340797396072,
665
+ "learning_rate": 0.0001438889649510956,
666
+ "loss": 1.1308,
667
+ "step": 94
668
+ },
669
+ {
670
+ "epoch": 0.76,
671
+ "grad_norm": 0.657035857991531,
672
+ "learning_rate": 0.00014271883270950073,
673
+ "loss": 1.1656,
674
+ "step": 95
675
+ },
676
+ {
677
+ "epoch": 0.768,
678
+ "grad_norm": 0.5993609083935862,
679
+ "learning_rate": 0.00014154150130018866,
680
+ "loss": 1.1342,
681
+ "step": 96
682
+ },
683
+ {
684
+ "epoch": 0.776,
685
+ "grad_norm": 0.594031128592101,
686
+ "learning_rate": 0.00014035716913228568,
687
+ "loss": 1.0296,
688
+ "step": 97
689
+ },
690
+ {
691
+ "epoch": 0.784,
692
+ "grad_norm": 0.6343533146102689,
693
+ "learning_rate": 0.00013916603579471705,
694
+ "loss": 1.1021,
695
+ "step": 98
696
+ },
697
+ {
698
+ "epoch": 0.792,
699
+ "grad_norm": 0.6370282993472896,
700
+ "learning_rate": 0.0001379683020225714,
701
+ "loss": 1.1423,
702
+ "step": 99
703
+ },
704
+ {
705
+ "epoch": 0.8,
706
+ "grad_norm": 0.5999959123873777,
707
+ "learning_rate": 0.000136764169663272,
708
+ "loss": 1.1809,
709
+ "step": 100
710
+ },
711
+ {
712
+ "epoch": 0.808,
713
+ "grad_norm": 0.6052322798739889,
714
+ "learning_rate": 0.00013555384164256048,
715
+ "loss": 1.0853,
716
+ "step": 101
717
+ },
718
+ {
719
+ "epoch": 0.816,
720
+ "grad_norm": 0.627014952912481,
721
+ "learning_rate": 0.00013433752193029886,
722
+ "loss": 1.1041,
723
+ "step": 102
724
+ },
725
+ {
726
+ "epoch": 0.824,
727
+ "grad_norm": 0.6272955192024172,
728
+ "learning_rate": 0.00013311541550609565,
729
+ "loss": 1.1716,
730
+ "step": 103
731
+ },
732
+ {
733
+ "epoch": 0.832,
734
+ "grad_norm": 0.5935607523672076,
735
+ "learning_rate": 0.00013188772832476188,
736
+ "loss": 1.1208,
737
+ "step": 104
738
+ },
739
+ {
740
+ "epoch": 0.84,
741
+ "grad_norm": 0.650271337449353,
742
+ "learning_rate": 0.00013065466728160252,
743
+ "loss": 1.1299,
744
+ "step": 105
745
+ },
746
+ {
747
+ "epoch": 0.848,
748
+ "grad_norm": 0.6508898010705562,
749
+ "learning_rate": 0.00012941644017754964,
750
+ "loss": 1.0757,
751
+ "step": 106
752
+ },
753
+ {
754
+ "epoch": 0.856,
755
+ "grad_norm": 0.6307374194277771,
756
+ "learning_rate": 0.00012817325568414297,
757
+ "loss": 1.1246,
758
+ "step": 107
759
+ },
760
+ {
761
+ "epoch": 0.864,
762
+ "grad_norm": 0.5874661015571683,
763
+ "learning_rate": 0.00012692532330836346,
764
+ "loss": 1.0583,
765
+ "step": 108
766
+ },
767
+ {
768
+ "epoch": 0.872,
769
+ "grad_norm": 0.5880110073044159,
770
+ "learning_rate": 0.00012567285335732633,
771
+ "loss": 1.059,
772
+ "step": 109
773
+ },
774
+ {
775
+ "epoch": 0.88,
776
+ "grad_norm": 0.5927953736082483,
777
+ "learning_rate": 0.00012441605690283915,
778
+ "loss": 1.0698,
779
+ "step": 110
780
+ },
781
+ {
782
+ "epoch": 0.888,
783
+ "grad_norm": 0.6174223850149873,
784
+ "learning_rate": 0.00012315514574583113,
785
+ "loss": 1.1004,
786
+ "step": 111
787
+ },
788
+ {
789
+ "epoch": 0.896,
790
+ "grad_norm": 0.6401625589443253,
791
+ "learning_rate": 0.0001218903323806595,
792
+ "loss": 1.1198,
793
+ "step": 112
794
+ },
795
+ {
796
+ "epoch": 0.904,
797
+ "grad_norm": 0.6144835895939935,
798
+ "learning_rate": 0.00012062182995929882,
799
+ "loss": 1.0495,
800
+ "step": 113
801
+ },
802
+ {
803
+ "epoch": 0.912,
804
+ "grad_norm": 0.6160080819037824,
805
+ "learning_rate": 0.00011934985225541998,
806
+ "loss": 1.099,
807
+ "step": 114
808
+ },
809
+ {
810
+ "epoch": 0.92,
811
+ "grad_norm": 0.588716972446015,
812
+ "learning_rate": 0.0001180746136283638,
813
+ "loss": 1.0885,
814
+ "step": 115
815
+ },
816
+ {
817
+ "epoch": 0.928,
818
+ "grad_norm": 0.5878309914107679,
819
+ "learning_rate": 0.00011679632898701649,
820
+ "loss": 1.0793,
821
+ "step": 116
822
+ },
823
+ {
824
+ "epoch": 0.936,
825
+ "grad_norm": 0.6828359076557663,
826
+ "learning_rate": 0.00011551521375359206,
827
+ "loss": 1.1377,
828
+ "step": 117
829
+ },
830
+ {
831
+ "epoch": 0.944,
832
+ "grad_norm": 0.6583578970824269,
833
+ "learning_rate": 0.00011423148382732853,
834
+ "loss": 1.0516,
835
+ "step": 118
836
+ },
837
+ {
838
+ "epoch": 0.952,
839
+ "grad_norm": 0.6166318556513858,
840
+ "learning_rate": 0.00011294535554810354,
841
+ "loss": 1.0817,
842
+ "step": 119
843
+ },
844
+ {
845
+ "epoch": 0.96,
846
+ "grad_norm": 0.6893920168054586,
847
+ "learning_rate": 0.00011165704565997593,
848
+ "loss": 1.1034,
849
+ "step": 120
850
+ },
851
+ {
852
+ "epoch": 0.968,
853
+ "grad_norm": 0.7653561538457616,
854
+ "learning_rate": 0.00011036677127465889,
855
+ "loss": 1.1266,
856
+ "step": 121
857
+ },
858
+ {
859
+ "epoch": 0.976,
860
+ "grad_norm": 0.5801285599368534,
861
+ "learning_rate": 0.00010907474983493144,
862
+ "loss": 1.0964,
863
+ "step": 122
864
+ },
865
+ {
866
+ "epoch": 0.984,
867
+ "grad_norm": 0.6170823725640626,
868
+ "learning_rate": 0.00010778119907799398,
869
+ "loss": 1.0843,
870
+ "step": 123
871
+ },
872
+ {
873
+ "epoch": 0.992,
874
+ "grad_norm": 0.7582907445192895,
875
+ "learning_rate": 0.0001064863369987743,
876
+ "loss": 1.1703,
877
+ "step": 124
878
+ },
879
+ {
880
+ "epoch": 1.0,
881
+ "grad_norm": 0.6260013577906284,
882
+ "learning_rate": 0.00010519038181318999,
883
+ "loss": 1.0945,
884
+ "step": 125
885
+ },
886
+ {
887
+ "epoch": 1.008,
888
+ "grad_norm": 0.5494314613037083,
889
+ "learning_rate": 0.00010389355192137377,
890
+ "loss": 0.7531,
891
+ "step": 126
892
+ },
893
+ {
894
+ "epoch": 1.016,
895
+ "grad_norm": 0.5425739308066683,
896
+ "learning_rate": 0.00010259606587086783,
897
+ "loss": 0.7805,
898
+ "step": 127
899
+ },
900
+ {
901
+ "epoch": 1.024,
902
+ "grad_norm": 0.529115377582859,
903
+ "learning_rate": 0.0001012981423197931,
904
+ "loss": 0.7759,
905
+ "step": 128
906
+ },
907
+ {
908
+ "epoch": 1.032,
909
+ "grad_norm": 0.5692792123945668,
910
+ "learning_rate": 0.0001,
911
+ "loss": 0.7704,
912
+ "step": 129
913
+ },
914
+ {
915
+ "epoch": 1.04,
916
+ "grad_norm": 0.6186406508253389,
917
+ "learning_rate": 9.870185768020693e-05,
918
+ "loss": 0.7314,
919
+ "step": 130
920
+ },
921
+ {
922
+ "epoch": 1.048,
923
+ "grad_norm": 0.6721041733464441,
924
+ "learning_rate": 9.740393412913219e-05,
925
+ "loss": 0.8125,
926
+ "step": 131
927
+ },
928
+ {
929
+ "epoch": 1.056,
930
+ "grad_norm": 0.6948983333121643,
931
+ "learning_rate": 9.610644807862625e-05,
932
+ "loss": 0.7738,
933
+ "step": 132
934
+ },
935
+ {
936
+ "epoch": 1.064,
937
+ "grad_norm": 0.6916170510549642,
938
+ "learning_rate": 9.480961818681004e-05,
939
+ "loss": 0.782,
940
+ "step": 133
941
+ },
942
+ {
943
+ "epoch": 1.072,
944
+ "grad_norm": 0.6835237897842905,
945
+ "learning_rate": 9.35136630012257e-05,
946
+ "loss": 0.7564,
947
+ "step": 134
948
+ },
949
+ {
950
+ "epoch": 1.08,
951
+ "grad_norm": 0.6864061018600497,
952
+ "learning_rate": 9.221880092200601e-05,
953
+ "loss": 0.721,
954
+ "step": 135
955
+ },
956
+ {
957
+ "epoch": 1.088,
958
+ "grad_norm": 0.6676838293816894,
959
+ "learning_rate": 9.092525016506858e-05,
960
+ "loss": 0.7256,
961
+ "step": 136
962
+ },
963
+ {
964
+ "epoch": 1.096,
965
+ "grad_norm": 0.6127394586373243,
966
+ "learning_rate": 8.963322872534114e-05,
967
+ "loss": 0.6988,
968
+ "step": 137
969
+ },
970
+ {
971
+ "epoch": 1.104,
972
+ "grad_norm": 0.6589588798885051,
973
+ "learning_rate": 8.83429543400241e-05,
974
+ "loss": 0.8101,
975
+ "step": 138
976
+ },
977
+ {
978
+ "epoch": 1.112,
979
+ "grad_norm": 0.6338289492844081,
980
+ "learning_rate": 8.705464445189647e-05,
981
+ "loss": 0.7592,
982
+ "step": 139
983
+ },
984
+ {
985
+ "epoch": 1.12,
986
+ "grad_norm": 0.6681908245671879,
987
+ "learning_rate": 8.57685161726715e-05,
988
+ "loss": 0.7407,
989
+ "step": 140
990
+ },
991
+ {
992
+ "epoch": 1.1280000000000001,
993
+ "grad_norm": 0.6220519972190037,
994
+ "learning_rate": 8.448478624640797e-05,
995
+ "loss": 0.6765,
996
+ "step": 141
997
+ },
998
+ {
999
+ "epoch": 1.1360000000000001,
1000
+ "grad_norm": 0.671093719017714,
1001
+ "learning_rate": 8.320367101298351e-05,
1002
+ "loss": 0.7479,
1003
+ "step": 142
1004
+ },
1005
+ {
1006
+ "epoch": 1.144,
1007
+ "grad_norm": 0.6252540781942465,
1008
+ "learning_rate": 8.192538637163621e-05,
1009
+ "loss": 0.69,
1010
+ "step": 143
1011
+ },
1012
+ {
1013
+ "epoch": 1.152,
1014
+ "grad_norm": 0.7025608874796816,
1015
+ "learning_rate": 8.065014774458003e-05,
1016
+ "loss": 0.7372,
1017
+ "step": 144
1018
+ },
1019
+ {
1020
+ "epoch": 1.16,
1021
+ "grad_norm": 0.8710246282526877,
1022
+ "learning_rate": 7.93781700407012e-05,
1023
+ "loss": 0.7009,
1024
+ "step": 145
1025
+ },
1026
+ {
1027
+ "epoch": 1.168,
1028
+ "grad_norm": 0.6957075564392686,
1029
+ "learning_rate": 7.810966761934053e-05,
1030
+ "loss": 0.7039,
1031
+ "step": 146
1032
+ },
1033
+ {
1034
+ "epoch": 1.176,
1035
+ "grad_norm": 0.7236979642981014,
1036
+ "learning_rate": 7.684485425416888e-05,
1037
+ "loss": 0.7541,
1038
+ "step": 147
1039
+ },
1040
+ {
1041
+ "epoch": 1.184,
1042
+ "grad_norm": 0.6570340780461766,
1043
+ "learning_rate": 7.558394309716088e-05,
1044
+ "loss": 0.6962,
1045
+ "step": 148
1046
+ },
1047
+ {
1048
+ "epoch": 1.192,
1049
+ "grad_norm": 0.608597796982595,
1050
+ "learning_rate": 7.432714664267373e-05,
1051
+ "loss": 0.6648,
1052
+ "step": 149
1053
+ },
1054
+ {
1055
+ "epoch": 1.2,
1056
+ "grad_norm": 0.6274556968757717,
1057
+ "learning_rate": 7.307467669163655e-05,
1058
+ "loss": 0.8017,
1059
+ "step": 150
1060
+ },
1061
+ {
1062
+ "epoch": 1.208,
1063
+ "grad_norm": 0.646045678305703,
1064
+ "learning_rate": 7.182674431585704e-05,
1065
+ "loss": 0.687,
1066
+ "step": 151
1067
+ },
1068
+ {
1069
+ "epoch": 1.216,
1070
+ "grad_norm": 0.615025745148123,
1071
+ "learning_rate": 7.058355982245037e-05,
1072
+ "loss": 0.7028,
1073
+ "step": 152
1074
+ },
1075
+ {
1076
+ "epoch": 1.224,
1077
+ "grad_norm": 0.644127006643345,
1078
+ "learning_rate": 6.934533271839752e-05,
1079
+ "loss": 0.6849,
1080
+ "step": 153
1081
+ },
1082
+ {
1083
+ "epoch": 1.232,
1084
+ "grad_norm": 0.6322032158257218,
1085
+ "learning_rate": 6.811227167523815e-05,
1086
+ "loss": 0.6858,
1087
+ "step": 154
1088
+ },
1089
+ {
1090
+ "epoch": 1.24,
1091
+ "grad_norm": 0.7040220453985434,
1092
+ "learning_rate": 6.688458449390437e-05,
1093
+ "loss": 0.7036,
1094
+ "step": 155
1095
+ },
1096
+ {
1097
+ "epoch": 1.248,
1098
+ "grad_norm": 0.7080898961868384,
1099
+ "learning_rate": 6.566247806970119e-05,
1100
+ "loss": 0.6814,
1101
+ "step": 156
1102
+ },
1103
+ {
1104
+ "epoch": 1.256,
1105
+ "grad_norm": 0.6732544034749526,
1106
+ "learning_rate": 6.444615835743955e-05,
1107
+ "loss": 0.6868,
1108
+ "step": 157
1109
+ },
1110
+ {
1111
+ "epoch": 1.264,
1112
+ "grad_norm": 0.6197892347959479,
1113
+ "learning_rate": 6.323583033672799e-05,
1114
+ "loss": 0.6852,
1115
+ "step": 158
1116
+ },
1117
+ {
1118
+ "epoch": 1.272,
1119
+ "grad_norm": 0.665156386544487,
1120
+ "learning_rate": 6.203169797742861e-05,
1121
+ "loss": 0.6963,
1122
+ "step": 159
1123
+ },
1124
+ {
1125
+ "epoch": 1.28,
1126
+ "grad_norm": 0.6814028088410238,
1127
+ "learning_rate": 6.083396420528298e-05,
1128
+ "loss": 0.7747,
1129
+ "step": 160
1130
+ },
1131
+ {
1132
+ "epoch": 1.288,
1133
+ "grad_norm": 0.6852077562936856,
1134
+ "learning_rate": 5.964283086771435e-05,
1135
+ "loss": 0.6945,
1136
+ "step": 161
1137
+ },
1138
+ {
1139
+ "epoch": 1.296,
1140
+ "grad_norm": 0.7147333175738334,
1141
+ "learning_rate": 5.845849869981137e-05,
1142
+ "loss": 0.7479,
1143
+ "step": 162
1144
+ },
1145
+ {
1146
+ "epoch": 1.304,
1147
+ "grad_norm": 0.6688014606429251,
1148
+ "learning_rate": 5.728116729049928e-05,
1149
+ "loss": 0.6931,
1150
+ "step": 163
1151
+ },
1152
+ {
1153
+ "epoch": 1.312,
1154
+ "grad_norm": 0.6029399268866422,
1155
+ "learning_rate": 5.611103504890444e-05,
1156
+ "loss": 0.7594,
1157
+ "step": 164
1158
+ },
1159
+ {
1160
+ "epoch": 1.32,
1161
+ "grad_norm": 0.6405186403636638,
1162
+ "learning_rate": 5.4948299170917325e-05,
1163
+ "loss": 0.6861,
1164
+ "step": 165
1165
+ },
1166
+ {
1167
+ "epoch": 1.328,
1168
+ "grad_norm": 0.6153553215285271,
1169
+ "learning_rate": 5.379315560596038e-05,
1170
+ "loss": 0.7219,
1171
+ "step": 166
1172
+ },
1173
+ {
1174
+ "epoch": 1.336,
1175
+ "grad_norm": 0.6138403231780742,
1176
+ "learning_rate": 5.26457990239657e-05,
1177
+ "loss": 0.7178,
1178
+ "step": 167
1179
+ },
1180
+ {
1181
+ "epoch": 1.3439999999999999,
1182
+ "grad_norm": 0.594607451880698,
1183
+ "learning_rate": 5.1506422782568345e-05,
1184
+ "loss": 0.6499,
1185
+ "step": 168
1186
+ },
1187
+ {
1188
+ "epoch": 1.3519999999999999,
1189
+ "grad_norm": 0.6274961325954719,
1190
+ "learning_rate": 5.0375218894520834e-05,
1191
+ "loss": 0.7387,
1192
+ "step": 169
1193
+ },
1194
+ {
1195
+ "epoch": 1.3599999999999999,
1196
+ "grad_norm": 0.6428236849437015,
1197
+ "learning_rate": 4.9252377995334444e-05,
1198
+ "loss": 0.6673,
1199
+ "step": 170
1200
+ },
1201
+ {
1202
+ "epoch": 1.3679999999999999,
1203
+ "grad_norm": 0.7424922487103246,
1204
+ "learning_rate": 4.813808931115228e-05,
1205
+ "loss": 0.7083,
1206
+ "step": 171
1207
+ },
1208
+ {
1209
+ "epoch": 1.376,
1210
+ "grad_norm": 0.6413719943869135,
1211
+ "learning_rate": 4.703254062686017e-05,
1212
+ "loss": 0.7688,
1213
+ "step": 172
1214
+ },
1215
+ {
1216
+ "epoch": 1.384,
1217
+ "grad_norm": 0.6447719371076412,
1218
+ "learning_rate": 4.593591825444028e-05,
1219
+ "loss": 0.7062,
1220
+ "step": 173
1221
+ },
1222
+ {
1223
+ "epoch": 1.392,
1224
+ "grad_norm": 0.6850728968609752,
1225
+ "learning_rate": 4.484840700157295e-05,
1226
+ "loss": 0.7522,
1227
+ "step": 174
1228
+ },
1229
+ {
1230
+ "epoch": 1.4,
1231
+ "grad_norm": 0.655257297593665,
1232
+ "learning_rate": 4.377019014049223e-05,
1233
+ "loss": 0.7415,
1234
+ "step": 175
1235
+ },
1236
+ {
1237
+ "epoch": 1.408,
1238
+ "grad_norm": 0.6649918375536736,
1239
+ "learning_rate": 4.270144937709981e-05,
1240
+ "loss": 0.7079,
1241
+ "step": 176
1242
+ },
1243
+ {
1244
+ "epoch": 1.416,
1245
+ "grad_norm": 0.640170590584303,
1246
+ "learning_rate": 4.164236482034327e-05,
1247
+ "loss": 0.7246,
1248
+ "step": 177
1249
+ },
1250
+ {
1251
+ "epoch": 1.424,
1252
+ "grad_norm": 0.6797620642919888,
1253
+ "learning_rate": 4.059311495186338e-05,
1254
+ "loss": 0.6517,
1255
+ "step": 178
1256
+ },
1257
+ {
1258
+ "epoch": 1.432,
1259
+ "grad_norm": 0.680554997205006,
1260
+ "learning_rate": 3.9553876595915375e-05,
1261
+ "loss": 0.6751,
1262
+ "step": 179
1263
+ },
1264
+ {
1265
+ "epoch": 1.44,
1266
+ "grad_norm": 0.6510525823177645,
1267
+ "learning_rate": 3.852482488956992e-05,
1268
+ "loss": 0.7289,
1269
+ "step": 180
1270
+ },
1271
+ {
1272
+ "epoch": 1.448,
1273
+ "grad_norm": 0.6681387989836439,
1274
+ "learning_rate": 3.750613325319817e-05,
1275
+ "loss": 0.6989,
1276
+ "step": 181
1277
+ },
1278
+ {
1279
+ "epoch": 1.456,
1280
+ "grad_norm": 0.682820922478662,
1281
+ "learning_rate": 3.649797336124615e-05,
1282
+ "loss": 0.6846,
1283
+ "step": 182
1284
+ },
1285
+ {
1286
+ "epoch": 1.464,
1287
+ "grad_norm": 0.6669747221606931,
1288
+ "learning_rate": 3.550051511330361e-05,
1289
+ "loss": 0.7159,
1290
+ "step": 183
1291
+ },
1292
+ {
1293
+ "epoch": 1.472,
1294
+ "grad_norm": 0.6346245539679889,
1295
+ "learning_rate": 3.45139266054715e-05,
1296
+ "loss": 0.722,
1297
+ "step": 184
1298
+ },
1299
+ {
1300
+ "epoch": 1.48,
1301
+ "grad_norm": 0.6860528744206814,
1302
+ "learning_rate": 3.3538374102033866e-05,
1303
+ "loss": 0.7387,
1304
+ "step": 185
1305
+ },
1306
+ {
1307
+ "epoch": 1.488,
1308
+ "grad_norm": 0.6466559324864782,
1309
+ "learning_rate": 3.257402200743821e-05,
1310
+ "loss": 0.6739,
1311
+ "step": 186
1312
+ },
1313
+ {
1314
+ "epoch": 1.496,
1315
+ "grad_norm": 0.6023284293992224,
1316
+ "learning_rate": 3.1621032838589305e-05,
1317
+ "loss": 0.6686,
1318
+ "step": 187
1319
+ },
1320
+ {
1321
+ "epoch": 1.504,
1322
+ "grad_norm": 0.6413527159496256,
1323
+ "learning_rate": 3.0679567197461134e-05,
1324
+ "loss": 0.748,
1325
+ "step": 188
1326
+ },
1327
+ {
1328
+ "epoch": 1.512,
1329
+ "grad_norm": 0.6551109522736579,
1330
+ "learning_rate": 2.974978374403147e-05,
1331
+ "loss": 0.6868,
1332
+ "step": 189
1333
+ },
1334
+ {
1335
+ "epoch": 1.52,
1336
+ "grad_norm": 0.6326824311431275,
1337
+ "learning_rate": 2.8831839169543996e-05,
1338
+ "loss": 0.7515,
1339
+ "step": 190
1340
+ },
1341
+ {
1342
+ "epoch": 1.528,
1343
+ "grad_norm": 0.6385233894295355,
1344
+ "learning_rate": 2.7925888170101665e-05,
1345
+ "loss": 0.7054,
1346
+ "step": 191
1347
+ },
1348
+ {
1349
+ "epoch": 1.536,
1350
+ "grad_norm": 0.6662115965676328,
1351
+ "learning_rate": 2.7032083420597e-05,
1352
+ "loss": 0.7029,
1353
+ "step": 192
1354
+ },
1355
+ {
1356
+ "epoch": 1.544,
1357
+ "grad_norm": 0.6591688636277143,
1358
+ "learning_rate": 2.6150575548982292e-05,
1359
+ "loss": 0.6458,
1360
+ "step": 193
1361
+ },
1362
+ {
1363
+ "epoch": 1.552,
1364
+ "grad_norm": 0.6936966434138461,
1365
+ "learning_rate": 2.528151311088537e-05,
1366
+ "loss": 0.7114,
1367
+ "step": 194
1368
+ },
1369
+ {
1370
+ "epoch": 1.56,
1371
+ "grad_norm": 0.660940431444361,
1372
+ "learning_rate": 2.4425042564574184e-05,
1373
+ "loss": 0.7331,
1374
+ "step": 195
1375
+ },
1376
+ {
1377
+ "epoch": 1.568,
1378
+ "grad_norm": 0.6364962057855832,
1379
+ "learning_rate": 2.3581308246275103e-05,
1380
+ "loss": 0.7192,
1381
+ "step": 196
1382
+ },
1383
+ {
1384
+ "epoch": 1.576,
1385
+ "grad_norm": 0.6560039547156613,
1386
+ "learning_rate": 2.2750452345848682e-05,
1387
+ "loss": 0.7001,
1388
+ "step": 197
1389
+ },
1390
+ {
1391
+ "epoch": 1.584,
1392
+ "grad_norm": 0.6585253364363486,
1393
+ "learning_rate": 2.1932614882827197e-05,
1394
+ "loss": 0.7239,
1395
+ "step": 198
1396
+ },
1397
+ {
1398
+ "epoch": 1.592,
1399
+ "grad_norm": 0.624825451719301,
1400
+ "learning_rate": 2.112793368281799e-05,
1401
+ "loss": 0.6901,
1402
+ "step": 199
1403
+ },
1404
+ {
1405
+ "epoch": 1.6,
1406
+ "grad_norm": 0.6649961244159159,
1407
+ "learning_rate": 2.03365443542764e-05,
1408
+ "loss": 0.699,
1409
+ "step": 200
1410
+ },
1411
+ {
1412
+ "epoch": 1.608,
1413
+ "grad_norm": 0.6615988192210411,
1414
+ "learning_rate": 1.9558580265652448e-05,
1415
+ "loss": 0.731,
1416
+ "step": 201
1417
+ },
1418
+ {
1419
+ "epoch": 1.616,
1420
+ "grad_norm": 0.669000346973526,
1421
+ "learning_rate": 1.879417252291502e-05,
1422
+ "loss": 0.7515,
1423
+ "step": 202
1424
+ },
1425
+ {
1426
+ "epoch": 1.624,
1427
+ "grad_norm": 0.6625424275293328,
1428
+ "learning_rate": 1.804344994745727e-05,
1429
+ "loss": 0.7279,
1430
+ "step": 203
1431
+ },
1432
+ {
1433
+ "epoch": 1.6320000000000001,
1434
+ "grad_norm": 0.6172627479461968,
1435
+ "learning_rate": 1.730653905438714e-05,
1436
+ "loss": 0.6609,
1437
+ "step": 204
1438
+ },
1439
+ {
1440
+ "epoch": 1.6400000000000001,
1441
+ "grad_norm": 0.6968471322847645,
1442
+ "learning_rate": 1.6583564031206357e-05,
1443
+ "loss": 0.6419,
1444
+ "step": 205
1445
+ },
1446
+ {
1447
+ "epoch": 1.6480000000000001,
1448
+ "grad_norm": 0.6646091376538787,
1449
+ "learning_rate": 1.587464671688187e-05,
1450
+ "loss": 0.7074,
1451
+ "step": 206
1452
+ },
1453
+ {
1454
+ "epoch": 1.6560000000000001,
1455
+ "grad_norm": 0.7119786340374479,
1456
+ "learning_rate": 1.5179906581313064e-05,
1457
+ "loss": 0.7104,
1458
+ "step": 207
1459
+ },
1460
+ {
1461
+ "epoch": 1.6640000000000001,
1462
+ "grad_norm": 0.6182072495204601,
1463
+ "learning_rate": 1.4499460705197998e-05,
1464
+ "loss": 0.6686,
1465
+ "step": 208
1466
+ },
1467
+ {
1468
+ "epoch": 1.6720000000000002,
1469
+ "grad_norm": 0.6571653192714902,
1470
+ "learning_rate": 1.3833423760302611e-05,
1471
+ "loss": 0.6878,
1472
+ "step": 209
1473
+ },
1474
+ {
1475
+ "epoch": 1.6800000000000002,
1476
+ "grad_norm": 0.6618007770830334,
1477
+ "learning_rate": 1.3181907990135622e-05,
1478
+ "loss": 0.6461,
1479
+ "step": 210
1480
+ },
1481
+ {
1482
+ "epoch": 1.688,
1483
+ "grad_norm": 0.6817305234712389,
1484
+ "learning_rate": 1.2545023191032801e-05,
1485
+ "loss": 0.6321,
1486
+ "step": 211
1487
+ },
1488
+ {
1489
+ "epoch": 1.696,
1490
+ "grad_norm": 0.6704808086973233,
1491
+ "learning_rate": 1.1922876693653585e-05,
1492
+ "loss": 0.7268,
1493
+ "step": 212
1494
+ },
1495
+ {
1496
+ "epoch": 1.704,
1497
+ "grad_norm": 0.6185324770527085,
1498
+ "learning_rate": 1.131557334489326e-05,
1499
+ "loss": 0.7113,
1500
+ "step": 213
1501
+ },
1502
+ {
1503
+ "epoch": 1.712,
1504
+ "grad_norm": 0.6764723338003922,
1505
+ "learning_rate": 1.0723215490213634e-05,
1506
+ "loss": 0.6954,
1507
+ "step": 214
1508
+ },
1509
+ {
1510
+ "epoch": 1.72,
1511
+ "grad_norm": 0.6529991387340686,
1512
+ "learning_rate": 1.0145902956395447e-05,
1513
+ "loss": 0.6599,
1514
+ "step": 215
1515
+ },
1516
+ {
1517
+ "epoch": 1.728,
1518
+ "grad_norm": 0.6470487796656074,
1519
+ "learning_rate": 9.583733034714981e-06,
1520
+ "loss": 0.6545,
1521
+ "step": 216
1522
+ },
1523
+ {
1524
+ "epoch": 1.736,
1525
+ "grad_norm": 0.7156374080738279,
1526
+ "learning_rate": 9.036800464548157e-06,
1527
+ "loss": 0.7424,
1528
+ "step": 217
1529
+ },
1530
+ {
1531
+ "epoch": 1.744,
1532
+ "grad_norm": 0.6628825567627252,
1533
+ "learning_rate": 8.505197417404687e-06,
1534
+ "loss": 0.64,
1535
+ "step": 218
1536
+ },
1537
+ {
1538
+ "epoch": 1.752,
1539
+ "grad_norm": 0.6679173882701385,
1540
+ "learning_rate": 7.989013481394814e-06,
1541
+ "loss": 0.7379,
1542
+ "step": 219
1543
+ },
1544
+ {
1545
+ "epoch": 1.76,
1546
+ "grad_norm": 0.6590707065664086,
1547
+ "learning_rate": 7.488335646131628e-06,
1548
+ "loss": 0.5963,
1549
+ "step": 220
1550
+ },
1551
+ {
1552
+ "epoch": 1.768,
1553
+ "grad_norm": 0.6444345838715957,
1554
+ "learning_rate": 7.003248288071118e-06,
1555
+ "loss": 0.7151,
1556
+ "step": 221
1557
+ },
1558
+ {
1559
+ "epoch": 1.776,
1560
+ "grad_norm": 0.675515451229952,
1561
+ "learning_rate": 6.533833156292679e-06,
1562
+ "loss": 0.6899,
1563
+ "step": 222
1564
+ },
1565
+ {
1566
+ "epoch": 1.784,
1567
+ "grad_norm": 0.7208271256227047,
1568
+ "learning_rate": 6.08016935872251e-06,
1569
+ "loss": 0.592,
1570
+ "step": 223
1571
+ },
1572
+ {
1573
+ "epoch": 1.792,
1574
+ "grad_norm": 0.6543039778126106,
1575
+ "learning_rate": 5.6423333488018095e-06,
1576
+ "loss": 0.725,
1577
+ "step": 224
1578
+ },
1579
+ {
1580
+ "epoch": 1.8,
1581
+ "grad_norm": 0.6545834113447834,
1582
+ "learning_rate": 5.22039891260262e-06,
1583
+ "loss": 0.5796,
1584
+ "step": 225
1585
+ },
1586
+ {
1587
+ "epoch": 1.808,
1588
+ "grad_norm": 0.6413464222219671,
1589
+ "learning_rate": 4.8144371563930476e-06,
1590
+ "loss": 0.6239,
1591
+ "step": 226
1592
+ },
1593
+ {
1594
+ "epoch": 1.8159999999999998,
1595
+ "grad_norm": 0.6409389432940975,
1596
+ "learning_rate": 4.424516494654118e-06,
1597
+ "loss": 0.6732,
1598
+ "step": 227
1599
+ },
1600
+ {
1601
+ "epoch": 1.8239999999999998,
1602
+ "grad_norm": 0.6130780753603059,
1603
+ "learning_rate": 4.050702638550275e-06,
1604
+ "loss": 0.7106,
1605
+ "step": 228
1606
+ },
1607
+ {
1608
+ "epoch": 1.8319999999999999,
1609
+ "grad_norm": 0.6436868508715743,
1610
+ "learning_rate": 3.693058584855369e-06,
1611
+ "loss": 0.713,
1612
+ "step": 229
1613
+ },
1614
+ {
1615
+ "epoch": 1.8399999999999999,
1616
+ "grad_norm": 0.644610773822548,
1617
+ "learning_rate": 3.3516446053363015e-06,
1618
+ "loss": 0.6644,
1619
+ "step": 230
1620
+ },
1621
+ {
1622
+ "epoch": 1.8479999999999999,
1623
+ "grad_norm": 0.6742463101315687,
1624
+ "learning_rate": 3.026518236595621e-06,
1625
+ "loss": 0.7132,
1626
+ "step": 231
1627
+ },
1628
+ {
1629
+ "epoch": 1.8559999999999999,
1630
+ "grad_norm": 0.623708408040731,
1631
+ "learning_rate": 2.717734270375272e-06,
1632
+ "loss": 0.708,
1633
+ "step": 232
1634
+ },
1635
+ {
1636
+ "epoch": 1.8639999999999999,
1637
+ "grad_norm": 0.6353495695076489,
1638
+ "learning_rate": 2.4253447443228106e-06,
1639
+ "loss": 0.6728,
1640
+ "step": 233
1641
+ },
1642
+ {
1643
+ "epoch": 1.8719999999999999,
1644
+ "grad_norm": 0.6470934000333828,
1645
+ "learning_rate": 2.1493989332218468e-06,
1646
+ "loss": 0.6684,
1647
+ "step": 234
1648
+ },
1649
+ {
1650
+ "epoch": 1.88,
1651
+ "grad_norm": 0.6339743329664256,
1652
+ "learning_rate": 1.8899433406879608e-06,
1653
+ "loss": 0.7162,
1654
+ "step": 235
1655
+ },
1656
+ {
1657
+ "epoch": 1.888,
1658
+ "grad_norm": 0.6991547215955025,
1659
+ "learning_rate": 1.6470216913317626e-06,
1660
+ "loss": 0.6655,
1661
+ "step": 236
1662
+ },
1663
+ {
1664
+ "epoch": 1.896,
1665
+ "grad_norm": 0.6573698643261111,
1666
+ "learning_rate": 1.4206749233902084e-06,
1667
+ "loss": 0.6264,
1668
+ "step": 237
1669
+ },
1670
+ {
1671
+ "epoch": 1.904,
1672
+ "grad_norm": 0.674748855909925,
1673
+ "learning_rate": 1.2109411818274852e-06,
1674
+ "loss": 0.6998,
1675
+ "step": 238
1676
+ },
1677
+ {
1678
+ "epoch": 1.912,
1679
+ "grad_norm": 0.6717822723070102,
1680
+ "learning_rate": 1.0178558119067315e-06,
1681
+ "loss": 0.6694,
1682
+ "step": 239
1683
+ },
1684
+ {
1685
+ "epoch": 1.92,
1686
+ "grad_norm": 0.6005919528342801,
1687
+ "learning_rate": 8.41451353233369e-07,
1688
+ "loss": 0.6788,
1689
+ "step": 240
1690
+ },
1691
+ {
1692
+ "epoch": 1.928,
1693
+ "grad_norm": 0.6588728502179835,
1694
+ "learning_rate": 6.817575342714988e-07,
1695
+ "loss": 0.6907,
1696
+ "step": 241
1697
+ },
1698
+ {
1699
+ "epoch": 1.936,
1700
+ "grad_norm": 0.6399991839714124,
1701
+ "learning_rate": 5.388012673338661e-07,
1702
+ "loss": 0.7308,
1703
+ "step": 242
1704
+ },
1705
+ {
1706
+ "epoch": 1.944,
1707
+ "grad_norm": 0.6727098433398869,
1708
+ "learning_rate": 4.126066440464982e-07,
1709
+ "loss": 0.7206,
1710
+ "step": 243
1711
+ },
1712
+ {
1713
+ "epoch": 1.952,
1714
+ "grad_norm": 0.6453747666541074,
1715
+ "learning_rate": 3.0319493128866396e-07,
1716
+ "loss": 0.6922,
1717
+ "step": 244
1718
+ },
1719
+ {
1720
+ "epoch": 1.96,
1721
+ "grad_norm": 0.6826025782964477,
1722
+ "learning_rate": 2.1058456760891798e-07,
1723
+ "loss": 0.6359,
1724
+ "step": 245
1725
+ },
1726
+ {
1727
+ "epoch": 1.968,
1728
+ "grad_norm": 0.6759076178003499,
1729
+ "learning_rate": 1.3479116011769767e-07,
1730
+ "loss": 0.7169,
1731
+ "step": 246
1732
+ },
1733
+ {
1734
+ "epoch": 1.976,
1735
+ "grad_norm": 0.6557247806930547,
1736
+ "learning_rate": 7.582748185719358e-08,
1737
+ "loss": 0.662,
1738
+ "step": 247
1739
+ },
1740
+ {
1741
+ "epoch": 1.984,
1742
+ "grad_norm": 0.6905158594933963,
1743
+ "learning_rate": 3.370346964876036e-08,
1744
+ "loss": 0.639,
1745
+ "step": 248
1746
+ },
1747
+ {
1748
+ "epoch": 1.992,
1749
+ "grad_norm": 0.6703768445324131,
1750
+ "learning_rate": 8.426222418311814e-09,
1751
+ "loss": 0.7734,
1752
+ "step": 249
1753
+ },
1754
+ {
1755
+ "epoch": 2.0,
1756
+ "grad_norm": 0.6528927891706773,
1757
+ "learning_rate": 0.0,
1758
+ "loss": 0.6719,
1759
+ "step": 250
1760
+ },
1761
+ {
1762
+ "epoch": 2.0,
1763
+ "step": 250,
1764
+ "total_flos": 130603858001920.0,
1765
+ "train_loss": 0.9226167418956757,
1766
+ "train_runtime": 3038.6804,
1767
+ "train_samples_per_second": 1.316,
1768
+ "train_steps_per_second": 0.082
1769
+ }
1770
+ ],
1771
+ "logging_steps": 1.0,
1772
+ "max_steps": 250,
1773
+ "num_input_tokens_seen": 0,
1774
+ "num_train_epochs": 2,
1775
+ "save_steps": 500,
1776
+ "stateful_callbacks": {
1777
+ "TrainerControl": {
1778
+ "args": {
1779
+ "should_epoch_stop": false,
1780
+ "should_evaluate": false,
1781
+ "should_log": false,
1782
+ "should_save": false,
1783
+ "should_training_stop": false
1784
+ },
1785
+ "attributes": {}
1786
+ }
1787
+ },
1788
+ "total_flos": 130603858001920.0,
1789
+ "train_batch_size": 8,
1790
+ "trial_name": null,
1791
+ "trial_params": null
1792
+ }
single_dataset/gpt4o_conversations/VideoGameBunny_v1_1-Llama-3-8B-V-gpt4o_conversations_dataset_5000_epochs_1_lora/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: ./weights/Bunny-v1_1-Llama-3-8B-V
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.11.1
single_dataset/gpt4o_conversations/VideoGameBunny_v1_1-Llama-3-8B-V-gpt4o_conversations_dataset_5000_epochs_1_lora/adapter_config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "./weights/Bunny-v1_1-Llama-3-8B-V",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 256,
14
+ "lora_dropout": 0.1,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 128,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "q_proj",
24
+ "up_proj",
25
+ "o_proj",
26
+ "v_proj",
27
+ "k_proj",
28
+ "gate_proj",
29
+ "down_proj"
30
+ ],
31
+ "task_type": "CAUSAL_LM",
32
+ "use_dora": false,
33
+ "use_rslora": false
34
+ }
single_dataset/gpt4o_conversations/VideoGameBunny_v1_1-Llama-3-8B-V-gpt4o_conversations_dataset_5000_epochs_1_lora/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5e94296acb549b80024e300c9a323b71ee3077e46a71b5a7f17b0f989114a6e5
3
+ size 671150064
single_dataset/gpt4o_conversations/VideoGameBunny_v1_1-Llama-3-8B-V-gpt4o_conversations_dataset_5000_epochs_1_lora/config.json ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "./weights/Bunny-v1_1-Llama-3-8B-V",
3
+ "architectures": [
4
+ "BunnyLlamaForCausalLM"
5
+ ],
6
+ "attention_bias": false,
7
+ "attention_dropout": 0.0,
8
+ "auto_map": {
9
+ "AutoConfig": "configuration_bunny_llama.BunnyLlamaConfig",
10
+ "AutoModelForCausalLM": "modeling_bunny_llama.BunnyLlamaForCausalLM"
11
+ },
12
+ "bos_token_id": 128000,
13
+ "continuous_training": false,
14
+ "eos_token_id": 128001,
15
+ "freeze_mm_mlp_adapter": false,
16
+ "hidden_act": "silu",
17
+ "hidden_size": 4096,
18
+ "image_aspect_ratio": "pad",
19
+ "initializer_range": 0.02,
20
+ "intermediate_size": 14336,
21
+ "max_position_embeddings": 8192,
22
+ "mm_hidden_size": 3456,
23
+ "mm_projector_lr": null,
24
+ "mm_projector_type": "mlp2x_gelu",
25
+ "mm_vision_tower": "./weights/siglip-so400m-patch14-384",
26
+ "model_type": "bunny-llama",
27
+ "num_attention_heads": 32,
28
+ "num_hidden_layers": 32,
29
+ "num_key_value_heads": 8,
30
+ "pretraining_tp": 1,
31
+ "rms_norm_eps": 1e-05,
32
+ "rope_scaling": null,
33
+ "rope_theta": 500000.0,
34
+ "tie_word_embeddings": false,
35
+ "tokenizer_model_max_length": 2048,
36
+ "tokenizer_padding_side": "right",
37
+ "torch_dtype": "float16",
38
+ "transformers_version": "4.41.2",
39
+ "tune_mm_mlp_adapter": false,
40
+ "unfreeze_vision_tower": true,
41
+ "use_cache": true,
42
+ "use_mm_proj": true,
43
+ "use_s2": true,
44
+ "vocab_size": 128256
45
+ }
single_dataset/gpt4o_conversations/VideoGameBunny_v1_1-Llama-3-8B-V-gpt4o_conversations_dataset_5000_epochs_1_lora/non_lora_trainables.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fd0a8733639c356cd85e403d0c948297f862e3bc719bcb1be355d5aa0fb94d57
3
+ size 918507402
single_dataset/gpt4o_conversations/VideoGameBunny_v1_1-Llama-3-8B-V-gpt4o_conversations_dataset_5000_epochs_1_lora/trainer_state.json ADDED
@@ -0,0 +1,2226 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.9984,
5
+ "eval_steps": 500,
6
+ "global_step": 312,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.0032,
13
+ "grad_norm": 0.8934607401720872,
14
+ "learning_rate": 2e-05,
15
+ "loss": 1.3726,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.0064,
20
+ "grad_norm": 0.9702764908035759,
21
+ "learning_rate": 4e-05,
22
+ "loss": 1.3514,
23
+ "step": 2
24
+ },
25
+ {
26
+ "epoch": 0.0096,
27
+ "grad_norm": 0.8928671122403777,
28
+ "learning_rate": 6e-05,
29
+ "loss": 1.3464,
30
+ "step": 3
31
+ },
32
+ {
33
+ "epoch": 0.0128,
34
+ "grad_norm": 0.733085596985154,
35
+ "learning_rate": 8e-05,
36
+ "loss": 1.2532,
37
+ "step": 4
38
+ },
39
+ {
40
+ "epoch": 0.016,
41
+ "grad_norm": 0.8570494872495142,
42
+ "learning_rate": 0.0001,
43
+ "loss": 1.1028,
44
+ "step": 5
45
+ },
46
+ {
47
+ "epoch": 0.0192,
48
+ "grad_norm": 1.0400527883080488,
49
+ "learning_rate": 0.00012,
50
+ "loss": 1.2828,
51
+ "step": 6
52
+ },
53
+ {
54
+ "epoch": 0.0224,
55
+ "grad_norm": 0.8428812825744051,
56
+ "learning_rate": 0.00014,
57
+ "loss": 1.2222,
58
+ "step": 7
59
+ },
60
+ {
61
+ "epoch": 0.0256,
62
+ "grad_norm": 0.7939623442508198,
63
+ "learning_rate": 0.00016,
64
+ "loss": 1.2832,
65
+ "step": 8
66
+ },
67
+ {
68
+ "epoch": 0.0288,
69
+ "grad_norm": 0.6664596962036828,
70
+ "learning_rate": 0.00018,
71
+ "loss": 1.2148,
72
+ "step": 9
73
+ },
74
+ {
75
+ "epoch": 0.032,
76
+ "grad_norm": 0.7655774280979413,
77
+ "learning_rate": 0.0002,
78
+ "loss": 1.2593,
79
+ "step": 10
80
+ },
81
+ {
82
+ "epoch": 0.0352,
83
+ "grad_norm": 0.9002584907773491,
84
+ "learning_rate": 0.00019999458931878073,
85
+ "loss": 1.2274,
86
+ "step": 11
87
+ },
88
+ {
89
+ "epoch": 0.0384,
90
+ "grad_norm": 0.6973696058498797,
91
+ "learning_rate": 0.0001999783578606323,
92
+ "loss": 1.1777,
93
+ "step": 12
94
+ },
95
+ {
96
+ "epoch": 0.0416,
97
+ "grad_norm": 0.7961500621219396,
98
+ "learning_rate": 0.00019995130738201966,
99
+ "loss": 1.2384,
100
+ "step": 13
101
+ },
102
+ {
103
+ "epoch": 0.0448,
104
+ "grad_norm": 0.6934442208162789,
105
+ "learning_rate": 0.0001999134408101731,
106
+ "loss": 1.1529,
107
+ "step": 14
108
+ },
109
+ {
110
+ "epoch": 0.048,
111
+ "grad_norm": 0.7760808007197953,
112
+ "learning_rate": 0.00019986476224277165,
113
+ "loss": 1.1961,
114
+ "step": 15
115
+ },
116
+ {
117
+ "epoch": 0.0512,
118
+ "grad_norm": 0.7662958744276087,
119
+ "learning_rate": 0.00019980527694749952,
120
+ "loss": 1.2431,
121
+ "step": 16
122
+ },
123
+ {
124
+ "epoch": 0.0544,
125
+ "grad_norm": 0.7492875679562371,
126
+ "learning_rate": 0.00019973499136147606,
127
+ "loss": 1.1853,
128
+ "step": 17
129
+ },
130
+ {
131
+ "epoch": 0.0576,
132
+ "grad_norm": 0.6644857894549516,
133
+ "learning_rate": 0.0001996539130905593,
134
+ "loss": 1.0896,
135
+ "step": 18
136
+ },
137
+ {
138
+ "epoch": 0.0608,
139
+ "grad_norm": 0.7028291596766432,
140
+ "learning_rate": 0.0001995620509085228,
141
+ "loss": 1.1517,
142
+ "step": 19
143
+ },
144
+ {
145
+ "epoch": 0.064,
146
+ "grad_norm": 0.7151346253989167,
147
+ "learning_rate": 0.00019945941475610623,
148
+ "loss": 1.2471,
149
+ "step": 20
150
+ },
151
+ {
152
+ "epoch": 0.0672,
153
+ "grad_norm": 0.6597569217376018,
154
+ "learning_rate": 0.0001993460157399396,
155
+ "loss": 1.1051,
156
+ "step": 21
157
+ },
158
+ {
159
+ "epoch": 0.0704,
160
+ "grad_norm": 0.7876128410548371,
161
+ "learning_rate": 0.0001992218661313415,
162
+ "loss": 1.1344,
163
+ "step": 22
164
+ },
165
+ {
166
+ "epoch": 0.0736,
167
+ "grad_norm": 0.6788178829714944,
168
+ "learning_rate": 0.00019908697936499103,
169
+ "loss": 1.1579,
170
+ "step": 23
171
+ },
172
+ {
173
+ "epoch": 0.0768,
174
+ "grad_norm": 0.6959667855216832,
175
+ "learning_rate": 0.00019894137003747403,
176
+ "loss": 1.0935,
177
+ "step": 24
178
+ },
179
+ {
180
+ "epoch": 0.08,
181
+ "grad_norm": 0.6360283110594259,
182
+ "learning_rate": 0.00019878505390570362,
183
+ "loss": 1.0861,
184
+ "step": 25
185
+ },
186
+ {
187
+ "epoch": 0.0832,
188
+ "grad_norm": 0.7149481186935083,
189
+ "learning_rate": 0.00019861804788521493,
190
+ "loss": 1.2315,
191
+ "step": 26
192
+ },
193
+ {
194
+ "epoch": 0.0864,
195
+ "grad_norm": 0.7290306737510642,
196
+ "learning_rate": 0.00019844037004833473,
197
+ "loss": 1.1464,
198
+ "step": 27
199
+ },
200
+ {
201
+ "epoch": 0.0896,
202
+ "grad_norm": 0.6106941074968636,
203
+ "learning_rate": 0.00019825203962222572,
204
+ "loss": 1.165,
205
+ "step": 28
206
+ },
207
+ {
208
+ "epoch": 0.0928,
209
+ "grad_norm": 0.6171080416329583,
210
+ "learning_rate": 0.0001980530769868059,
211
+ "loss": 1.1248,
212
+ "step": 29
213
+ },
214
+ {
215
+ "epoch": 0.096,
216
+ "grad_norm": 0.6951443407479725,
217
+ "learning_rate": 0.00019784350367254322,
218
+ "loss": 1.1997,
219
+ "step": 30
220
+ },
221
+ {
222
+ "epoch": 0.0992,
223
+ "grad_norm": 0.7110530520599219,
224
+ "learning_rate": 0.0001976233423581255,
225
+ "loss": 1.0452,
226
+ "step": 31
227
+ },
228
+ {
229
+ "epoch": 0.1024,
230
+ "grad_norm": 0.6720320155074625,
231
+ "learning_rate": 0.0001973926168680066,
232
+ "loss": 1.1767,
233
+ "step": 32
234
+ },
235
+ {
236
+ "epoch": 0.1056,
237
+ "grad_norm": 0.6247290543001629,
238
+ "learning_rate": 0.00019715135216982798,
239
+ "loss": 1.1555,
240
+ "step": 33
241
+ },
242
+ {
243
+ "epoch": 0.1088,
244
+ "grad_norm": 0.6768489593434474,
245
+ "learning_rate": 0.0001968995743717171,
246
+ "loss": 1.2408,
247
+ "step": 34
248
+ },
249
+ {
250
+ "epoch": 0.112,
251
+ "grad_norm": 0.5850076189172989,
252
+ "learning_rate": 0.00019663731071946206,
253
+ "loss": 1.1552,
254
+ "step": 35
255
+ },
256
+ {
257
+ "epoch": 0.1152,
258
+ "grad_norm": 0.6272578992853955,
259
+ "learning_rate": 0.00019636458959356316,
260
+ "loss": 1.1843,
261
+ "step": 36
262
+ },
263
+ {
264
+ "epoch": 0.1184,
265
+ "grad_norm": 0.6041727331165989,
266
+ "learning_rate": 0.0001960814405061619,
267
+ "loss": 1.111,
268
+ "step": 37
269
+ },
270
+ {
271
+ "epoch": 0.1216,
272
+ "grad_norm": 0.5853996034242491,
273
+ "learning_rate": 0.00019578789409784727,
274
+ "loss": 1.2139,
275
+ "step": 38
276
+ },
277
+ {
278
+ "epoch": 0.1248,
279
+ "grad_norm": 0.6044406014017014,
280
+ "learning_rate": 0.00019548398213434007,
281
+ "loss": 1.1251,
282
+ "step": 39
283
+ },
284
+ {
285
+ "epoch": 0.128,
286
+ "grad_norm": 0.599638159597199,
287
+ "learning_rate": 0.00019516973750305532,
288
+ "loss": 1.1915,
289
+ "step": 40
290
+ },
291
+ {
292
+ "epoch": 0.1312,
293
+ "grad_norm": 0.6230215019985648,
294
+ "learning_rate": 0.00019484519420954354,
295
+ "loss": 1.1465,
296
+ "step": 41
297
+ },
298
+ {
299
+ "epoch": 0.1344,
300
+ "grad_norm": 0.6685570571892,
301
+ "learning_rate": 0.00019451038737381077,
302
+ "loss": 1.1318,
303
+ "step": 42
304
+ },
305
+ {
306
+ "epoch": 0.1376,
307
+ "grad_norm": 0.6591831305025555,
308
+ "learning_rate": 0.00019416535322651818,
309
+ "loss": 1.1549,
310
+ "step": 43
311
+ },
312
+ {
313
+ "epoch": 0.1408,
314
+ "grad_norm": 0.6302659422826664,
315
+ "learning_rate": 0.00019381012910506146,
316
+ "loss": 1.1936,
317
+ "step": 44
318
+ },
319
+ {
320
+ "epoch": 0.144,
321
+ "grad_norm": 0.6551385711236554,
322
+ "learning_rate": 0.00019344475344953012,
323
+ "loss": 1.1421,
324
+ "step": 45
325
+ },
326
+ {
327
+ "epoch": 0.1472,
328
+ "grad_norm": 0.6846744761544914,
329
+ "learning_rate": 0.00019306926579854821,
330
+ "loss": 1.1853,
331
+ "step": 46
332
+ },
333
+ {
334
+ "epoch": 0.1504,
335
+ "grad_norm": 0.5995584235958642,
336
+ "learning_rate": 0.00019268370678499533,
337
+ "loss": 1.1172,
338
+ "step": 47
339
+ },
340
+ {
341
+ "epoch": 0.1536,
342
+ "grad_norm": 0.6693072383155553,
343
+ "learning_rate": 0.0001922881181316097,
344
+ "loss": 1.0899,
345
+ "step": 48
346
+ },
347
+ {
348
+ "epoch": 0.1568,
349
+ "grad_norm": 0.5823860976342665,
350
+ "learning_rate": 0.00019188254264647337,
351
+ "loss": 1.0778,
352
+ "step": 49
353
+ },
354
+ {
355
+ "epoch": 0.16,
356
+ "grad_norm": 0.6548607686911667,
357
+ "learning_rate": 0.0001914670242183795,
358
+ "loss": 1.1292,
359
+ "step": 50
360
+ },
361
+ {
362
+ "epoch": 0.1632,
363
+ "grad_norm": 0.6455229915546238,
364
+ "learning_rate": 0.0001910416078120832,
365
+ "loss": 1.2137,
366
+ "step": 51
367
+ },
368
+ {
369
+ "epoch": 0.1664,
370
+ "grad_norm": 0.6797448562922372,
371
+ "learning_rate": 0.0001906063394634356,
372
+ "loss": 1.1747,
373
+ "step": 52
374
+ },
375
+ {
376
+ "epoch": 0.1696,
377
+ "grad_norm": 0.6169579402663269,
378
+ "learning_rate": 0.00019016126627440237,
379
+ "loss": 1.1282,
380
+ "step": 53
381
+ },
382
+ {
383
+ "epoch": 0.1728,
384
+ "grad_norm": 0.5752462685930675,
385
+ "learning_rate": 0.00018970643640796642,
386
+ "loss": 1.2357,
387
+ "step": 54
388
+ },
389
+ {
390
+ "epoch": 0.176,
391
+ "grad_norm": 0.6524878494461898,
392
+ "learning_rate": 0.000189241899082916,
393
+ "loss": 1.1178,
394
+ "step": 55
395
+ },
396
+ {
397
+ "epoch": 0.1792,
398
+ "grad_norm": 0.5803880758055884,
399
+ "learning_rate": 0.00018876770456851877,
400
+ "loss": 1.0582,
401
+ "step": 56
402
+ },
403
+ {
404
+ "epoch": 0.1824,
405
+ "grad_norm": 0.6284049891526231,
406
+ "learning_rate": 0.0001882839041790818,
407
+ "loss": 1.1503,
408
+ "step": 57
409
+ },
410
+ {
411
+ "epoch": 0.1856,
412
+ "grad_norm": 0.6429933521925236,
413
+ "learning_rate": 0.00018779055026839868,
414
+ "loss": 1.1227,
415
+ "step": 58
416
+ },
417
+ {
418
+ "epoch": 0.1888,
419
+ "grad_norm": 0.6642315948614433,
420
+ "learning_rate": 0.00018728769622408423,
421
+ "loss": 1.1491,
422
+ "step": 59
423
+ },
424
+ {
425
+ "epoch": 0.192,
426
+ "grad_norm": 0.6318270344993646,
427
+ "learning_rate": 0.00018677539646179707,
428
+ "loss": 1.0924,
429
+ "step": 60
430
+ },
431
+ {
432
+ "epoch": 0.1952,
433
+ "grad_norm": 0.6736013814160521,
434
+ "learning_rate": 0.00018625370641935129,
435
+ "loss": 1.1376,
436
+ "step": 61
437
+ },
438
+ {
439
+ "epoch": 0.1984,
440
+ "grad_norm": 0.6290487314099203,
441
+ "learning_rate": 0.00018572268255071718,
442
+ "loss": 1.1099,
443
+ "step": 62
444
+ },
445
+ {
446
+ "epoch": 0.2016,
447
+ "grad_norm": 0.5868150325072425,
448
+ "learning_rate": 0.00018518238231991218,
449
+ "loss": 1.0572,
450
+ "step": 63
451
+ },
452
+ {
453
+ "epoch": 0.2048,
454
+ "grad_norm": 0.6287361571659641,
455
+ "learning_rate": 0.00018463286419478255,
456
+ "loss": 1.1199,
457
+ "step": 64
458
+ },
459
+ {
460
+ "epoch": 0.208,
461
+ "grad_norm": 0.635478784306169,
462
+ "learning_rate": 0.00018407418764067627,
463
+ "loss": 1.1375,
464
+ "step": 65
465
+ },
466
+ {
467
+ "epoch": 0.2112,
468
+ "grad_norm": 0.6934699927576387,
469
+ "learning_rate": 0.00018350641311400812,
470
+ "loss": 1.12,
471
+ "step": 66
472
+ },
473
+ {
474
+ "epoch": 0.2144,
475
+ "grad_norm": 0.6300333641647747,
476
+ "learning_rate": 0.0001829296020557174,
477
+ "loss": 1.1237,
478
+ "step": 67
479
+ },
480
+ {
481
+ "epoch": 0.2176,
482
+ "grad_norm": 0.603806858704276,
483
+ "learning_rate": 0.00018234381688461942,
484
+ "loss": 1.1252,
485
+ "step": 68
486
+ },
487
+ {
488
+ "epoch": 0.2208,
489
+ "grad_norm": 0.6328663939650221,
490
+ "learning_rate": 0.0001817491209906506,
491
+ "loss": 1.1643,
492
+ "step": 69
493
+ },
494
+ {
495
+ "epoch": 0.224,
496
+ "grad_norm": 0.6587939462250295,
497
+ "learning_rate": 0.00018114557872800905,
498
+ "loss": 1.159,
499
+ "step": 70
500
+ },
501
+ {
502
+ "epoch": 0.2272,
503
+ "grad_norm": 0.6554856961720463,
504
+ "learning_rate": 0.00018053325540819045,
505
+ "loss": 1.0889,
506
+ "step": 71
507
+ },
508
+ {
509
+ "epoch": 0.2304,
510
+ "grad_norm": 0.7008545104931168,
511
+ "learning_rate": 0.0001799122172929206,
512
+ "loss": 1.1307,
513
+ "step": 72
514
+ },
515
+ {
516
+ "epoch": 0.2336,
517
+ "grad_norm": 0.6109951811360471,
518
+ "learning_rate": 0.00017928253158698473,
519
+ "loss": 1.1416,
520
+ "step": 73
521
+ },
522
+ {
523
+ "epoch": 0.2368,
524
+ "grad_norm": 0.5813378104951092,
525
+ "learning_rate": 0.0001786442664309554,
526
+ "loss": 1.0637,
527
+ "step": 74
528
+ },
529
+ {
530
+ "epoch": 0.24,
531
+ "grad_norm": 0.5909823532691317,
532
+ "learning_rate": 0.0001779974908938184,
533
+ "loss": 1.1533,
534
+ "step": 75
535
+ },
536
+ {
537
+ "epoch": 0.2432,
538
+ "grad_norm": 0.5928182395354943,
539
+ "learning_rate": 0.0001773422749654988,
540
+ "loss": 1.1322,
541
+ "step": 76
542
+ },
543
+ {
544
+ "epoch": 0.2464,
545
+ "grad_norm": 0.6569884577681215,
546
+ "learning_rate": 0.00017667868954928694,
547
+ "loss": 1.1574,
548
+ "step": 77
549
+ },
550
+ {
551
+ "epoch": 0.2496,
552
+ "grad_norm": 0.6278707831640676,
553
+ "learning_rate": 0.00017600680645416583,
554
+ "loss": 1.087,
555
+ "step": 78
556
+ },
557
+ {
558
+ "epoch": 0.2528,
559
+ "grad_norm": 0.640992980278925,
560
+ "learning_rate": 0.00017532669838704035,
561
+ "loss": 1.1207,
562
+ "step": 79
563
+ },
564
+ {
565
+ "epoch": 0.256,
566
+ "grad_norm": 0.668359710460776,
567
+ "learning_rate": 0.00017463843894486937,
568
+ "loss": 1.143,
569
+ "step": 80
570
+ },
571
+ {
572
+ "epoch": 0.2592,
573
+ "grad_norm": 0.6285654698383347,
574
+ "learning_rate": 0.0001739421026067017,
575
+ "loss": 1.1844,
576
+ "step": 81
577
+ },
578
+ {
579
+ "epoch": 0.2624,
580
+ "grad_norm": 0.641766909272507,
581
+ "learning_rate": 0.00017323776472561627,
582
+ "loss": 1.1131,
583
+ "step": 82
584
+ },
585
+ {
586
+ "epoch": 0.2656,
587
+ "grad_norm": 0.6393224242059528,
588
+ "learning_rate": 0.00017252550152056795,
589
+ "loss": 1.1277,
590
+ "step": 83
591
+ },
592
+ {
593
+ "epoch": 0.2688,
594
+ "grad_norm": 0.6079741134716099,
595
+ "learning_rate": 0.0001718053900681397,
596
+ "loss": 1.139,
597
+ "step": 84
598
+ },
599
+ {
600
+ "epoch": 0.272,
601
+ "grad_norm": 0.5889968838496492,
602
+ "learning_rate": 0.00017107750829420176,
603
+ "loss": 1.1896,
604
+ "step": 85
605
+ },
606
+ {
607
+ "epoch": 0.2752,
608
+ "grad_norm": 0.635708382670474,
609
+ "learning_rate": 0.00017034193496547902,
610
+ "loss": 1.1767,
611
+ "step": 86
612
+ },
613
+ {
614
+ "epoch": 0.2784,
615
+ "grad_norm": 0.6347494253926971,
616
+ "learning_rate": 0.00016959874968102735,
617
+ "loss": 1.0919,
618
+ "step": 87
619
+ },
620
+ {
621
+ "epoch": 0.2816,
622
+ "grad_norm": 0.6081714242856907,
623
+ "learning_rate": 0.00016884803286362,
624
+ "loss": 1.002,
625
+ "step": 88
626
+ },
627
+ {
628
+ "epoch": 0.2848,
629
+ "grad_norm": 0.6687524144949784,
630
+ "learning_rate": 0.00016808986575104465,
631
+ "loss": 1.1217,
632
+ "step": 89
633
+ },
634
+ {
635
+ "epoch": 0.288,
636
+ "grad_norm": 0.6367497368719929,
637
+ "learning_rate": 0.00016732433038731242,
638
+ "loss": 1.1734,
639
+ "step": 90
640
+ },
641
+ {
642
+ "epoch": 0.2912,
643
+ "grad_norm": 0.6924335068178338,
644
+ "learning_rate": 0.0001665515096137797,
645
+ "loss": 1.1005,
646
+ "step": 91
647
+ },
648
+ {
649
+ "epoch": 0.2944,
650
+ "grad_norm": 0.6407334042780027,
651
+ "learning_rate": 0.00016577148706018328,
652
+ "loss": 1.1806,
653
+ "step": 92
654
+ },
655
+ {
656
+ "epoch": 0.2976,
657
+ "grad_norm": 0.6831640002730881,
658
+ "learning_rate": 0.00016498434713559088,
659
+ "loss": 1.1643,
660
+ "step": 93
661
+ },
662
+ {
663
+ "epoch": 0.3008,
664
+ "grad_norm": 0.6818497163627971,
665
+ "learning_rate": 0.00016419017501926656,
666
+ "loss": 1.1479,
667
+ "step": 94
668
+ },
669
+ {
670
+ "epoch": 0.304,
671
+ "grad_norm": 0.6023164784286884,
672
+ "learning_rate": 0.0001633890566514535,
673
+ "loss": 1.0199,
674
+ "step": 95
675
+ },
676
+ {
677
+ "epoch": 0.3072,
678
+ "grad_norm": 0.6071162038895305,
679
+ "learning_rate": 0.00016258107872407375,
680
+ "loss": 1.1268,
681
+ "step": 96
682
+ },
683
+ {
684
+ "epoch": 0.3104,
685
+ "grad_norm": 0.6621975947969588,
686
+ "learning_rate": 0.0001617663286713474,
687
+ "loss": 1.1054,
688
+ "step": 97
689
+ },
690
+ {
691
+ "epoch": 0.3136,
692
+ "grad_norm": 0.6430349596453502,
693
+ "learning_rate": 0.00016094489466033043,
694
+ "loss": 1.185,
695
+ "step": 98
696
+ },
697
+ {
698
+ "epoch": 0.3168,
699
+ "grad_norm": 0.596716232396584,
700
+ "learning_rate": 0.00016011686558137448,
701
+ "loss": 1.1167,
702
+ "step": 99
703
+ },
704
+ {
705
+ "epoch": 0.32,
706
+ "grad_norm": 0.8030431208767496,
707
+ "learning_rate": 0.0001592823310385073,
708
+ "loss": 1.0043,
709
+ "step": 100
710
+ },
711
+ {
712
+ "epoch": 0.3232,
713
+ "grad_norm": 0.6322736824639741,
714
+ "learning_rate": 0.0001584413813397364,
715
+ "loss": 1.1156,
716
+ "step": 101
717
+ },
718
+ {
719
+ "epoch": 0.3264,
720
+ "grad_norm": 0.9683388132336448,
721
+ "learning_rate": 0.00015759410748727662,
722
+ "loss": 1.0974,
723
+ "step": 102
724
+ },
725
+ {
726
+ "epoch": 0.3296,
727
+ "grad_norm": 0.5821355886938816,
728
+ "learning_rate": 0.00015674060116770236,
729
+ "loss": 1.1224,
730
+ "step": 103
731
+ },
732
+ {
733
+ "epoch": 0.3328,
734
+ "grad_norm": 0.6319431789381217,
735
+ "learning_rate": 0.00015588095474202595,
736
+ "loss": 1.163,
737
+ "step": 104
738
+ },
739
+ {
740
+ "epoch": 0.336,
741
+ "grad_norm": 0.6020869145562134,
742
+ "learning_rate": 0.00015501526123570277,
743
+ "loss": 1.1574,
744
+ "step": 105
745
+ },
746
+ {
747
+ "epoch": 0.3392,
748
+ "grad_norm": 0.581552295038906,
749
+ "learning_rate": 0.00015414361432856475,
750
+ "loss": 1.0393,
751
+ "step": 106
752
+ },
753
+ {
754
+ "epoch": 0.3424,
755
+ "grad_norm": 0.6434562480401083,
756
+ "learning_rate": 0.0001532661083446829,
757
+ "loss": 1.1169,
758
+ "step": 107
759
+ },
760
+ {
761
+ "epoch": 0.3456,
762
+ "grad_norm": 0.6505539891186463,
763
+ "learning_rate": 0.00015238283824216015,
764
+ "loss": 1.1125,
765
+ "step": 108
766
+ },
767
+ {
768
+ "epoch": 0.3488,
769
+ "grad_norm": 0.6143461053823742,
770
+ "learning_rate": 0.00015149389960285558,
771
+ "loss": 1.1756,
772
+ "step": 109
773
+ },
774
+ {
775
+ "epoch": 0.352,
776
+ "grad_norm": 0.5678824592957399,
777
+ "learning_rate": 0.00015059938862204127,
778
+ "loss": 1.1602,
779
+ "step": 110
780
+ },
781
+ {
782
+ "epoch": 0.3552,
783
+ "grad_norm": 0.7196907483605643,
784
+ "learning_rate": 0.00014969940209799248,
785
+ "loss": 1.1461,
786
+ "step": 111
787
+ },
788
+ {
789
+ "epoch": 0.3584,
790
+ "grad_norm": 0.60872627866381,
791
+ "learning_rate": 0.00014879403742151283,
792
+ "loss": 1.0779,
793
+ "step": 112
794
+ },
795
+ {
796
+ "epoch": 0.3616,
797
+ "grad_norm": 0.6088948095827803,
798
+ "learning_rate": 0.00014788339256539544,
799
+ "loss": 1.1465,
800
+ "step": 113
801
+ },
802
+ {
803
+ "epoch": 0.3648,
804
+ "grad_norm": 0.6001452511808347,
805
+ "learning_rate": 0.0001469675660738206,
806
+ "loss": 1.0806,
807
+ "step": 114
808
+ },
809
+ {
810
+ "epoch": 0.368,
811
+ "grad_norm": 0.7237162644452426,
812
+ "learning_rate": 0.00014604665705169237,
813
+ "loss": 1.1681,
814
+ "step": 115
815
+ },
816
+ {
817
+ "epoch": 0.3712,
818
+ "grad_norm": 0.6361290323952742,
819
+ "learning_rate": 0.00014512076515391375,
820
+ "loss": 1.1262,
821
+ "step": 116
822
+ },
823
+ {
824
+ "epoch": 0.3744,
825
+ "grad_norm": 0.6042846124009682,
826
+ "learning_rate": 0.00014418999057460276,
827
+ "loss": 1.094,
828
+ "step": 117
829
+ },
830
+ {
831
+ "epoch": 0.3776,
832
+ "grad_norm": 0.6026735908383196,
833
+ "learning_rate": 0.0001432544340362501,
834
+ "loss": 1.031,
835
+ "step": 118
836
+ },
837
+ {
838
+ "epoch": 0.3808,
839
+ "grad_norm": 0.5813635120693075,
840
+ "learning_rate": 0.00014231419677881966,
841
+ "loss": 1.0934,
842
+ "step": 119
843
+ },
844
+ {
845
+ "epoch": 0.384,
846
+ "grad_norm": 0.6607505994262415,
847
+ "learning_rate": 0.00014136938054879283,
848
+ "loss": 1.1583,
849
+ "step": 120
850
+ },
851
+ {
852
+ "epoch": 0.3872,
853
+ "grad_norm": 0.5797413168500228,
854
+ "learning_rate": 0.00014042008758815818,
855
+ "loss": 1.119,
856
+ "step": 121
857
+ },
858
+ {
859
+ "epoch": 0.3904,
860
+ "grad_norm": 0.6212414913681146,
861
+ "learning_rate": 0.00013946642062334766,
862
+ "loss": 1.1696,
863
+ "step": 122
864
+ },
865
+ {
866
+ "epoch": 0.3936,
867
+ "grad_norm": 0.5874185714602815,
868
+ "learning_rate": 0.00013850848285411994,
869
+ "loss": 1.098,
870
+ "step": 123
871
+ },
872
+ {
873
+ "epoch": 0.3968,
874
+ "grad_norm": 0.6030500726178164,
875
+ "learning_rate": 0.000137546377942393,
876
+ "loss": 1.0709,
877
+ "step": 124
878
+ },
879
+ {
880
+ "epoch": 0.4,
881
+ "grad_norm": 0.5515883025449129,
882
+ "learning_rate": 0.00013658021000102636,
883
+ "loss": 1.0873,
884
+ "step": 125
885
+ },
886
+ {
887
+ "epoch": 0.4032,
888
+ "grad_norm": 0.6617058119593494,
889
+ "learning_rate": 0.00013561008358255468,
890
+ "loss": 1.0748,
891
+ "step": 126
892
+ },
893
+ {
894
+ "epoch": 0.4064,
895
+ "grad_norm": 0.6044340009807571,
896
+ "learning_rate": 0.00013463610366787392,
897
+ "loss": 1.1109,
898
+ "step": 127
899
+ },
900
+ {
901
+ "epoch": 0.4096,
902
+ "grad_norm": 0.6280824205414822,
903
+ "learning_rate": 0.00013365837565488064,
904
+ "loss": 1.1219,
905
+ "step": 128
906
+ },
907
+ {
908
+ "epoch": 0.4128,
909
+ "grad_norm": 0.6023589276763569,
910
+ "learning_rate": 0.0001326770053470668,
911
+ "loss": 1.0416,
912
+ "step": 129
913
+ },
914
+ {
915
+ "epoch": 0.416,
916
+ "grad_norm": 0.601503782550989,
917
+ "learning_rate": 0.0001316920989420703,
918
+ "loss": 1.1202,
919
+ "step": 130
920
+ },
921
+ {
922
+ "epoch": 0.4192,
923
+ "grad_norm": 0.5947810021728166,
924
+ "learning_rate": 0.00013070376302018287,
925
+ "loss": 1.0489,
926
+ "step": 131
927
+ },
928
+ {
929
+ "epoch": 0.4224,
930
+ "grad_norm": 0.5960541379516832,
931
+ "learning_rate": 0.00012971210453281674,
932
+ "loss": 1.0828,
933
+ "step": 132
934
+ },
935
+ {
936
+ "epoch": 0.4256,
937
+ "grad_norm": 0.6301040459235665,
938
+ "learning_rate": 0.000128717230790931,
939
+ "loss": 1.1456,
940
+ "step": 133
941
+ },
942
+ {
943
+ "epoch": 0.4288,
944
+ "grad_norm": 0.6218790112688984,
945
+ "learning_rate": 0.00012771924945341906,
946
+ "loss": 1.1443,
947
+ "step": 134
948
+ },
949
+ {
950
+ "epoch": 0.432,
951
+ "grad_norm": 0.6331790582677411,
952
+ "learning_rate": 0.00012671826851545851,
953
+ "loss": 1.1512,
954
+ "step": 135
955
+ },
956
+ {
957
+ "epoch": 0.4352,
958
+ "grad_norm": 0.6920164094640866,
959
+ "learning_rate": 0.0001257143962968246,
960
+ "loss": 1.0705,
961
+ "step": 136
962
+ },
963
+ {
964
+ "epoch": 0.4384,
965
+ "grad_norm": 0.6457611049577008,
966
+ "learning_rate": 0.00012470774143016853,
967
+ "loss": 1.108,
968
+ "step": 137
969
+ },
970
+ {
971
+ "epoch": 0.4416,
972
+ "grad_norm": 0.5851148684445352,
973
+ "learning_rate": 0.00012369841284926188,
974
+ "loss": 1.1249,
975
+ "step": 138
976
+ },
977
+ {
978
+ "epoch": 0.4448,
979
+ "grad_norm": 0.5616442882431073,
980
+ "learning_rate": 0.00012268651977720866,
981
+ "loss": 1.173,
982
+ "step": 139
983
+ },
984
+ {
985
+ "epoch": 0.448,
986
+ "grad_norm": 0.6029147306217549,
987
+ "learning_rate": 0.00012167217171462566,
988
+ "loss": 1.0922,
989
+ "step": 140
990
+ },
991
+ {
992
+ "epoch": 0.4512,
993
+ "grad_norm": 0.5983185759853441,
994
+ "learning_rate": 0.0001206554784277931,
995
+ "loss": 1.0569,
996
+ "step": 141
997
+ },
998
+ {
999
+ "epoch": 0.4544,
1000
+ "grad_norm": 0.6459305861705162,
1001
+ "learning_rate": 0.00011963654993677645,
1002
+ "loss": 1.1201,
1003
+ "step": 142
1004
+ },
1005
+ {
1006
+ "epoch": 0.4576,
1007
+ "grad_norm": 0.6413251599078064,
1008
+ "learning_rate": 0.00011861549650352069,
1009
+ "loss": 1.0949,
1010
+ "step": 143
1011
+ },
1012
+ {
1013
+ "epoch": 0.4608,
1014
+ "grad_norm": 0.5567459691512033,
1015
+ "learning_rate": 0.00011759242861991855,
1016
+ "loss": 1.1077,
1017
+ "step": 144
1018
+ },
1019
+ {
1020
+ "epoch": 0.464,
1021
+ "grad_norm": 0.6050063276858223,
1022
+ "learning_rate": 0.00011656745699585371,
1023
+ "loss": 1.0871,
1024
+ "step": 145
1025
+ },
1026
+ {
1027
+ "epoch": 0.4672,
1028
+ "grad_norm": 0.5768000953188527,
1029
+ "learning_rate": 0.00011554069254722051,
1030
+ "loss": 1.0336,
1031
+ "step": 146
1032
+ },
1033
+ {
1034
+ "epoch": 0.4704,
1035
+ "grad_norm": 0.58354353504979,
1036
+ "learning_rate": 0.00011451224638392129,
1037
+ "loss": 1.109,
1038
+ "step": 147
1039
+ },
1040
+ {
1041
+ "epoch": 0.4736,
1042
+ "grad_norm": 0.6239680842671043,
1043
+ "learning_rate": 0.00011348222979784289,
1044
+ "loss": 1.1406,
1045
+ "step": 148
1046
+ },
1047
+ {
1048
+ "epoch": 0.4768,
1049
+ "grad_norm": 0.5639619023664048,
1050
+ "learning_rate": 0.00011245075425081328,
1051
+ "loss": 1.1355,
1052
+ "step": 149
1053
+ },
1054
+ {
1055
+ "epoch": 0.48,
1056
+ "grad_norm": 0.5994597322729686,
1057
+ "learning_rate": 0.00011141793136253986,
1058
+ "loss": 0.9949,
1059
+ "step": 150
1060
+ },
1061
+ {
1062
+ "epoch": 0.4832,
1063
+ "grad_norm": 0.6187766287679105,
1064
+ "learning_rate": 0.0001103838728985307,
1065
+ "loss": 1.123,
1066
+ "step": 151
1067
+ },
1068
+ {
1069
+ "epoch": 0.4864,
1070
+ "grad_norm": 0.5880933746187075,
1071
+ "learning_rate": 0.000109348690758,
1072
+ "loss": 1.0811,
1073
+ "step": 152
1074
+ },
1075
+ {
1076
+ "epoch": 0.4896,
1077
+ "grad_norm": 0.5214334484876151,
1078
+ "learning_rate": 0.00010831249696175918,
1079
+ "loss": 1.04,
1080
+ "step": 153
1081
+ },
1082
+ {
1083
+ "epoch": 0.4928,
1084
+ "grad_norm": 0.6045346113069798,
1085
+ "learning_rate": 0.0001072754036400944,
1086
+ "loss": 1.1112,
1087
+ "step": 154
1088
+ },
1089
+ {
1090
+ "epoch": 0.496,
1091
+ "grad_norm": 0.5972215634171124,
1092
+ "learning_rate": 0.00010623752302063283,
1093
+ "loss": 1.1067,
1094
+ "step": 155
1095
+ },
1096
+ {
1097
+ "epoch": 0.4992,
1098
+ "grad_norm": 0.5862603509263139,
1099
+ "learning_rate": 0.00010519896741619803,
1100
+ "loss": 1.0297,
1101
+ "step": 156
1102
+ },
1103
+ {
1104
+ "epoch": 0.5024,
1105
+ "grad_norm": 0.589645718660567,
1106
+ "learning_rate": 0.00010415984921265609,
1107
+ "loss": 1.0336,
1108
+ "step": 157
1109
+ },
1110
+ {
1111
+ "epoch": 0.5056,
1112
+ "grad_norm": 0.5966492770502331,
1113
+ "learning_rate": 0.00010312028085675391,
1114
+ "loss": 1.0866,
1115
+ "step": 158
1116
+ },
1117
+ {
1118
+ "epoch": 0.5088,
1119
+ "grad_norm": 0.638493351015436,
1120
+ "learning_rate": 0.00010208037484395114,
1121
+ "loss": 1.0765,
1122
+ "step": 159
1123
+ },
1124
+ {
1125
+ "epoch": 0.512,
1126
+ "grad_norm": 0.6208601412709848,
1127
+ "learning_rate": 0.00010104024370624644,
1128
+ "loss": 1.1046,
1129
+ "step": 160
1130
+ },
1131
+ {
1132
+ "epoch": 0.5152,
1133
+ "grad_norm": 0.7456812775232595,
1134
+ "learning_rate": 0.0001,
1135
+ "loss": 0.9999,
1136
+ "step": 161
1137
+ },
1138
+ {
1139
+ "epoch": 0.5184,
1140
+ "grad_norm": 0.6175846317153577,
1141
+ "learning_rate": 9.895975629375359e-05,
1142
+ "loss": 1.0644,
1143
+ "step": 162
1144
+ },
1145
+ {
1146
+ "epoch": 0.5216,
1147
+ "grad_norm": 0.6714016144368657,
1148
+ "learning_rate": 9.791962515604887e-05,
1149
+ "loss": 1.0637,
1150
+ "step": 163
1151
+ },
1152
+ {
1153
+ "epoch": 0.5248,
1154
+ "grad_norm": 0.5837880916678994,
1155
+ "learning_rate": 9.687971914324607e-05,
1156
+ "loss": 1.1408,
1157
+ "step": 164
1158
+ },
1159
+ {
1160
+ "epoch": 0.528,
1161
+ "grad_norm": 0.5530213168075825,
1162
+ "learning_rate": 9.584015078734395e-05,
1163
+ "loss": 1.1138,
1164
+ "step": 165
1165
+ },
1166
+ {
1167
+ "epoch": 0.5312,
1168
+ "grad_norm": 0.6270056310312441,
1169
+ "learning_rate": 9.480103258380198e-05,
1170
+ "loss": 1.2315,
1171
+ "step": 166
1172
+ },
1173
+ {
1174
+ "epoch": 0.5344,
1175
+ "grad_norm": 0.5561192764658761,
1176
+ "learning_rate": 9.376247697936719e-05,
1177
+ "loss": 1.0632,
1178
+ "step": 167
1179
+ },
1180
+ {
1181
+ "epoch": 0.5376,
1182
+ "grad_norm": 0.6073371369069578,
1183
+ "learning_rate": 9.272459635990562e-05,
1184
+ "loss": 1.11,
1185
+ "step": 168
1186
+ },
1187
+ {
1188
+ "epoch": 0.5408,
1189
+ "grad_norm": 0.5944081760932085,
1190
+ "learning_rate": 9.168750303824084e-05,
1191
+ "loss": 1.048,
1192
+ "step": 169
1193
+ },
1194
+ {
1195
+ "epoch": 0.544,
1196
+ "grad_norm": 0.5848610084940267,
1197
+ "learning_rate": 9.065130924199998e-05,
1198
+ "loss": 1.1179,
1199
+ "step": 170
1200
+ },
1201
+ {
1202
+ "epoch": 0.5472,
1203
+ "grad_norm": 0.5971797062090918,
1204
+ "learning_rate": 8.961612710146934e-05,
1205
+ "loss": 1.0489,
1206
+ "step": 171
1207
+ },
1208
+ {
1209
+ "epoch": 0.5504,
1210
+ "grad_norm": 0.6027497233577513,
1211
+ "learning_rate": 8.858206863746018e-05,
1212
+ "loss": 1.1686,
1213
+ "step": 172
1214
+ },
1215
+ {
1216
+ "epoch": 0.5536,
1217
+ "grad_norm": 0.5842512985502563,
1218
+ "learning_rate": 8.754924574918675e-05,
1219
+ "loss": 1.1134,
1220
+ "step": 173
1221
+ },
1222
+ {
1223
+ "epoch": 0.5568,
1224
+ "grad_norm": 0.5790768255854168,
1225
+ "learning_rate": 8.651777020215712e-05,
1226
+ "loss": 1.0993,
1227
+ "step": 174
1228
+ },
1229
+ {
1230
+ "epoch": 0.56,
1231
+ "grad_norm": 0.6244985783771545,
1232
+ "learning_rate": 8.548775361607872e-05,
1233
+ "loss": 1.1102,
1234
+ "step": 175
1235
+ },
1236
+ {
1237
+ "epoch": 0.5632,
1238
+ "grad_norm": 0.6363066079679679,
1239
+ "learning_rate": 8.445930745277953e-05,
1240
+ "loss": 1.1054,
1241
+ "step": 176
1242
+ },
1243
+ {
1244
+ "epoch": 0.5664,
1245
+ "grad_norm": 0.5758171908775908,
1246
+ "learning_rate": 8.343254300414628e-05,
1247
+ "loss": 1.1669,
1248
+ "step": 177
1249
+ },
1250
+ {
1251
+ "epoch": 0.5696,
1252
+ "grad_norm": 0.5340947294270786,
1253
+ "learning_rate": 8.240757138008149e-05,
1254
+ "loss": 1.1309,
1255
+ "step": 178
1256
+ },
1257
+ {
1258
+ "epoch": 0.5728,
1259
+ "grad_norm": 0.5831665436537086,
1260
+ "learning_rate": 8.138450349647936e-05,
1261
+ "loss": 1.1248,
1262
+ "step": 179
1263
+ },
1264
+ {
1265
+ "epoch": 0.576,
1266
+ "grad_norm": 0.5921556048685298,
1267
+ "learning_rate": 8.036345006322359e-05,
1268
+ "loss": 1.112,
1269
+ "step": 180
1270
+ },
1271
+ {
1272
+ "epoch": 0.5792,
1273
+ "grad_norm": 0.5744251424245944,
1274
+ "learning_rate": 7.934452157220694e-05,
1275
+ "loss": 1.022,
1276
+ "step": 181
1277
+ },
1278
+ {
1279
+ "epoch": 0.5824,
1280
+ "grad_norm": 0.5554185323336767,
1281
+ "learning_rate": 7.832782828537437e-05,
1282
+ "loss": 1.0337,
1283
+ "step": 182
1284
+ },
1285
+ {
1286
+ "epoch": 0.5856,
1287
+ "grad_norm": 0.5743450858728842,
1288
+ "learning_rate": 7.731348022279134e-05,
1289
+ "loss": 1.0235,
1290
+ "step": 183
1291
+ },
1292
+ {
1293
+ "epoch": 0.5888,
1294
+ "grad_norm": 0.5602361322464704,
1295
+ "learning_rate": 7.630158715073813e-05,
1296
+ "loss": 1.1312,
1297
+ "step": 184
1298
+ },
1299
+ {
1300
+ "epoch": 0.592,
1301
+ "grad_norm": 0.5954682352280739,
1302
+ "learning_rate": 7.52922585698315e-05,
1303
+ "loss": 1.1366,
1304
+ "step": 185
1305
+ },
1306
+ {
1307
+ "epoch": 0.5952,
1308
+ "grad_norm": 0.6109690367869244,
1309
+ "learning_rate": 7.428560370317542e-05,
1310
+ "loss": 1.0795,
1311
+ "step": 186
1312
+ },
1313
+ {
1314
+ "epoch": 0.5984,
1315
+ "grad_norm": 0.564705324519998,
1316
+ "learning_rate": 7.328173148454151e-05,
1317
+ "loss": 1.0559,
1318
+ "step": 187
1319
+ },
1320
+ {
1321
+ "epoch": 0.6016,
1322
+ "grad_norm": 0.5998310026704221,
1323
+ "learning_rate": 7.228075054658096e-05,
1324
+ "loss": 1.0471,
1325
+ "step": 188
1326
+ },
1327
+ {
1328
+ "epoch": 0.6048,
1329
+ "grad_norm": 0.5923598358823705,
1330
+ "learning_rate": 7.1282769209069e-05,
1331
+ "loss": 1.0805,
1332
+ "step": 189
1333
+ },
1334
+ {
1335
+ "epoch": 0.608,
1336
+ "grad_norm": 0.5837508570039001,
1337
+ "learning_rate": 7.028789546718326e-05,
1338
+ "loss": 1.0486,
1339
+ "step": 190
1340
+ },
1341
+ {
1342
+ "epoch": 0.6112,
1343
+ "grad_norm": 0.5993515803964782,
1344
+ "learning_rate": 6.929623697981718e-05,
1345
+ "loss": 1.0758,
1346
+ "step": 191
1347
+ },
1348
+ {
1349
+ "epoch": 0.6144,
1350
+ "grad_norm": 0.5640431095353253,
1351
+ "learning_rate": 6.830790105792973e-05,
1352
+ "loss": 1.1195,
1353
+ "step": 192
1354
+ },
1355
+ {
1356
+ "epoch": 0.6176,
1357
+ "grad_norm": 0.6597258202025034,
1358
+ "learning_rate": 6.732299465293322e-05,
1359
+ "loss": 1.1206,
1360
+ "step": 193
1361
+ },
1362
+ {
1363
+ "epoch": 0.6208,
1364
+ "grad_norm": 0.5700867646836549,
1365
+ "learning_rate": 6.63416243451194e-05,
1366
+ "loss": 1.028,
1367
+ "step": 194
1368
+ },
1369
+ {
1370
+ "epoch": 0.624,
1371
+ "grad_norm": 0.5438950021648811,
1372
+ "learning_rate": 6.536389633212609e-05,
1373
+ "loss": 1.0901,
1374
+ "step": 195
1375
+ },
1376
+ {
1377
+ "epoch": 0.6272,
1378
+ "grad_norm": 0.5895697124383904,
1379
+ "learning_rate": 6.43899164174453e-05,
1380
+ "loss": 1.003,
1381
+ "step": 196
1382
+ },
1383
+ {
1384
+ "epoch": 0.6304,
1385
+ "grad_norm": 0.5531669590622527,
1386
+ "learning_rate": 6.341978999897365e-05,
1387
+ "loss": 0.9802,
1388
+ "step": 197
1389
+ },
1390
+ {
1391
+ "epoch": 0.6336,
1392
+ "grad_norm": 0.5634663273360929,
1393
+ "learning_rate": 6.245362205760704e-05,
1394
+ "loss": 1.0221,
1395
+ "step": 198
1396
+ },
1397
+ {
1398
+ "epoch": 0.6368,
1399
+ "grad_norm": 0.5852062381389797,
1400
+ "learning_rate": 6.149151714588009e-05,
1401
+ "loss": 1.16,
1402
+ "step": 199
1403
+ },
1404
+ {
1405
+ "epoch": 0.64,
1406
+ "grad_norm": 0.5937242795441198,
1407
+ "learning_rate": 6.053357937665237e-05,
1408
+ "loss": 1.0475,
1409
+ "step": 200
1410
+ },
1411
+ {
1412
+ "epoch": 0.6432,
1413
+ "grad_norm": 0.5555566589467784,
1414
+ "learning_rate": 5.957991241184184e-05,
1415
+ "loss": 1.0439,
1416
+ "step": 201
1417
+ },
1418
+ {
1419
+ "epoch": 0.6464,
1420
+ "grad_norm": 0.585204914236333,
1421
+ "learning_rate": 5.863061945120719e-05,
1422
+ "loss": 1.0635,
1423
+ "step": 202
1424
+ },
1425
+ {
1426
+ "epoch": 0.6496,
1427
+ "grad_norm": 0.574624666649916,
1428
+ "learning_rate": 5.768580322118034e-05,
1429
+ "loss": 1.1461,
1430
+ "step": 203
1431
+ },
1432
+ {
1433
+ "epoch": 0.6528,
1434
+ "grad_norm": 0.5895005838586477,
1435
+ "learning_rate": 5.6745565963749925e-05,
1436
+ "loss": 1.0533,
1437
+ "step": 204
1438
+ },
1439
+ {
1440
+ "epoch": 0.656,
1441
+ "grad_norm": 0.568531621396431,
1442
+ "learning_rate": 5.5810009425397294e-05,
1443
+ "loss": 1.0117,
1444
+ "step": 205
1445
+ },
1446
+ {
1447
+ "epoch": 0.6592,
1448
+ "grad_norm": 0.5713855868879502,
1449
+ "learning_rate": 5.487923484608629e-05,
1450
+ "loss": 1.0869,
1451
+ "step": 206
1452
+ },
1453
+ {
1454
+ "epoch": 0.6624,
1455
+ "grad_norm": 0.533463283372751,
1456
+ "learning_rate": 5.395334294830765e-05,
1457
+ "loss": 1.0669,
1458
+ "step": 207
1459
+ },
1460
+ {
1461
+ "epoch": 0.6656,
1462
+ "grad_norm": 0.596191800876185,
1463
+ "learning_rate": 5.3032433926179395e-05,
1464
+ "loss": 1.0889,
1465
+ "step": 208
1466
+ },
1467
+ {
1468
+ "epoch": 0.6688,
1469
+ "grad_norm": 0.6033094935134793,
1470
+ "learning_rate": 5.211660743460458e-05,
1471
+ "loss": 1.0037,
1472
+ "step": 209
1473
+ },
1474
+ {
1475
+ "epoch": 0.672,
1476
+ "grad_norm": 0.547758452785834,
1477
+ "learning_rate": 5.1205962578487155e-05,
1478
+ "loss": 1.0326,
1479
+ "step": 210
1480
+ },
1481
+ {
1482
+ "epoch": 0.6752,
1483
+ "grad_norm": 0.5674015427230111,
1484
+ "learning_rate": 5.030059790200756e-05,
1485
+ "loss": 1.0642,
1486
+ "step": 211
1487
+ },
1488
+ {
1489
+ "epoch": 0.6784,
1490
+ "grad_norm": 0.5564959453988821,
1491
+ "learning_rate": 4.940061137795876e-05,
1492
+ "loss": 1.1004,
1493
+ "step": 212
1494
+ },
1495
+ {
1496
+ "epoch": 0.6816,
1497
+ "grad_norm": 0.5510907797932991,
1498
+ "learning_rate": 4.850610039714444e-05,
1499
+ "loss": 1.0383,
1500
+ "step": 213
1501
+ },
1502
+ {
1503
+ "epoch": 0.6848,
1504
+ "grad_norm": 0.5364931725607687,
1505
+ "learning_rate": 4.761716175783989e-05,
1506
+ "loss": 1.0421,
1507
+ "step": 214
1508
+ },
1509
+ {
1510
+ "epoch": 0.688,
1511
+ "grad_norm": 0.5494121878521853,
1512
+ "learning_rate": 4.673389165531714e-05,
1513
+ "loss": 1.0529,
1514
+ "step": 215
1515
+ },
1516
+ {
1517
+ "epoch": 0.6912,
1518
+ "grad_norm": 0.5363726515242464,
1519
+ "learning_rate": 4.585638567143529e-05,
1520
+ "loss": 1.0332,
1521
+ "step": 216
1522
+ },
1523
+ {
1524
+ "epoch": 0.6944,
1525
+ "grad_norm": 0.5465442810140333,
1526
+ "learning_rate": 4.498473876429726e-05,
1527
+ "loss": 1.0314,
1528
+ "step": 217
1529
+ },
1530
+ {
1531
+ "epoch": 0.6976,
1532
+ "grad_norm": 0.5739488758444642,
1533
+ "learning_rate": 4.411904525797408e-05,
1534
+ "loss": 1.0601,
1535
+ "step": 218
1536
+ },
1537
+ {
1538
+ "epoch": 0.7008,
1539
+ "grad_norm": 0.5879132221028294,
1540
+ "learning_rate": 4.325939883229766e-05,
1541
+ "loss": 1.0442,
1542
+ "step": 219
1543
+ },
1544
+ {
1545
+ "epoch": 0.704,
1546
+ "grad_norm": 0.6045995523657305,
1547
+ "learning_rate": 4.240589251272342e-05,
1548
+ "loss": 1.0801,
1549
+ "step": 220
1550
+ },
1551
+ {
1552
+ "epoch": 0.7072,
1553
+ "grad_norm": 0.5617927988946498,
1554
+ "learning_rate": 4.155861866026364e-05,
1555
+ "loss": 1.0536,
1556
+ "step": 221
1557
+ },
1558
+ {
1559
+ "epoch": 0.7104,
1560
+ "grad_norm": 0.7006136765663606,
1561
+ "learning_rate": 4.071766896149273e-05,
1562
+ "loss": 1.1709,
1563
+ "step": 222
1564
+ },
1565
+ {
1566
+ "epoch": 0.7136,
1567
+ "grad_norm": 0.5519226190976758,
1568
+ "learning_rate": 3.988313441862553e-05,
1569
+ "loss": 1.0035,
1570
+ "step": 223
1571
+ },
1572
+ {
1573
+ "epoch": 0.7168,
1574
+ "grad_norm": 0.5722678337036814,
1575
+ "learning_rate": 3.9055105339669595e-05,
1576
+ "loss": 1.0321,
1577
+ "step": 224
1578
+ },
1579
+ {
1580
+ "epoch": 0.72,
1581
+ "grad_norm": 0.546356073899012,
1582
+ "learning_rate": 3.823367132865265e-05,
1583
+ "loss": 1.063,
1584
+ "step": 225
1585
+ },
1586
+ {
1587
+ "epoch": 0.7232,
1588
+ "grad_norm": 0.5572189973946577,
1589
+ "learning_rate": 3.741892127592625e-05,
1590
+ "loss": 1.0493,
1591
+ "step": 226
1592
+ },
1593
+ {
1594
+ "epoch": 0.7264,
1595
+ "grad_norm": 0.5609326202853951,
1596
+ "learning_rate": 3.6610943348546526e-05,
1597
+ "loss": 1.0401,
1598
+ "step": 227
1599
+ },
1600
+ {
1601
+ "epoch": 0.7296,
1602
+ "grad_norm": 0.5573693239077621,
1603
+ "learning_rate": 3.580982498073344e-05,
1604
+ "loss": 1.0633,
1605
+ "step": 228
1606
+ },
1607
+ {
1608
+ "epoch": 0.7328,
1609
+ "grad_norm": 0.6120271145151069,
1610
+ "learning_rate": 3.501565286440914e-05,
1611
+ "loss": 1.0247,
1612
+ "step": 229
1613
+ },
1614
+ {
1615
+ "epoch": 0.736,
1616
+ "grad_norm": 0.5556112139031892,
1617
+ "learning_rate": 3.422851293981676e-05,
1618
+ "loss": 1.0004,
1619
+ "step": 230
1620
+ },
1621
+ {
1622
+ "epoch": 0.7392,
1623
+ "grad_norm": 0.5442180530300604,
1624
+ "learning_rate": 3.3448490386220355e-05,
1625
+ "loss": 1.0231,
1626
+ "step": 231
1627
+ },
1628
+ {
1629
+ "epoch": 0.7424,
1630
+ "grad_norm": 0.5642744910174119,
1631
+ "learning_rate": 3.2675669612687565e-05,
1632
+ "loss": 1.0598,
1633
+ "step": 232
1634
+ },
1635
+ {
1636
+ "epoch": 0.7456,
1637
+ "grad_norm": 0.5301873588771624,
1638
+ "learning_rate": 3.191013424895536e-05,
1639
+ "loss": 1.0609,
1640
+ "step": 233
1641
+ },
1642
+ {
1643
+ "epoch": 0.7488,
1644
+ "grad_norm": 0.5270404145127983,
1645
+ "learning_rate": 3.115196713638e-05,
1646
+ "loss": 1.1029,
1647
+ "step": 234
1648
+ },
1649
+ {
1650
+ "epoch": 0.752,
1651
+ "grad_norm": 0.5792631918257901,
1652
+ "learning_rate": 3.040125031897264e-05,
1653
+ "loss": 1.0148,
1654
+ "step": 235
1655
+ },
1656
+ {
1657
+ "epoch": 0.7552,
1658
+ "grad_norm": 0.5870979627317701,
1659
+ "learning_rate": 2.9658065034520978e-05,
1660
+ "loss": 1.0717,
1661
+ "step": 236
1662
+ },
1663
+ {
1664
+ "epoch": 0.7584,
1665
+ "grad_norm": 0.5785722600525429,
1666
+ "learning_rate": 2.892249170579826e-05,
1667
+ "loss": 1.0672,
1668
+ "step": 237
1669
+ },
1670
+ {
1671
+ "epoch": 0.7616,
1672
+ "grad_norm": 0.5709981460824844,
1673
+ "learning_rate": 2.8194609931860316e-05,
1674
+ "loss": 1.1185,
1675
+ "step": 238
1676
+ },
1677
+ {
1678
+ "epoch": 0.7648,
1679
+ "grad_norm": 0.6217871274009109,
1680
+ "learning_rate": 2.7474498479432087e-05,
1681
+ "loss": 1.0541,
1682
+ "step": 239
1683
+ },
1684
+ {
1685
+ "epoch": 0.768,
1686
+ "grad_norm": 0.5502163111083991,
1687
+ "learning_rate": 2.6762235274383772e-05,
1688
+ "loss": 1.037,
1689
+ "step": 240
1690
+ },
1691
+ {
1692
+ "epoch": 0.7712,
1693
+ "grad_norm": 0.6939068470167971,
1694
+ "learning_rate": 2.6057897393298324e-05,
1695
+ "loss": 0.9026,
1696
+ "step": 241
1697
+ },
1698
+ {
1699
+ "epoch": 0.7744,
1700
+ "grad_norm": 0.5348805571120492,
1701
+ "learning_rate": 2.536156105513062e-05,
1702
+ "loss": 1.0644,
1703
+ "step": 242
1704
+ },
1705
+ {
1706
+ "epoch": 0.7776,
1707
+ "grad_norm": 0.5851088907445847,
1708
+ "learning_rate": 2.4673301612959654e-05,
1709
+ "loss": 1.0135,
1710
+ "step": 243
1711
+ },
1712
+ {
1713
+ "epoch": 0.7808,
1714
+ "grad_norm": 0.5593559807902603,
1715
+ "learning_rate": 2.399319354583418e-05,
1716
+ "loss": 1.0758,
1717
+ "step": 244
1718
+ },
1719
+ {
1720
+ "epoch": 0.784,
1721
+ "grad_norm": 0.5203188462905168,
1722
+ "learning_rate": 2.3321310450713062e-05,
1723
+ "loss": 1.0303,
1724
+ "step": 245
1725
+ },
1726
+ {
1727
+ "epoch": 0.7872,
1728
+ "grad_norm": 0.5605154105634976,
1729
+ "learning_rate": 2.265772503450122e-05,
1730
+ "loss": 1.0211,
1731
+ "step": 246
1732
+ },
1733
+ {
1734
+ "epoch": 0.7904,
1735
+ "grad_norm": 0.5664827723584672,
1736
+ "learning_rate": 2.2002509106181624e-05,
1737
+ "loss": 1.0348,
1738
+ "step": 247
1739
+ },
1740
+ {
1741
+ "epoch": 0.7936,
1742
+ "grad_norm": 0.5900057315119912,
1743
+ "learning_rate": 2.1355733569044635e-05,
1744
+ "loss": 1.0552,
1745
+ "step": 248
1746
+ },
1747
+ {
1748
+ "epoch": 0.7968,
1749
+ "grad_norm": 0.5381277090688744,
1750
+ "learning_rate": 2.0717468413015283e-05,
1751
+ "loss": 1.0548,
1752
+ "step": 249
1753
+ },
1754
+ {
1755
+ "epoch": 0.8,
1756
+ "grad_norm": 0.5710250024280842,
1757
+ "learning_rate": 2.008778270707944e-05,
1758
+ "loss": 1.0525,
1759
+ "step": 250
1760
+ },
1761
+ {
1762
+ "epoch": 0.8032,
1763
+ "grad_norm": 0.5247596985036673,
1764
+ "learning_rate": 1.946674459180955e-05,
1765
+ "loss": 1.0817,
1766
+ "step": 251
1767
+ },
1768
+ {
1769
+ "epoch": 0.8064,
1770
+ "grad_norm": 0.5154307520162806,
1771
+ "learning_rate": 1.8854421271990964e-05,
1772
+ "loss": 1.0125,
1773
+ "step": 252
1774
+ },
1775
+ {
1776
+ "epoch": 0.8096,
1777
+ "grad_norm": 0.6337614103760363,
1778
+ "learning_rate": 1.8250879009349398e-05,
1779
+ "loss": 1.0949,
1780
+ "step": 253
1781
+ },
1782
+ {
1783
+ "epoch": 0.8128,
1784
+ "grad_norm": 0.4957665878310061,
1785
+ "learning_rate": 1.7656183115380577e-05,
1786
+ "loss": 1.0451,
1787
+ "step": 254
1788
+ },
1789
+ {
1790
+ "epoch": 0.816,
1791
+ "grad_norm": 0.5308197423642265,
1792
+ "learning_rate": 1.707039794428259e-05,
1793
+ "loss": 1.0212,
1794
+ "step": 255
1795
+ },
1796
+ {
1797
+ "epoch": 0.8192,
1798
+ "grad_norm": 0.6283452572668032,
1799
+ "learning_rate": 1.649358688599191e-05,
1800
+ "loss": 1.0286,
1801
+ "step": 256
1802
+ },
1803
+ {
1804
+ "epoch": 0.8224,
1805
+ "grad_norm": 0.5277570848309738,
1806
+ "learning_rate": 1.5925812359323745e-05,
1807
+ "loss": 1.0517,
1808
+ "step": 257
1809
+ },
1810
+ {
1811
+ "epoch": 0.8256,
1812
+ "grad_norm": 0.572380991818581,
1813
+ "learning_rate": 1.5367135805217458e-05,
1814
+ "loss": 1.052,
1815
+ "step": 258
1816
+ },
1817
+ {
1818
+ "epoch": 0.8288,
1819
+ "grad_norm": 0.5459522732962143,
1820
+ "learning_rate": 1.4817617680087825e-05,
1821
+ "loss": 1.0256,
1822
+ "step": 259
1823
+ },
1824
+ {
1825
+ "epoch": 0.832,
1826
+ "grad_norm": 0.5818244377960141,
1827
+ "learning_rate": 1.4277317449282834e-05,
1828
+ "loss": 1.0306,
1829
+ "step": 260
1830
+ },
1831
+ {
1832
+ "epoch": 0.8352,
1833
+ "grad_norm": 0.5757150906330832,
1834
+ "learning_rate": 1.3746293580648717e-05,
1835
+ "loss": 1.0161,
1836
+ "step": 261
1837
+ },
1838
+ {
1839
+ "epoch": 0.8384,
1840
+ "grad_norm": 0.5612123216943989,
1841
+ "learning_rate": 1.3224603538202929e-05,
1842
+ "loss": 0.9974,
1843
+ "step": 262
1844
+ },
1845
+ {
1846
+ "epoch": 0.8416,
1847
+ "grad_norm": 0.5361229678609986,
1848
+ "learning_rate": 1.2712303775915802e-05,
1849
+ "loss": 1.054,
1850
+ "step": 263
1851
+ },
1852
+ {
1853
+ "epoch": 0.8448,
1854
+ "grad_norm": 0.5826837681269577,
1855
+ "learning_rate": 1.220944973160133e-05,
1856
+ "loss": 1.0603,
1857
+ "step": 264
1858
+ },
1859
+ {
1860
+ "epoch": 0.848,
1861
+ "grad_norm": 0.5402287917678977,
1862
+ "learning_rate": 1.1716095820918216e-05,
1863
+ "loss": 1.0676,
1864
+ "step": 265
1865
+ },
1866
+ {
1867
+ "epoch": 0.8512,
1868
+ "grad_norm": 0.5155809923846763,
1869
+ "learning_rate": 1.1232295431481222e-05,
1870
+ "loss": 1.1004,
1871
+ "step": 266
1872
+ },
1873
+ {
1874
+ "epoch": 0.8544,
1875
+ "grad_norm": 0.6178311815438159,
1876
+ "learning_rate": 1.0758100917083991e-05,
1877
+ "loss": 1.0745,
1878
+ "step": 267
1879
+ },
1880
+ {
1881
+ "epoch": 0.8576,
1882
+ "grad_norm": 0.5804058648418592,
1883
+ "learning_rate": 1.0293563592033595e-05,
1884
+ "loss": 1.0794,
1885
+ "step": 268
1886
+ },
1887
+ {
1888
+ "epoch": 0.8608,
1889
+ "grad_norm": 0.6096364520049162,
1890
+ "learning_rate": 9.838733725597615e-06,
1891
+ "loss": 1.008,
1892
+ "step": 269
1893
+ },
1894
+ {
1895
+ "epoch": 0.864,
1896
+ "grad_norm": 0.5638671810187824,
1897
+ "learning_rate": 9.393660536564408e-06,
1898
+ "loss": 1.059,
1899
+ "step": 270
1900
+ },
1901
+ {
1902
+ "epoch": 0.8672,
1903
+ "grad_norm": 0.551134037205924,
1904
+ "learning_rate": 8.958392187916841e-06,
1905
+ "loss": 1.0661,
1906
+ "step": 271
1907
+ },
1908
+ {
1909
+ "epoch": 0.8704,
1910
+ "grad_norm": 0.5476576939761192,
1911
+ "learning_rate": 8.532975781620512e-06,
1912
+ "loss": 1.0599,
1913
+ "step": 272
1914
+ },
1915
+ {
1916
+ "epoch": 0.8736,
1917
+ "grad_norm": 0.5618097858382183,
1918
+ "learning_rate": 8.117457353526625e-06,
1919
+ "loss": 1.128,
1920
+ "step": 273
1921
+ },
1922
+ {
1923
+ "epoch": 0.8768,
1924
+ "grad_norm": 0.5545956623834618,
1925
+ "learning_rate": 7.711881868390291e-06,
1926
+ "loss": 1.0403,
1927
+ "step": 274
1928
+ },
1929
+ {
1930
+ "epoch": 0.88,
1931
+ "grad_norm": 0.5585106863409853,
1932
+ "learning_rate": 7.3162932150046885e-06,
1933
+ "loss": 1.0839,
1934
+ "step": 275
1935
+ },
1936
+ {
1937
+ "epoch": 0.8832,
1938
+ "grad_norm": 0.5777158619246178,
1939
+ "learning_rate": 6.930734201451816e-06,
1940
+ "loss": 1.1582,
1941
+ "step": 276
1942
+ },
1943
+ {
1944
+ "epoch": 0.8864,
1945
+ "grad_norm": 0.5312338291560674,
1946
+ "learning_rate": 6.555246550469907e-06,
1947
+ "loss": 1.1125,
1948
+ "step": 277
1949
+ },
1950
+ {
1951
+ "epoch": 0.8896,
1952
+ "grad_norm": 0.6019089227782868,
1953
+ "learning_rate": 6.189870894938587e-06,
1954
+ "loss": 1.0226,
1955
+ "step": 278
1956
+ },
1957
+ {
1958
+ "epoch": 0.8928,
1959
+ "grad_norm": 0.5385907521451545,
1960
+ "learning_rate": 5.834646773481811e-06,
1961
+ "loss": 1.0428,
1962
+ "step": 279
1963
+ },
1964
+ {
1965
+ "epoch": 0.896,
1966
+ "grad_norm": 0.5929711954637248,
1967
+ "learning_rate": 5.489612626189245e-06,
1968
+ "loss": 1.0584,
1969
+ "step": 280
1970
+ },
1971
+ {
1972
+ "epoch": 0.8992,
1973
+ "grad_norm": 0.5352372798399714,
1974
+ "learning_rate": 5.154805790456485e-06,
1975
+ "loss": 1.0398,
1976
+ "step": 281
1977
+ },
1978
+ {
1979
+ "epoch": 0.9024,
1980
+ "grad_norm": 0.533249413457343,
1981
+ "learning_rate": 4.830262496944693e-06,
1982
+ "loss": 0.9853,
1983
+ "step": 282
1984
+ },
1985
+ {
1986
+ "epoch": 0.9056,
1987
+ "grad_norm": 0.5325098845257755,
1988
+ "learning_rate": 4.516017865659949e-06,
1989
+ "loss": 1.1217,
1990
+ "step": 283
1991
+ },
1992
+ {
1993
+ "epoch": 0.9088,
1994
+ "grad_norm": 0.544616418598338,
1995
+ "learning_rate": 4.21210590215273e-06,
1996
+ "loss": 1.0499,
1997
+ "step": 284
1998
+ },
1999
+ {
2000
+ "epoch": 0.912,
2001
+ "grad_norm": 0.5389805914927016,
2002
+ "learning_rate": 3.918559493838114e-06,
2003
+ "loss": 1.0955,
2004
+ "step": 285
2005
+ },
2006
+ {
2007
+ "epoch": 0.9152,
2008
+ "grad_norm": 0.5992479750486914,
2009
+ "learning_rate": 3.6354104064368566e-06,
2010
+ "loss": 1.0344,
2011
+ "step": 286
2012
+ },
2013
+ {
2014
+ "epoch": 0.9184,
2015
+ "grad_norm": 0.5563032838951335,
2016
+ "learning_rate": 3.3626892805379562e-06,
2017
+ "loss": 1.1259,
2018
+ "step": 287
2019
+ },
2020
+ {
2021
+ "epoch": 0.9216,
2022
+ "grad_norm": 0.5344650297317594,
2023
+ "learning_rate": 3.100425628282899e-06,
2024
+ "loss": 1.1222,
2025
+ "step": 288
2026
+ },
2027
+ {
2028
+ "epoch": 0.9248,
2029
+ "grad_norm": 0.6026066762936244,
2030
+ "learning_rate": 2.848647830172024e-06,
2031
+ "loss": 1.048,
2032
+ "step": 289
2033
+ },
2034
+ {
2035
+ "epoch": 0.928,
2036
+ "grad_norm": 0.5380734238182887,
2037
+ "learning_rate": 2.607383131993424e-06,
2038
+ "loss": 1.0735,
2039
+ "step": 290
2040
+ },
2041
+ {
2042
+ "epoch": 0.9312,
2043
+ "grad_norm": 0.539269851195273,
2044
+ "learning_rate": 2.3766576418745022e-06,
2045
+ "loss": 1.0271,
2046
+ "step": 291
2047
+ },
2048
+ {
2049
+ "epoch": 0.9344,
2050
+ "grad_norm": 0.5101331087182588,
2051
+ "learning_rate": 2.1564963274568027e-06,
2052
+ "loss": 1.0877,
2053
+ "step": 292
2054
+ },
2055
+ {
2056
+ "epoch": 0.9376,
2057
+ "grad_norm": 0.5260284887574873,
2058
+ "learning_rate": 1.9469230131940907e-06,
2059
+ "loss": 1.1117,
2060
+ "step": 293
2061
+ },
2062
+ {
2063
+ "epoch": 0.9408,
2064
+ "grad_norm": 0.6165360335006401,
2065
+ "learning_rate": 1.7479603777742938e-06,
2066
+ "loss": 1.1343,
2067
+ "step": 294
2068
+ },
2069
+ {
2070
+ "epoch": 0.944,
2071
+ "grad_norm": 0.518362085552097,
2072
+ "learning_rate": 1.559629951665298e-06,
2073
+ "loss": 1.0402,
2074
+ "step": 295
2075
+ },
2076
+ {
2077
+ "epoch": 0.9472,
2078
+ "grad_norm": 0.569371845816852,
2079
+ "learning_rate": 1.3819521147851123e-06,
2080
+ "loss": 1.0454,
2081
+ "step": 296
2082
+ },
2083
+ {
2084
+ "epoch": 0.9504,
2085
+ "grad_norm": 0.5281615447976709,
2086
+ "learning_rate": 1.2149460942964098e-06,
2087
+ "loss": 1.1065,
2088
+ "step": 297
2089
+ },
2090
+ {
2091
+ "epoch": 0.9536,
2092
+ "grad_norm": 0.6341864106370607,
2093
+ "learning_rate": 1.05862996252597e-06,
2094
+ "loss": 1.0237,
2095
+ "step": 298
2096
+ },
2097
+ {
2098
+ "epoch": 0.9568,
2099
+ "grad_norm": 0.5471729782472513,
2100
+ "learning_rate": 9.130206350089765e-07,
2101
+ "loss": 1.1344,
2102
+ "step": 299
2103
+ },
2104
+ {
2105
+ "epoch": 0.96,
2106
+ "grad_norm": 0.521375171737115,
2107
+ "learning_rate": 7.781338686584927e-07,
2108
+ "loss": 1.0338,
2109
+ "step": 300
2110
+ },
2111
+ {
2112
+ "epoch": 0.9632,
2113
+ "grad_norm": 0.565578997311788,
2114
+ "learning_rate": 6.539842600603918e-07,
2115
+ "loss": 1.0667,
2116
+ "step": 301
2117
+ },
2118
+ {
2119
+ "epoch": 0.9664,
2120
+ "grad_norm": 0.5650391103593894,
2121
+ "learning_rate": 5.405852438937764e-07,
2122
+ "loss": 1.0766,
2123
+ "step": 302
2124
+ },
2125
+ {
2126
+ "epoch": 0.9696,
2127
+ "grad_norm": 0.5820265479098684,
2128
+ "learning_rate": 4.3794909147720773e-07,
2129
+ "loss": 1.0305,
2130
+ "step": 303
2131
+ },
2132
+ {
2133
+ "epoch": 0.9728,
2134
+ "grad_norm": 0.5926416552467474,
2135
+ "learning_rate": 3.4608690944071263e-07,
2136
+ "loss": 0.9986,
2137
+ "step": 304
2138
+ },
2139
+ {
2140
+ "epoch": 0.976,
2141
+ "grad_norm": 0.5397571968572117,
2142
+ "learning_rate": 2.6500863852395584e-07,
2143
+ "loss": 0.986,
2144
+ "step": 305
2145
+ },
2146
+ {
2147
+ "epoch": 0.9792,
2148
+ "grad_norm": 0.5508600370370091,
2149
+ "learning_rate": 1.947230525005006e-07,
2150
+ "loss": 1.1161,
2151
+ "step": 306
2152
+ },
2153
+ {
2154
+ "epoch": 0.9824,
2155
+ "grad_norm": 0.5460513088356049,
2156
+ "learning_rate": 1.3523775722834587e-07,
2157
+ "loss": 1.0266,
2158
+ "step": 307
2159
+ },
2160
+ {
2161
+ "epoch": 0.9856,
2162
+ "grad_norm": 0.5604567327919951,
2163
+ "learning_rate": 8.655918982689581e-08,
2164
+ "loss": 0.9579,
2165
+ "step": 308
2166
+ },
2167
+ {
2168
+ "epoch": 0.9888,
2169
+ "grad_norm": 0.5383144642509582,
2170
+ "learning_rate": 4.8692617980350406e-08,
2171
+ "loss": 1.0491,
2172
+ "step": 309
2173
+ },
2174
+ {
2175
+ "epoch": 0.992,
2176
+ "grad_norm": 0.5254302419934068,
2177
+ "learning_rate": 2.164213936770576e-08,
2178
+ "loss": 1.0394,
2179
+ "step": 310
2180
+ },
2181
+ {
2182
+ "epoch": 0.9952,
2183
+ "grad_norm": 0.5885982889343618,
2184
+ "learning_rate": 5.410681219286673e-09,
2185
+ "loss": 1.0553,
2186
+ "step": 311
2187
+ },
2188
+ {
2189
+ "epoch": 0.9984,
2190
+ "grad_norm": 0.6364946352079829,
2191
+ "learning_rate": 0.0,
2192
+ "loss": 1.0507,
2193
+ "step": 312
2194
+ },
2195
+ {
2196
+ "epoch": 0.9984,
2197
+ "step": 312,
2198
+ "total_flos": 163148489719808.0,
2199
+ "train_loss": 1.1001117495008004,
2200
+ "train_runtime": 3775.7928,
2201
+ "train_samples_per_second": 1.324,
2202
+ "train_steps_per_second": 0.083
2203
+ }
2204
+ ],
2205
+ "logging_steps": 1.0,
2206
+ "max_steps": 312,
2207
+ "num_input_tokens_seen": 0,
2208
+ "num_train_epochs": 1,
2209
+ "save_steps": 500,
2210
+ "stateful_callbacks": {
2211
+ "TrainerControl": {
2212
+ "args": {
2213
+ "should_epoch_stop": false,
2214
+ "should_evaluate": false,
2215
+ "should_log": false,
2216
+ "should_save": false,
2217
+ "should_training_stop": false
2218
+ },
2219
+ "attributes": {}
2220
+ }
2221
+ },
2222
+ "total_flos": 163148489719808.0,
2223
+ "train_batch_size": 8,
2224
+ "trial_name": null,
2225
+ "trial_params": null
2226
+ }
single_dataset/img2json/VideoGameBunny_v1_1-Llama-3-8B-V-img2json_dataset_10000_epochs_1_lora/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: ./weights/Bunny-v1_1-Llama-3-8B-V
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.11.1
single_dataset/img2json/VideoGameBunny_v1_1-Llama-3-8B-V-img2json_dataset_10000_epochs_1_lora/adapter_config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "./weights/Bunny-v1_1-Llama-3-8B-V",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 256,
14
+ "lora_dropout": 0.1,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 128,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "v_proj",
24
+ "gate_proj",
25
+ "up_proj",
26
+ "o_proj",
27
+ "down_proj",
28
+ "k_proj",
29
+ "q_proj"
30
+ ],
31
+ "task_type": "CAUSAL_LM",
32
+ "use_dora": false,
33
+ "use_rslora": false
34
+ }
single_dataset/img2json/VideoGameBunny_v1_1-Llama-3-8B-V-img2json_dataset_10000_epochs_1_lora/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8c1ca96a72a93c29ee37109b9231a208a153b02842d8988648783c09ec6b80cf
3
+ size 671150064
single_dataset/img2json/VideoGameBunny_v1_1-Llama-3-8B-V-img2json_dataset_10000_epochs_1_lora/config.json ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "./weights/Bunny-v1_1-Llama-3-8B-V",
3
+ "architectures": [
4
+ "BunnyLlamaForCausalLM"
5
+ ],
6
+ "attention_bias": false,
7
+ "attention_dropout": 0.0,
8
+ "auto_map": {
9
+ "AutoConfig": "configuration_bunny_llama.BunnyLlamaConfig",
10
+ "AutoModelForCausalLM": "modeling_bunny_llama.BunnyLlamaForCausalLM"
11
+ },
12
+ "bos_token_id": 128000,
13
+ "continuous_training": false,
14
+ "eos_token_id": 128001,
15
+ "freeze_mm_mlp_adapter": false,
16
+ "hidden_act": "silu",
17
+ "hidden_size": 4096,
18
+ "image_aspect_ratio": "pad",
19
+ "initializer_range": 0.02,
20
+ "intermediate_size": 14336,
21
+ "max_position_embeddings": 8192,
22
+ "mm_hidden_size": 3456,
23
+ "mm_projector_lr": null,
24
+ "mm_projector_type": "mlp2x_gelu",
25
+ "mm_vision_tower": "./weights/siglip-so400m-patch14-384",
26
+ "model_type": "bunny-llama",
27
+ "num_attention_heads": 32,
28
+ "num_hidden_layers": 32,
29
+ "num_key_value_heads": 8,
30
+ "pretraining_tp": 1,
31
+ "rms_norm_eps": 1e-05,
32
+ "rope_scaling": null,
33
+ "rope_theta": 500000.0,
34
+ "tie_word_embeddings": false,
35
+ "tokenizer_model_max_length": 2048,
36
+ "tokenizer_padding_side": "right",
37
+ "torch_dtype": "float16",
38
+ "transformers_version": "4.41.2",
39
+ "tune_mm_mlp_adapter": false,
40
+ "unfreeze_vision_tower": true,
41
+ "use_cache": true,
42
+ "use_mm_proj": true,
43
+ "use_s2": true,
44
+ "vocab_size": 128256
45
+ }
single_dataset/img2json/VideoGameBunny_v1_1-Llama-3-8B-V-img2json_dataset_10000_epochs_1_lora/non_lora_trainables.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7942b3ff9fdd57de7917cc18505f63252b815f5b36cbf3fe2a9df7d46706f464
3
+ size 918507402
single_dataset/img2json/VideoGameBunny_v1_1-Llama-3-8B-V-img2json_dataset_10000_epochs_1_lora/trainer_state.json ADDED
The diff for this file is too large to render. See raw diff
 
single_dataset/img2json/VideoGameBunny_v1_1-Llama-3-8B-V-img2json_dataset_20000_epochs_1_lora/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: ./weights/Bunny-v1_1-Llama-3-8B-V
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.11.1
single_dataset/img2json/VideoGameBunny_v1_1-Llama-3-8B-V-img2json_dataset_20000_epochs_1_lora/adapter_config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "./weights/Bunny-v1_1-Llama-3-8B-V",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 256,
14
+ "lora_dropout": 0.1,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 128,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "q_proj",
24
+ "up_proj",
25
+ "down_proj",
26
+ "k_proj",
27
+ "gate_proj",
28
+ "o_proj",
29
+ "v_proj"
30
+ ],
31
+ "task_type": "CAUSAL_LM",
32
+ "use_dora": false,
33
+ "use_rslora": false
34
+ }
single_dataset/img2json/VideoGameBunny_v1_1-Llama-3-8B-V-img2json_dataset_20000_epochs_1_lora/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:26afb8ecb361aa1573c588e61fa343d711716fbcb5c105e69dd7c57f09063e32
3
+ size 671150064
single_dataset/img2json/VideoGameBunny_v1_1-Llama-3-8B-V-img2json_dataset_20000_epochs_1_lora/config.json ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "./weights/Bunny-v1_1-Llama-3-8B-V",
3
+ "architectures": [
4
+ "BunnyLlamaForCausalLM"
5
+ ],
6
+ "attention_bias": false,
7
+ "attention_dropout": 0.0,
8
+ "auto_map": {
9
+ "AutoConfig": "configuration_bunny_llama.BunnyLlamaConfig",
10
+ "AutoModelForCausalLM": "modeling_bunny_llama.BunnyLlamaForCausalLM"
11
+ },
12
+ "bos_token_id": 128000,
13
+ "continuous_training": false,
14
+ "eos_token_id": 128001,
15
+ "freeze_mm_mlp_adapter": false,
16
+ "hidden_act": "silu",
17
+ "hidden_size": 4096,
18
+ "image_aspect_ratio": "pad",
19
+ "initializer_range": 0.02,
20
+ "intermediate_size": 14336,
21
+ "max_position_embeddings": 8192,
22
+ "mm_hidden_size": 3456,
23
+ "mm_projector_lr": null,
24
+ "mm_projector_type": "mlp2x_gelu",
25
+ "mm_vision_tower": "./weights/siglip-so400m-patch14-384",
26
+ "model_type": "bunny-llama",
27
+ "num_attention_heads": 32,
28
+ "num_hidden_layers": 32,
29
+ "num_key_value_heads": 8,
30
+ "pretraining_tp": 1,
31
+ "rms_norm_eps": 1e-05,
32
+ "rope_scaling": null,
33
+ "rope_theta": 500000.0,
34
+ "tie_word_embeddings": false,
35
+ "tokenizer_model_max_length": 2048,
36
+ "tokenizer_padding_side": "right",
37
+ "torch_dtype": "float16",
38
+ "transformers_version": "4.41.2",
39
+ "tune_mm_mlp_adapter": false,
40
+ "unfreeze_vision_tower": true,
41
+ "use_cache": true,
42
+ "use_mm_proj": true,
43
+ "use_s2": true,
44
+ "vocab_size": 128256
45
+ }
single_dataset/img2json/VideoGameBunny_v1_1-Llama-3-8B-V-img2json_dataset_20000_epochs_1_lora/non_lora_trainables.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aff4131c4b93cdf643c1be464f218e02ad4cf80233999ed855e74ca85ce81f13
3
+ size 918507402
single_dataset/img2json/VideoGameBunny_v1_1-Llama-3-8B-V-img2json_dataset_20000_epochs_1_lora/trainer_state.json ADDED
The diff for this file is too large to render. See raw diff
 
single_dataset/img2json/VideoGameBunny_v1_1-Llama-3-8B-V-img2json_dataset_2000_epochs_1_lora/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: ./weights/Bunny-v1_1-Llama-3-8B-V
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.11.1
single_dataset/img2json/VideoGameBunny_v1_1-Llama-3-8B-V-img2json_dataset_2000_epochs_1_lora/adapter_config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "./weights/Bunny-v1_1-Llama-3-8B-V",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 256,
14
+ "lora_dropout": 0.1,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 128,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "q_proj",
24
+ "gate_proj",
25
+ "v_proj",
26
+ "up_proj",
27
+ "o_proj",
28
+ "k_proj",
29
+ "down_proj"
30
+ ],
31
+ "task_type": "CAUSAL_LM",
32
+ "use_dora": false,
33
+ "use_rslora": false
34
+ }
single_dataset/img2json/VideoGameBunny_v1_1-Llama-3-8B-V-img2json_dataset_2000_epochs_1_lora/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c8262ee6a0c00b8ce095b990a942055d72e79c6072afadd6521a5f42aef69fad
3
+ size 671150064
single_dataset/img2json/VideoGameBunny_v1_1-Llama-3-8B-V-img2json_dataset_2000_epochs_1_lora/config.json ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "./weights/Bunny-v1_1-Llama-3-8B-V",
3
+ "architectures": [
4
+ "BunnyLlamaForCausalLM"
5
+ ],
6
+ "attention_bias": false,
7
+ "attention_dropout": 0.0,
8
+ "auto_map": {
9
+ "AutoConfig": "configuration_bunny_llama.BunnyLlamaConfig",
10
+ "AutoModelForCausalLM": "modeling_bunny_llama.BunnyLlamaForCausalLM"
11
+ },
12
+ "bos_token_id": 128000,
13
+ "continuous_training": false,
14
+ "eos_token_id": 128001,
15
+ "freeze_mm_mlp_adapter": false,
16
+ "hidden_act": "silu",
17
+ "hidden_size": 4096,
18
+ "image_aspect_ratio": "pad",
19
+ "initializer_range": 0.02,
20
+ "intermediate_size": 14336,
21
+ "max_position_embeddings": 8192,
22
+ "mm_hidden_size": 3456,
23
+ "mm_projector_lr": null,
24
+ "mm_projector_type": "mlp2x_gelu",
25
+ "mm_vision_tower": "./weights/siglip-so400m-patch14-384",
26
+ "model_type": "bunny-llama",
27
+ "num_attention_heads": 32,
28
+ "num_hidden_layers": 32,
29
+ "num_key_value_heads": 8,
30
+ "pretraining_tp": 1,
31
+ "rms_norm_eps": 1e-05,
32
+ "rope_scaling": null,
33
+ "rope_theta": 500000.0,
34
+ "tie_word_embeddings": false,
35
+ "tokenizer_model_max_length": 2048,
36
+ "tokenizer_padding_side": "right",
37
+ "torch_dtype": "float16",
38
+ "transformers_version": "4.41.2",
39
+ "tune_mm_mlp_adapter": false,
40
+ "unfreeze_vision_tower": true,
41
+ "use_cache": true,
42
+ "use_mm_proj": true,
43
+ "use_s2": true,
44
+ "vocab_size": 128256
45
+ }
single_dataset/img2json/VideoGameBunny_v1_1-Llama-3-8B-V-img2json_dataset_2000_epochs_1_lora/non_lora_trainables.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dc232555e409ab19e56350ef2c9b0c80c0b12c30a0291e5aaa3b3d52cdb8089e
3
+ size 918507402
single_dataset/img2json/VideoGameBunny_v1_1-Llama-3-8B-V-img2json_dataset_2000_epochs_1_lora/trainer_state.json ADDED
@@ -0,0 +1,917 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 1.0,
5
+ "eval_steps": 500,
6
+ "global_step": 125,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.008,
13
+ "grad_norm": 1.1618730196957123,
14
+ "learning_rate": 5e-05,
15
+ "loss": 1.5515,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.016,
20
+ "grad_norm": 1.15537504646185,
21
+ "learning_rate": 0.0001,
22
+ "loss": 1.5311,
23
+ "step": 2
24
+ },
25
+ {
26
+ "epoch": 0.024,
27
+ "grad_norm": 0.9635490214235893,
28
+ "learning_rate": 0.00015000000000000001,
29
+ "loss": 1.4312,
30
+ "step": 3
31
+ },
32
+ {
33
+ "epoch": 0.032,
34
+ "grad_norm": 1.3893228481848556,
35
+ "learning_rate": 0.0002,
36
+ "loss": 1.167,
37
+ "step": 4
38
+ },
39
+ {
40
+ "epoch": 0.04,
41
+ "grad_norm": 1.3289968323340917,
42
+ "learning_rate": 0.00019996629653035126,
43
+ "loss": 1.0447,
44
+ "step": 5
45
+ },
46
+ {
47
+ "epoch": 0.048,
48
+ "grad_norm": 0.8072806305690539,
49
+ "learning_rate": 0.00019986520883988232,
50
+ "loss": 1.0105,
51
+ "step": 6
52
+ },
53
+ {
54
+ "epoch": 0.056,
55
+ "grad_norm": 0.6177964607456953,
56
+ "learning_rate": 0.00019969680506871137,
57
+ "loss": 0.8789,
58
+ "step": 7
59
+ },
60
+ {
61
+ "epoch": 0.064,
62
+ "grad_norm": 0.5524814937302823,
63
+ "learning_rate": 0.00019946119873266613,
64
+ "loss": 0.8635,
65
+ "step": 8
66
+ },
67
+ {
68
+ "epoch": 0.072,
69
+ "grad_norm": 0.5319431137217482,
70
+ "learning_rate": 0.00019915854864676664,
71
+ "loss": 0.9212,
72
+ "step": 9
73
+ },
74
+ {
75
+ "epoch": 0.08,
76
+ "grad_norm": 0.5995041018941503,
77
+ "learning_rate": 0.00019878905881817252,
78
+ "loss": 0.9419,
79
+ "step": 10
80
+ },
81
+ {
82
+ "epoch": 0.088,
83
+ "grad_norm": 0.5241617758084439,
84
+ "learning_rate": 0.00019835297830866826,
85
+ "loss": 0.8659,
86
+ "step": 11
87
+ },
88
+ {
89
+ "epoch": 0.096,
90
+ "grad_norm": 0.5203540014161351,
91
+ "learning_rate": 0.00019785060106677818,
92
+ "loss": 0.8887,
93
+ "step": 12
94
+ },
95
+ {
96
+ "epoch": 0.104,
97
+ "grad_norm": 0.5144968235440169,
98
+ "learning_rate": 0.00019728226572962473,
99
+ "loss": 0.9298,
100
+ "step": 13
101
+ },
102
+ {
103
+ "epoch": 0.112,
104
+ "grad_norm": 0.44732252083116936,
105
+ "learning_rate": 0.0001966483553946637,
106
+ "loss": 0.8116,
107
+ "step": 14
108
+ },
109
+ {
110
+ "epoch": 0.12,
111
+ "grad_norm": 0.48923527048555243,
112
+ "learning_rate": 0.00019594929736144976,
113
+ "loss": 0.9035,
114
+ "step": 15
115
+ },
116
+ {
117
+ "epoch": 0.128,
118
+ "grad_norm": 0.4202366241305497,
119
+ "learning_rate": 0.00019518556284360696,
120
+ "loss": 0.863,
121
+ "step": 16
122
+ },
123
+ {
124
+ "epoch": 0.136,
125
+ "grad_norm": 0.4537252189692721,
126
+ "learning_rate": 0.0001943576666511982,
127
+ "loss": 0.8725,
128
+ "step": 17
129
+ },
130
+ {
131
+ "epoch": 0.144,
132
+ "grad_norm": 0.4306220050888526,
133
+ "learning_rate": 0.0001934661668437073,
134
+ "loss": 0.8376,
135
+ "step": 18
136
+ },
137
+ {
138
+ "epoch": 0.152,
139
+ "grad_norm": 0.3894710263894399,
140
+ "learning_rate": 0.0001925116643538684,
141
+ "loss": 0.8287,
142
+ "step": 19
143
+ },
144
+ {
145
+ "epoch": 0.16,
146
+ "grad_norm": 0.43976119402396047,
147
+ "learning_rate": 0.00019149480258259533,
148
+ "loss": 0.823,
149
+ "step": 20
150
+ },
151
+ {
152
+ "epoch": 0.168,
153
+ "grad_norm": 0.40179621147791533,
154
+ "learning_rate": 0.00019041626696528503,
155
+ "loss": 0.7952,
156
+ "step": 21
157
+ },
158
+ {
159
+ "epoch": 0.176,
160
+ "grad_norm": 0.4345187904250498,
161
+ "learning_rate": 0.0001892767845097864,
162
+ "loss": 0.8617,
163
+ "step": 22
164
+ },
165
+ {
166
+ "epoch": 0.184,
167
+ "grad_norm": 0.4131232137462944,
168
+ "learning_rate": 0.00018807712330634642,
169
+ "loss": 0.8384,
170
+ "step": 23
171
+ },
172
+ {
173
+ "epoch": 0.192,
174
+ "grad_norm": 0.40603865564196473,
175
+ "learning_rate": 0.0001868180920098644,
176
+ "loss": 0.8331,
177
+ "step": 24
178
+ },
179
+ {
180
+ "epoch": 0.2,
181
+ "grad_norm": 0.3951360345025102,
182
+ "learning_rate": 0.00018550053929480202,
183
+ "loss": 0.7836,
184
+ "step": 25
185
+ },
186
+ {
187
+ "epoch": 0.208,
188
+ "grad_norm": 0.40477643152693216,
189
+ "learning_rate": 0.00018412535328311814,
190
+ "loss": 0.7748,
191
+ "step": 26
192
+ },
193
+ {
194
+ "epoch": 0.216,
195
+ "grad_norm": 0.4251533568833813,
196
+ "learning_rate": 0.0001826934609456129,
197
+ "loss": 0.8444,
198
+ "step": 27
199
+ },
200
+ {
201
+ "epoch": 0.224,
202
+ "grad_norm": 0.4071344808654217,
203
+ "learning_rate": 0.00018120582747708502,
204
+ "loss": 0.8003,
205
+ "step": 28
206
+ },
207
+ {
208
+ "epoch": 0.232,
209
+ "grad_norm": 0.408159311901172,
210
+ "learning_rate": 0.0001796634556457236,
211
+ "loss": 0.8071,
212
+ "step": 29
213
+ },
214
+ {
215
+ "epoch": 0.24,
216
+ "grad_norm": 0.39865492737418323,
217
+ "learning_rate": 0.0001780673851171728,
218
+ "loss": 0.7849,
219
+ "step": 30
220
+ },
221
+ {
222
+ "epoch": 0.248,
223
+ "grad_norm": 0.4276310275653838,
224
+ "learning_rate": 0.00017641869175372493,
225
+ "loss": 0.8444,
226
+ "step": 31
227
+ },
228
+ {
229
+ "epoch": 0.256,
230
+ "grad_norm": 0.434386133606189,
231
+ "learning_rate": 0.00017471848688911464,
232
+ "loss": 0.8215,
233
+ "step": 32
234
+ },
235
+ {
236
+ "epoch": 0.264,
237
+ "grad_norm": 0.3822536210786355,
238
+ "learning_rate": 0.000172967916579403,
239
+ "loss": 0.8132,
240
+ "step": 33
241
+ },
242
+ {
243
+ "epoch": 0.272,
244
+ "grad_norm": 0.3913709039902287,
245
+ "learning_rate": 0.00017116816083045602,
246
+ "loss": 0.8282,
247
+ "step": 34
248
+ },
249
+ {
250
+ "epoch": 0.28,
251
+ "grad_norm": 0.4171383919051642,
252
+ "learning_rate": 0.0001693204328025389,
253
+ "loss": 0.8489,
254
+ "step": 35
255
+ },
256
+ {
257
+ "epoch": 0.288,
258
+ "grad_norm": 0.38777521576935947,
259
+ "learning_rate": 0.00016742597799256182,
260
+ "loss": 0.7557,
261
+ "step": 36
262
+ },
263
+ {
264
+ "epoch": 0.296,
265
+ "grad_norm": 0.38572156231558025,
266
+ "learning_rate": 0.00016548607339452853,
267
+ "loss": 0.7754,
268
+ "step": 37
269
+ },
270
+ {
271
+ "epoch": 0.304,
272
+ "grad_norm": 0.4104203019193881,
273
+ "learning_rate": 0.00016350202663875386,
274
+ "loss": 0.7698,
275
+ "step": 38
276
+ },
277
+ {
278
+ "epoch": 0.312,
279
+ "grad_norm": 0.5677828834671339,
280
+ "learning_rate": 0.0001614751751104301,
281
+ "loss": 0.7886,
282
+ "step": 39
283
+ },
284
+ {
285
+ "epoch": 0.32,
286
+ "grad_norm": 0.4077418306551607,
287
+ "learning_rate": 0.00015940688504813662,
288
+ "loss": 0.8048,
289
+ "step": 40
290
+ },
291
+ {
292
+ "epoch": 0.328,
293
+ "grad_norm": 0.41489722264421747,
294
+ "learning_rate": 0.00015729855062290022,
295
+ "loss": 0.7622,
296
+ "step": 41
297
+ },
298
+ {
299
+ "epoch": 0.336,
300
+ "grad_norm": 0.39615414916810177,
301
+ "learning_rate": 0.00015515159299842707,
302
+ "loss": 0.7987,
303
+ "step": 42
304
+ },
305
+ {
306
+ "epoch": 0.344,
307
+ "grad_norm": 0.40912637858839207,
308
+ "learning_rate": 0.00015296745937313987,
309
+ "loss": 0.7637,
310
+ "step": 43
311
+ },
312
+ {
313
+ "epoch": 0.352,
314
+ "grad_norm": 0.38793742176167395,
315
+ "learning_rate": 0.00015074762200466556,
316
+ "loss": 0.8198,
317
+ "step": 44
318
+ },
319
+ {
320
+ "epoch": 0.36,
321
+ "grad_norm": 0.3979430102052743,
322
+ "learning_rate": 0.00014849357721743168,
323
+ "loss": 0.8026,
324
+ "step": 45
325
+ },
326
+ {
327
+ "epoch": 0.368,
328
+ "grad_norm": 0.3788509235665202,
329
+ "learning_rate": 0.00014620684439403962,
330
+ "loss": 0.8023,
331
+ "step": 46
332
+ },
333
+ {
334
+ "epoch": 0.376,
335
+ "grad_norm": 0.39278185642418834,
336
+ "learning_rate": 0.0001438889649510956,
337
+ "loss": 0.7481,
338
+ "step": 47
339
+ },
340
+ {
341
+ "epoch": 0.384,
342
+ "grad_norm": 0.3696223706213371,
343
+ "learning_rate": 0.00014154150130018866,
344
+ "loss": 0.7609,
345
+ "step": 48
346
+ },
347
+ {
348
+ "epoch": 0.392,
349
+ "grad_norm": 0.39313607939291717,
350
+ "learning_rate": 0.00013916603579471705,
351
+ "loss": 0.8157,
352
+ "step": 49
353
+ },
354
+ {
355
+ "epoch": 0.4,
356
+ "grad_norm": 0.3855055319878002,
357
+ "learning_rate": 0.000136764169663272,
358
+ "loss": 0.7638,
359
+ "step": 50
360
+ },
361
+ {
362
+ "epoch": 0.408,
363
+ "grad_norm": 0.37066834001446136,
364
+ "learning_rate": 0.00013433752193029886,
365
+ "loss": 0.758,
366
+ "step": 51
367
+ },
368
+ {
369
+ "epoch": 0.416,
370
+ "grad_norm": 0.4170209578873234,
371
+ "learning_rate": 0.00013188772832476188,
372
+ "loss": 0.834,
373
+ "step": 52
374
+ },
375
+ {
376
+ "epoch": 0.424,
377
+ "grad_norm": 0.37700762349814604,
378
+ "learning_rate": 0.00012941644017754964,
379
+ "loss": 0.7533,
380
+ "step": 53
381
+ },
382
+ {
383
+ "epoch": 0.432,
384
+ "grad_norm": 0.3694537319289278,
385
+ "learning_rate": 0.00012692532330836346,
386
+ "loss": 0.7159,
387
+ "step": 54
388
+ },
389
+ {
390
+ "epoch": 0.44,
391
+ "grad_norm": 0.3764585488672252,
392
+ "learning_rate": 0.00012441605690283915,
393
+ "loss": 0.7762,
394
+ "step": 55
395
+ },
396
+ {
397
+ "epoch": 0.448,
398
+ "grad_norm": 0.36568785296633305,
399
+ "learning_rate": 0.0001218903323806595,
400
+ "loss": 0.7848,
401
+ "step": 56
402
+ },
403
+ {
404
+ "epoch": 0.456,
405
+ "grad_norm": 0.3642739327906848,
406
+ "learning_rate": 0.00011934985225541998,
407
+ "loss": 0.8302,
408
+ "step": 57
409
+ },
410
+ {
411
+ "epoch": 0.464,
412
+ "grad_norm": 0.38223649800753023,
413
+ "learning_rate": 0.00011679632898701649,
414
+ "loss": 0.7719,
415
+ "step": 58
416
+ },
417
+ {
418
+ "epoch": 0.472,
419
+ "grad_norm": 0.41018205417563863,
420
+ "learning_rate": 0.00011423148382732853,
421
+ "loss": 0.7676,
422
+ "step": 59
423
+ },
424
+ {
425
+ "epoch": 0.48,
426
+ "grad_norm": 0.37477718222402323,
427
+ "learning_rate": 0.00011165704565997593,
428
+ "loss": 0.7395,
429
+ "step": 60
430
+ },
431
+ {
432
+ "epoch": 0.488,
433
+ "grad_norm": 0.373178036681771,
434
+ "learning_rate": 0.00010907474983493144,
435
+ "loss": 0.7662,
436
+ "step": 61
437
+ },
438
+ {
439
+ "epoch": 0.496,
440
+ "grad_norm": 0.3869027594520346,
441
+ "learning_rate": 0.0001064863369987743,
442
+ "loss": 0.801,
443
+ "step": 62
444
+ },
445
+ {
446
+ "epoch": 0.504,
447
+ "grad_norm": 0.3525699091995798,
448
+ "learning_rate": 0.00010389355192137377,
449
+ "loss": 0.7239,
450
+ "step": 63
451
+ },
452
+ {
453
+ "epoch": 0.512,
454
+ "grad_norm": 0.37067545461002194,
455
+ "learning_rate": 0.0001012981423197931,
456
+ "loss": 0.7011,
457
+ "step": 64
458
+ },
459
+ {
460
+ "epoch": 0.52,
461
+ "grad_norm": 0.37290965245827035,
462
+ "learning_rate": 9.870185768020693e-05,
463
+ "loss": 0.7643,
464
+ "step": 65
465
+ },
466
+ {
467
+ "epoch": 0.528,
468
+ "grad_norm": 0.37698723891357505,
469
+ "learning_rate": 9.610644807862625e-05,
470
+ "loss": 0.7229,
471
+ "step": 66
472
+ },
473
+ {
474
+ "epoch": 0.536,
475
+ "grad_norm": 0.37310662528724425,
476
+ "learning_rate": 9.35136630012257e-05,
477
+ "loss": 0.7814,
478
+ "step": 67
479
+ },
480
+ {
481
+ "epoch": 0.544,
482
+ "grad_norm": 0.36161343594825424,
483
+ "learning_rate": 9.092525016506858e-05,
484
+ "loss": 0.7469,
485
+ "step": 68
486
+ },
487
+ {
488
+ "epoch": 0.552,
489
+ "grad_norm": 0.38820107691296035,
490
+ "learning_rate": 8.83429543400241e-05,
491
+ "loss": 0.8049,
492
+ "step": 69
493
+ },
494
+ {
495
+ "epoch": 0.56,
496
+ "grad_norm": 0.380257947651291,
497
+ "learning_rate": 8.57685161726715e-05,
498
+ "loss": 0.7446,
499
+ "step": 70
500
+ },
501
+ {
502
+ "epoch": 0.568,
503
+ "grad_norm": 0.3532116216773163,
504
+ "learning_rate": 8.320367101298351e-05,
505
+ "loss": 0.7377,
506
+ "step": 71
507
+ },
508
+ {
509
+ "epoch": 0.576,
510
+ "grad_norm": 0.3856516769452259,
511
+ "learning_rate": 8.065014774458003e-05,
512
+ "loss": 0.7489,
513
+ "step": 72
514
+ },
515
+ {
516
+ "epoch": 0.584,
517
+ "grad_norm": 0.37631098630814735,
518
+ "learning_rate": 7.810966761934053e-05,
519
+ "loss": 0.7719,
520
+ "step": 73
521
+ },
522
+ {
523
+ "epoch": 0.592,
524
+ "grad_norm": 0.38056900801863475,
525
+ "learning_rate": 7.558394309716088e-05,
526
+ "loss": 0.713,
527
+ "step": 74
528
+ },
529
+ {
530
+ "epoch": 0.6,
531
+ "grad_norm": 0.3475939820542006,
532
+ "learning_rate": 7.307467669163655e-05,
533
+ "loss": 0.7242,
534
+ "step": 75
535
+ },
536
+ {
537
+ "epoch": 0.608,
538
+ "grad_norm": 0.35273458966475485,
539
+ "learning_rate": 7.058355982245037e-05,
540
+ "loss": 0.748,
541
+ "step": 76
542
+ },
543
+ {
544
+ "epoch": 0.616,
545
+ "grad_norm": 0.3745939242868226,
546
+ "learning_rate": 6.811227167523815e-05,
547
+ "loss": 0.7519,
548
+ "step": 77
549
+ },
550
+ {
551
+ "epoch": 0.624,
552
+ "grad_norm": 0.3749958310986676,
553
+ "learning_rate": 6.566247806970119e-05,
554
+ "loss": 0.6751,
555
+ "step": 78
556
+ },
557
+ {
558
+ "epoch": 0.632,
559
+ "grad_norm": 0.346667180530484,
560
+ "learning_rate": 6.323583033672799e-05,
561
+ "loss": 0.6966,
562
+ "step": 79
563
+ },
564
+ {
565
+ "epoch": 0.64,
566
+ "grad_norm": 0.3747288183174455,
567
+ "learning_rate": 6.083396420528298e-05,
568
+ "loss": 0.8034,
569
+ "step": 80
570
+ },
571
+ {
572
+ "epoch": 0.648,
573
+ "grad_norm": 0.3533701171483392,
574
+ "learning_rate": 5.845849869981137e-05,
575
+ "loss": 0.7251,
576
+ "step": 81
577
+ },
578
+ {
579
+ "epoch": 0.656,
580
+ "grad_norm": 0.3591629687481598,
581
+ "learning_rate": 5.611103504890444e-05,
582
+ "loss": 0.7635,
583
+ "step": 82
584
+ },
585
+ {
586
+ "epoch": 0.664,
587
+ "grad_norm": 0.4084692648623678,
588
+ "learning_rate": 5.379315560596038e-05,
589
+ "loss": 0.6802,
590
+ "step": 83
591
+ },
592
+ {
593
+ "epoch": 0.672,
594
+ "grad_norm": 0.38688968930898393,
595
+ "learning_rate": 5.1506422782568345e-05,
596
+ "loss": 0.764,
597
+ "step": 84
598
+ },
599
+ {
600
+ "epoch": 0.68,
601
+ "grad_norm": 0.39312529151121633,
602
+ "learning_rate": 4.9252377995334444e-05,
603
+ "loss": 0.8013,
604
+ "step": 85
605
+ },
606
+ {
607
+ "epoch": 0.688,
608
+ "grad_norm": 0.3863181564669427,
609
+ "learning_rate": 4.703254062686017e-05,
610
+ "loss": 0.7498,
611
+ "step": 86
612
+ },
613
+ {
614
+ "epoch": 0.696,
615
+ "grad_norm": 0.3799061879135913,
616
+ "learning_rate": 4.484840700157295e-05,
617
+ "loss": 0.7561,
618
+ "step": 87
619
+ },
620
+ {
621
+ "epoch": 0.704,
622
+ "grad_norm": 0.3838739899745123,
623
+ "learning_rate": 4.270144937709981e-05,
624
+ "loss": 0.7573,
625
+ "step": 88
626
+ },
627
+ {
628
+ "epoch": 0.712,
629
+ "grad_norm": 0.3530265455361142,
630
+ "learning_rate": 4.059311495186338e-05,
631
+ "loss": 0.7013,
632
+ "step": 89
633
+ },
634
+ {
635
+ "epoch": 0.72,
636
+ "grad_norm": 0.33230437953255176,
637
+ "learning_rate": 3.852482488956992e-05,
638
+ "loss": 0.7152,
639
+ "step": 90
640
+ },
641
+ {
642
+ "epoch": 0.728,
643
+ "grad_norm": 0.3833248244274872,
644
+ "learning_rate": 3.649797336124615e-05,
645
+ "loss": 0.7238,
646
+ "step": 91
647
+ },
648
+ {
649
+ "epoch": 0.736,
650
+ "grad_norm": 0.39464827998307495,
651
+ "learning_rate": 3.45139266054715e-05,
652
+ "loss": 0.7773,
653
+ "step": 92
654
+ },
655
+ {
656
+ "epoch": 0.744,
657
+ "grad_norm": 0.36445590177391896,
658
+ "learning_rate": 3.257402200743821e-05,
659
+ "loss": 0.7877,
660
+ "step": 93
661
+ },
662
+ {
663
+ "epoch": 0.752,
664
+ "grad_norm": 0.357480514684254,
665
+ "learning_rate": 3.0679567197461134e-05,
666
+ "loss": 0.6932,
667
+ "step": 94
668
+ },
669
+ {
670
+ "epoch": 0.76,
671
+ "grad_norm": 0.37544630400071793,
672
+ "learning_rate": 2.8831839169543996e-05,
673
+ "loss": 0.7565,
674
+ "step": 95
675
+ },
676
+ {
677
+ "epoch": 0.768,
678
+ "grad_norm": 0.36203062045464296,
679
+ "learning_rate": 2.7032083420597e-05,
680
+ "loss": 0.6979,
681
+ "step": 96
682
+ },
683
+ {
684
+ "epoch": 0.776,
685
+ "grad_norm": 0.3729928884427148,
686
+ "learning_rate": 2.528151311088537e-05,
687
+ "loss": 0.6918,
688
+ "step": 97
689
+ },
690
+ {
691
+ "epoch": 0.784,
692
+ "grad_norm": 0.3649485582808177,
693
+ "learning_rate": 2.3581308246275103e-05,
694
+ "loss": 0.7278,
695
+ "step": 98
696
+ },
697
+ {
698
+ "epoch": 0.792,
699
+ "grad_norm": 0.3908594146852727,
700
+ "learning_rate": 2.1932614882827197e-05,
701
+ "loss": 0.7761,
702
+ "step": 99
703
+ },
704
+ {
705
+ "epoch": 0.8,
706
+ "grad_norm": 0.3642904141026686,
707
+ "learning_rate": 2.03365443542764e-05,
708
+ "loss": 0.6851,
709
+ "step": 100
710
+ },
711
+ {
712
+ "epoch": 0.808,
713
+ "grad_norm": 0.44262214768350755,
714
+ "learning_rate": 1.879417252291502e-05,
715
+ "loss": 0.6799,
716
+ "step": 101
717
+ },
718
+ {
719
+ "epoch": 0.816,
720
+ "grad_norm": 0.35993727801165104,
721
+ "learning_rate": 1.730653905438714e-05,
722
+ "loss": 0.7673,
723
+ "step": 102
724
+ },
725
+ {
726
+ "epoch": 0.824,
727
+ "grad_norm": 0.40347095599001326,
728
+ "learning_rate": 1.587464671688187e-05,
729
+ "loss": 0.716,
730
+ "step": 103
731
+ },
732
+ {
733
+ "epoch": 0.832,
734
+ "grad_norm": 0.3845207910750551,
735
+ "learning_rate": 1.4499460705197998e-05,
736
+ "loss": 0.7552,
737
+ "step": 104
738
+ },
739
+ {
740
+ "epoch": 0.84,
741
+ "grad_norm": 0.394463216691188,
742
+ "learning_rate": 1.3181907990135622e-05,
743
+ "loss": 0.7964,
744
+ "step": 105
745
+ },
746
+ {
747
+ "epoch": 0.848,
748
+ "grad_norm": 0.348375773555577,
749
+ "learning_rate": 1.1922876693653585e-05,
750
+ "loss": 0.7627,
751
+ "step": 106
752
+ },
753
+ {
754
+ "epoch": 0.856,
755
+ "grad_norm": 0.38679798921064223,
756
+ "learning_rate": 1.0723215490213634e-05,
757
+ "loss": 0.7596,
758
+ "step": 107
759
+ },
760
+ {
761
+ "epoch": 0.864,
762
+ "grad_norm": 0.34654567263972674,
763
+ "learning_rate": 9.583733034714981e-06,
764
+ "loss": 0.7239,
765
+ "step": 108
766
+ },
767
+ {
768
+ "epoch": 0.872,
769
+ "grad_norm": 0.35543614359220455,
770
+ "learning_rate": 8.505197417404687e-06,
771
+ "loss": 0.751,
772
+ "step": 109
773
+ },
774
+ {
775
+ "epoch": 0.88,
776
+ "grad_norm": 0.38143658550121157,
777
+ "learning_rate": 7.488335646131628e-06,
778
+ "loss": 0.7369,
779
+ "step": 110
780
+ },
781
+ {
782
+ "epoch": 0.888,
783
+ "grad_norm": 0.37067691582012285,
784
+ "learning_rate": 6.533833156292679e-06,
785
+ "loss": 0.7399,
786
+ "step": 111
787
+ },
788
+ {
789
+ "epoch": 0.896,
790
+ "grad_norm": 0.3488961142915352,
791
+ "learning_rate": 5.6423333488018095e-06,
792
+ "loss": 0.7192,
793
+ "step": 112
794
+ },
795
+ {
796
+ "epoch": 0.904,
797
+ "grad_norm": 0.33944638409930467,
798
+ "learning_rate": 4.8144371563930476e-06,
799
+ "loss": 0.6978,
800
+ "step": 113
801
+ },
802
+ {
803
+ "epoch": 0.912,
804
+ "grad_norm": 0.3568746231972527,
805
+ "learning_rate": 4.050702638550275e-06,
806
+ "loss": 0.7851,
807
+ "step": 114
808
+ },
809
+ {
810
+ "epoch": 0.92,
811
+ "grad_norm": 0.41401609220830243,
812
+ "learning_rate": 3.3516446053363015e-06,
813
+ "loss": 0.7084,
814
+ "step": 115
815
+ },
816
+ {
817
+ "epoch": 0.928,
818
+ "grad_norm": 0.35282787153112793,
819
+ "learning_rate": 2.717734270375272e-06,
820
+ "loss": 0.7244,
821
+ "step": 116
822
+ },
823
+ {
824
+ "epoch": 0.936,
825
+ "grad_norm": 0.3527796028448424,
826
+ "learning_rate": 2.1493989332218468e-06,
827
+ "loss": 0.6861,
828
+ "step": 117
829
+ },
830
+ {
831
+ "epoch": 0.944,
832
+ "grad_norm": 0.5300463886375664,
833
+ "learning_rate": 1.6470216913317626e-06,
834
+ "loss": 0.7752,
835
+ "step": 118
836
+ },
837
+ {
838
+ "epoch": 0.952,
839
+ "grad_norm": 0.3994773326174539,
840
+ "learning_rate": 1.2109411818274852e-06,
841
+ "loss": 0.6969,
842
+ "step": 119
843
+ },
844
+ {
845
+ "epoch": 0.96,
846
+ "grad_norm": 0.3651699090120398,
847
+ "learning_rate": 8.41451353233369e-07,
848
+ "loss": 0.7376,
849
+ "step": 120
850
+ },
851
+ {
852
+ "epoch": 0.968,
853
+ "grad_norm": 0.34676126862325934,
854
+ "learning_rate": 5.388012673338661e-07,
855
+ "loss": 0.7347,
856
+ "step": 121
857
+ },
858
+ {
859
+ "epoch": 0.976,
860
+ "grad_norm": 0.37764716508598595,
861
+ "learning_rate": 3.0319493128866396e-07,
862
+ "loss": 0.7745,
863
+ "step": 122
864
+ },
865
+ {
866
+ "epoch": 0.984,
867
+ "grad_norm": 0.3564807247913989,
868
+ "learning_rate": 1.3479116011769767e-07,
869
+ "loss": 0.7641,
870
+ "step": 123
871
+ },
872
+ {
873
+ "epoch": 0.992,
874
+ "grad_norm": 0.3742103364582621,
875
+ "learning_rate": 3.370346964876036e-08,
876
+ "loss": 0.7504,
877
+ "step": 124
878
+ },
879
+ {
880
+ "epoch": 1.0,
881
+ "grad_norm": 0.3985429773500903,
882
+ "learning_rate": 0.0,
883
+ "loss": 0.7313,
884
+ "step": 125
885
+ },
886
+ {
887
+ "epoch": 1.0,
888
+ "step": 125,
889
+ "total_flos": 114429774790656.0,
890
+ "train_loss": 0.7987350339889526,
891
+ "train_runtime": 1999.0989,
892
+ "train_samples_per_second": 1.0,
893
+ "train_steps_per_second": 0.063
894
+ }
895
+ ],
896
+ "logging_steps": 1.0,
897
+ "max_steps": 125,
898
+ "num_input_tokens_seen": 0,
899
+ "num_train_epochs": 1,
900
+ "save_steps": 500,
901
+ "stateful_callbacks": {
902
+ "TrainerControl": {
903
+ "args": {
904
+ "should_epoch_stop": false,
905
+ "should_evaluate": false,
906
+ "should_log": false,
907
+ "should_save": false,
908
+ "should_training_stop": false
909
+ },
910
+ "attributes": {}
911
+ }
912
+ },
913
+ "total_flos": 114429774790656.0,
914
+ "train_batch_size": 8,
915
+ "trial_name": null,
916
+ "trial_params": null
917
+ }
single_dataset/img2json/VideoGameBunny_v1_1-Llama-3-8B-V-img2json_dataset_40000_epochs_1_lora/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: ./weights/Bunny-v1_1-Llama-3-8B-V
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.11.1
single_dataset/img2json/VideoGameBunny_v1_1-Llama-3-8B-V-img2json_dataset_40000_epochs_1_lora/adapter_config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "./weights/Bunny-v1_1-Llama-3-8B-V",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 256,
14
+ "lora_dropout": 0.1,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 128,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "k_proj",
24
+ "o_proj",
25
+ "q_proj",
26
+ "v_proj",
27
+ "up_proj",
28
+ "gate_proj",
29
+ "down_proj"
30
+ ],
31
+ "task_type": "CAUSAL_LM",
32
+ "use_dora": false,
33
+ "use_rslora": false
34
+ }
single_dataset/img2json/VideoGameBunny_v1_1-Llama-3-8B-V-img2json_dataset_40000_epochs_1_lora/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b9ef59283510c9e7b49e3932426b46eabb879faff3c8887c30de65c24077d5fd
3
+ size 671150064
single_dataset/img2json/VideoGameBunny_v1_1-Llama-3-8B-V-img2json_dataset_40000_epochs_1_lora/config.json ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "./weights/Bunny-v1_1-Llama-3-8B-V",
3
+ "architectures": [
4
+ "BunnyLlamaForCausalLM"
5
+ ],
6
+ "attention_bias": false,
7
+ "attention_dropout": 0.0,
8
+ "auto_map": {
9
+ "AutoConfig": "configuration_bunny_llama.BunnyLlamaConfig",
10
+ "AutoModelForCausalLM": "modeling_bunny_llama.BunnyLlamaForCausalLM"
11
+ },
12
+ "bos_token_id": 128000,
13
+ "continuous_training": false,
14
+ "eos_token_id": 128001,
15
+ "freeze_mm_mlp_adapter": false,
16
+ "hidden_act": "silu",
17
+ "hidden_size": 4096,
18
+ "image_aspect_ratio": "pad",
19
+ "initializer_range": 0.02,
20
+ "intermediate_size": 14336,
21
+ "max_position_embeddings": 8192,
22
+ "mm_hidden_size": 3456,
23
+ "mm_projector_lr": null,
24
+ "mm_projector_type": "mlp2x_gelu",
25
+ "mm_vision_tower": "./weights/siglip-so400m-patch14-384",
26
+ "model_type": "bunny-llama",
27
+ "num_attention_heads": 32,
28
+ "num_hidden_layers": 32,
29
+ "num_key_value_heads": 8,
30
+ "pretraining_tp": 1,
31
+ "rms_norm_eps": 1e-05,
32
+ "rope_scaling": null,
33
+ "rope_theta": 500000.0,
34
+ "tie_word_embeddings": false,
35
+ "tokenizer_model_max_length": 2048,
36
+ "tokenizer_padding_side": "right",
37
+ "torch_dtype": "float16",
38
+ "transformers_version": "4.41.2",
39
+ "tune_mm_mlp_adapter": false,
40
+ "unfreeze_vision_tower": true,
41
+ "use_cache": true,
42
+ "use_mm_proj": true,
43
+ "use_s2": true,
44
+ "vocab_size": 128256
45
+ }
single_dataset/img2json/VideoGameBunny_v1_1-Llama-3-8B-V-img2json_dataset_40000_epochs_1_lora/non_lora_trainables.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d3a09b73edd598b333e4c155070f11cbe643f9b38281bac20c220a35ec1c5993
3
+ size 918507402
single_dataset/img2json/VideoGameBunny_v1_1-Llama-3-8B-V-img2json_dataset_40000_epochs_1_lora/trainer_state.json ADDED
The diff for this file is too large to render. See raw diff
 
single_dataset/img2json/VideoGameBunny_v1_1-Llama-3-8B-V-img2json_dataset_50000_epochs_1_lora/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: ./weights/Bunny-v1_1-Llama-3-8B-V
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.11.1
single_dataset/img2json/VideoGameBunny_v1_1-Llama-3-8B-V-img2json_dataset_50000_epochs_1_lora/adapter_config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "./weights/Bunny-v1_1-Llama-3-8B-V",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 256,
14
+ "lora_dropout": 0.1,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 128,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "o_proj",
24
+ "k_proj",
25
+ "up_proj",
26
+ "gate_proj",
27
+ "q_proj",
28
+ "down_proj",
29
+ "v_proj"
30
+ ],
31
+ "task_type": "CAUSAL_LM",
32
+ "use_dora": false,
33
+ "use_rslora": false
34
+ }