from typing import Dict, List, Any | |
from PIL import Image | |
from io import BytesIO | |
from transformers import pipeline | |
import base64 | |
class EndpointHandler(): | |
def __init__(self, path=""): | |
self.pipeline=pipeline("zero-shot-image-classification",model=path) | |
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]: | |
""" | |
data args: | |
images (:obj:`string`) | |
candiates (:obj:`list`) | |
Return: | |
A :obj:`list`:. The list contains items that are dicts should be liked {"label": "XXX", "score": 0.82} | |
""" | |
inputs = data.pop("inputs", data) | |
# decode base64 image to PIL | |
image = Image.open(BytesIO(base64.b64decode(inputs['image']))) | |
# run prediction one image wit provided candiates | |
prediction = self.pipeline(images=[image], candidate_labels=inputs["candiates"]) | |
return prediction[0] |