File size: 4,238 Bytes
710d527
 
5b67834
 
 
 
 
 
 
 
 
 
 
710d527
 
5b67834
710d527
 
 
 
 
5b67834
710d527
5b67834
 
 
 
 
710d527
5b67834
710d527
5b67834
 
 
710d527
 
 
 
 
5b67834
 
 
 
 
710d527
5b67834
710d527
5b67834
 
 
 
 
710d527
 
 
5b67834
 
 
710d527
 
 
5b67834
 
 
 
710d527
 
 
5b67834
 
 
 
710d527
 
 
5b67834
 
 
 
 
 
710d527
5b67834
 
 
 
 
 
 
710d527
 
 
 
 
5b67834
 
 
710d527
 
 
5b67834
 
 
 
710d527
 
5b67834
 
 
710d527
 
 
 
 
 
5b67834
 
710d527
 
5b67834
 
 
 
710d527
 
 
5b67834
 
710d527
5b67834
710d527
5b67834
 
 
710d527
5b67834
710d527
 
5b67834
 
 
710d527
 
5b67834
710d527
5b67834
710d527
5b67834
 
 
710d527
5b67834
710d527
5b67834
710d527
5b67834
710d527
5b67834
710d527
 
 
5b67834
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
---
library_name: transformers
tags:
- biomedical-nlp
- language-model
- bert
- medical-text
license: apache-2.0
language:
- en
base_model:
- michiyasunaga/BioLinkBERT-large
pipeline_tag: text-classification
---

# Model Card for BioLinkBERT

## Model Details

### Model Description

BioLinkBERT is a specialized language model designed for biomedical natural language processing tasks. It leverages advanced techniques to understand and process medical and scientific text with high accuracy and context-awareness.

- **Developed by:** [Research Institution/Team Name - to be specified]
- **Model type:** Transformer-based Biomedical Language Model
- **Language(s):** English (Biomedical Domain)
- **License:** [Specific License - to be added]
- **Finetuned from model:** Base BERT or BioBERT model

### Model Sources

- **Repository:** [GitHub/Model Repository Link]
- **Paper:** [Research Publication Link]
- **Demo:** [Optional Demo URL]

## Uses

### Direct Use

BioLinkBERT can be applied to various biomedical natural language processing tasks, including:
- Medical text classification
- Biomedical named entity recognition
- Scientific literature analysis
- Clinical document understanding

### Downstream Use

Potential applications include:
- Clinical decision support systems
- Biomedical research information extraction
- Medical literature summarization
- Semantic analysis of healthcare documents

### Out-of-Scope Use

- Not intended for direct medical diagnosis
- Performance may degrade outside biomedical domain
- Should not replace professional medical interpretation

## Bias, Risks, and Limitations

- Potential biases from training data
- Limited to biomedical text domains
- May not capture the most recent medical terminologies
- Requires careful validation in critical applications

### Recommendations

- Use as a supporting tool, not a standalone decision-maker
- Validate outputs with domain experts
- Regularly update and fine-tune for specific use cases
- Be aware of potential contextual limitations

## How to Get Started with the Model

```python
from transformers import AutoModelForSequenceClassification, AutoTokenizer

# Load BioLinkBERT model and tokenizer
model = AutoModelForSequenceClassification.from_pretrained('biolinkbert-path')
tokenizer = AutoTokenizer.from_pretrained('biolinkbert-path')

# Example usage for text classification
def classify_biomedical_text(text):
    inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=512)
    outputs = model(**inputs)
    # Add specific classification logic based on your task
    return outputs
```

## Training Details

### Training Data

- **Dataset:** [Specific Biomedical Corpus - to be specified]
- **Domain:** Medical and Scientific Literature
- **Preprocessing:** [Specific preprocessing techniques]

### Training Procedure

#### Preprocessing
- Tokenization
- Text normalization
- Domain-specific preprocessing

#### Training Hyperparameters
- **Base Model:** BERT or BioBERT
- **Training Regime:** [Specific training details]
- **Precision:** [Training precision method]

## Evaluation

### Testing Data, Factors & Metrics

#### Testing Data
- Held-out biomedical text corpus
- Diverse medical and scientific documents

#### Metrics
- Precision
- Recall
- F1-Score
- Domain-specific evaluation metrics

## Environmental Impact

- Estimated carbon emissions to be calculated
- Compute infrastructure details to be specified

## Technical Specifications

### Model Architecture
- **Base Architecture:** Transformer (BERT-like)
- **Specialized Domain:** Biomedical Text Processing

## Citation

**BibTeX:**
```bibtex
[To be added when research is published]
```

**APA:**
[Citation details to be added]

## Glossary

- **NLP:** Natural Language Processing
- **BERT:** Bidirectional Encoder Representations from Transformers
- **Biomedical NLP:** Application of natural language processing techniques to medical and biological text

## More Information

For detailed information about the model's development, performance, and specific capabilities, please contact the model developers.

## Model Card Authors

[Names or affiliations of model card authors]

## Model Card Contact

[Contact information for further inquiries]