File size: 4,848 Bytes
2c2bafd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c195190
 
 
2c2bafd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f7359a
58b020a
bafcdd7
e8e77a3
1b5426d
851e7fc
 
 
 
2163359
1615f89
aa80ef1
 
 
 
c20b291
 
 
 
172e450
f125d6d
b980eda
 
 
 
4ed26ce
ee1e96f
1da9bb2
1da6938
f2f2bea
 
 
 
 
33ce7f5
 
 
2233404
 
 
 
21ca990
 
 
 
48db776
43ea9f2
ae94eca
a9a370a
a439a08
36bb870
 
 
 
 
130c668
76cba2b
367935d
1896259
93b01ed
 
 
 
7d8a047
 
 
 
8617aa2
a5e70e5
 
 
 
 
 
d6bba1d
912dee5
eed988c
c195190
2c2bafd
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
---
license: mit
base_model: gpt2
tags:
- generated_from_keras_callback
model-index:
- name: ashishbaraiya/my-tweets-finetuned
  results: []
---

<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->

# ashishbaraiya/my-tweets-finetuned

This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.0764
- Validation Loss: 3.1842
- Epoch: 77

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5e-05, 'decay_steps': 4500, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32

### Training results

| Train Loss | Validation Loss | Epoch |
|:----------:|:---------------:|:-----:|
| 9.3483     | 8.3624          | 0     |
| 7.2778     | 6.9685          | 1     |
| 5.9195     | 6.2234          | 2     |
| 5.0730     | 5.6830          | 3     |
| 4.4703     | 5.3916          | 4     |
| 3.8427     | 4.8847          | 5     |
| 3.3641     | 4.5318          | 6     |
| 2.8373     | 4.3084          | 7     |
| 2.4261     | 4.0802          | 8     |
| 2.0691     | 3.8920          | 9     |
| 1.8213     | 3.8208          | 10    |
| 1.5922     | 3.6103          | 11    |
| 1.3694     | 3.5038          | 12    |
| 1.1764     | 3.3149          | 13    |
| 1.0135     | 3.2981          | 14    |
| 0.8874     | 3.2975          | 15    |
| 0.7716     | 3.2103          | 16    |
| 0.6679     | 3.3297          | 17    |
| 0.5770     | 3.2517          | 18    |
| 0.5098     | 3.0959          | 19    |
| 0.4403     | 3.1526          | 20    |
| 0.3791     | 2.9750          | 21    |
| 0.3367     | 3.0588          | 22    |
| 0.3027     | 3.0408          | 23    |
| 0.2617     | 3.1930          | 24    |
| 0.2387     | 3.1227          | 25    |
| 0.2175     | 3.0582          | 26    |
| 0.2062     | 3.1239          | 27    |
| 0.1868     | 3.0407          | 28    |
| 0.1746     | 3.2357          | 29    |
| 0.1657     | 3.1285          | 30    |
| 0.1536     | 3.2110          | 31    |
| 0.1512     | 3.1890          | 32    |
| 0.1447     | 3.1713          | 33    |
| 0.1426     | 3.1498          | 34    |
| 0.1369     | 3.1877          | 35    |
| 0.1327     | 3.2019          | 36    |
| 0.1303     | 3.0486          | 37    |
| 0.1213     | 3.1264          | 38    |
| 0.1204     | 3.1468          | 39    |
| 0.1206     | 3.1846          | 40    |
| 0.1125     | 3.1880          | 41    |
| 0.1113     | 3.1980          | 42    |
| 0.1098     | 3.1759          | 43    |
| 0.1071     | 3.1385          | 44    |
| 0.1055     | 3.1730          | 45    |
| 0.1024     | 3.1820          | 46    |
| 0.0995     | 3.1252          | 47    |
| 0.0995     | 3.1279          | 48    |
| 0.1004     | 3.2428          | 49    |
| 0.0982     | 3.1116          | 50    |
| 0.0957     | 3.2210          | 51    |
| 0.0936     | 3.1351          | 52    |
| 0.0917     | 3.1618          | 53    |
| 0.0930     | 3.1924          | 54    |
| 0.0929     | 3.2831          | 55    |
| 0.0889     | 3.2458          | 56    |
| 0.0913     | 3.2061          | 57    |
| 0.0899     | 3.4128          | 58    |
| 0.0880     | 3.2114          | 59    |
| 0.0869     | 3.2738          | 60    |
| 0.0878     | 3.1723          | 61    |
| 0.0844     | 3.1465          | 62    |
| 0.0846     | 3.1106          | 63    |
| 0.0841     | 3.2216          | 64    |
| 0.0824     | 3.2971          | 65    |
| 0.0823     | 3.2267          | 66    |
| 0.0811     | 3.2503          | 67    |
| 0.0823     | 3.1981          | 68    |
| 0.0808     | 3.2618          | 69    |
| 0.0803     | 3.1607          | 70    |
| 0.0786     | 3.3295          | 71    |
| 0.0801     | 3.2952          | 72    |
| 0.0777     | 3.2545          | 73    |
| 0.0764     | 3.1248          | 74    |
| 0.0772     | 3.2185          | 75    |
| 0.0758     | 3.3147          | 76    |
| 0.0764     | 3.1842          | 77    |


### Framework versions

- Transformers 4.35.2
- TensorFlow 2.15.0
- Datasets 2.16.1
- Tokenizers 0.15.1