File size: 8,867 Bytes
eea4aca
 
 
9155609
eea4aca
 
 
 
 
485241e
 
 
 
 
 
 
 
 
 
 
c30d9a5
485241e
06192f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fca736f
06192f7
 
 
 
 
 
 
 
 
 
fca736f
06192f7
 
 
 
 
 
 
 
 
 
fca736f
06192f7
 
 
 
 
 
5bc2833
 
06192f7
 
fca736f
06192f7
9b8cc95
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eea4aca
 
 
b6c27e9
eea4aca
 
 
89926b1
eea4aca
 
 
 
33320f0
eea4aca
 
 
35418e7
eea4aca
 
 
27c3dea
eea4aca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9155609
eea4aca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27c3dea
 
eea4aca
 
 
 
 
 
 
33320f0
eea4aca
 
 
 
 
 
 
 
33320f0
 
59ab0cb
eea4aca
a505a27
 
 
 
 
 
 
 
 
 
 
 
 
 
eea4aca
 
 
 
 
 
 
 
 
 
5b1e3b8
 
 
27c3dea
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
---
language: 
- fr
thumbnail: https://raw.githubusercontent.com/AntoineSimoulin/gpt-fr/main/imgs/logo.png
tags:
- tf
- pytorch
- gpt2
- text-generation
model-index:
- name: asi/gpt-fr-cased-base
  results:
  - task:
      type: text-generation
      name: Wikitext-fr
    dataset:
      type: wikitext_fr
      name: Wikitext-fr
    metrics:
      - type: perplexity
        value: 12.9
        name: Perplexity
  - task:
      type: text-classification
      name: FLUE
    dataset:
      type: flue
      name: CLS-Books
      split: CLS
    metrics:
      - type: accuracy
        value: 91.6
        name: Accuracy
  - task:
      type: text-classification
      name: FLUE
    dataset:
      type: flue
      name: CLS-Dvd
      split: CLS
    metrics:
      - type: accuracy
        value: 91.4
        name: Accuracy
  - task:
      type: text-classification
      name: FLUE
    dataset:
      type: flue
      name: CLS-Music
      split: CLS
    metrics:
      - type: accuracy
        value: 92.6
        name: Accuracy
  - task:
      type: text-classification
      name: FLUE
    dataset:
      type: flue
      name: PAWS-X
      split: PAWS-X
    metrics:
      - type: accuracy
        value: 86.3
        name: Accuracy
  - task:
      type: text-classification
      name: FLUE
    dataset:
      type: flue
      name: XNLI
      split: XNLI
    metrics:
      - type: accuracy
        value: 77.9
        name: Accuracy
  - task:
      type: summarization
      name: OrangeSum
    dataset:
      type: orange_sum
      name: OrangeSum-Abstract
      split: abstract
    metrics:
    - name: ROUGE-1
      type: rouge
      value: 16.6
    - name: ROUGE-2
      type: rouge
      value: 3.4
    - name: ROUGE-L
      type: rouge
      value: 11.5
  - task:
      type: summarization
      name: OrangeSum
    dataset:
      type: orange_sum
      name: OrangeSum-Title
      split: title
    metrics:
    - name: ROUGE-1
      type: rouge
      value: 10.2
    - name: ROUGE-2
      type: rouge
      value: 2.6
    - name: ROUGE-L
      type: rouge
      value: 8.4
license: apache-2.0
---

<img src="https://raw.githubusercontent.com/AntoineSimoulin/gpt-fr/main/imgs/logo.png" width="200">

## Model description

**GPT-fr** 🇫🇷 is a GPT model for French developped by [Quantmetry](https://www.quantmetry.com/) and the [Laboratoire de Linguistique Formelle (LLF)](http://www.llf.cnrs.fr/en). We train the model on a very large and heterogeneous French corpus. We release the weights for the following configurations:

| Model name | Number of layers | Attention Heads | Embedding Dimension | Total Parameters |
| :------:       |   :---: | :---: | :---: | :---: |
| `gpt-fr-cased-small` | 12    | 12    | 768   | 124 M |
| `gpt-fr-cased-base` | 24    | 14    | 1,792   | 1,017 B |

## Intended uses & limitations

The model can be leveraged for language generation tasks. Besides, many tasks may be formatted such that the output is directly generated in natural language. Such configuration may be used for tasks such as automatic summary or question answering. We do hope our model might be used for both academic and industrial applications. 

#### How to use

The model might be used through the astonishing 🤗 `Transformers` librairie. We use the work from [Shoeybi et al., (2019)](#shoeybi-2019) and calibrate our model such that during pre-training or fine-tuning, the model can fit on a single NVIDIA V100 32GB GPU.

```python
from transformers import GPT2Tokenizer, GPT2LMHeadModel

# Load pretrained model and tokenizer
model = GPT2LMHeadModel.from_pretrained("asi/gpt-fr-cased-base")
tokenizer = GPT2Tokenizer.from_pretrained("asi/gpt-fr-cased-base")

# Generate a sample of text
model.eval()
input_sentence = "Longtemps je me suis couché de bonne heure."
input_ids = tokenizer.encode(input_sentence, return_tensors='pt')

beam_outputs = model.generate(
    input_ids, 
    max_length=100, 
    do_sample=True,   
    top_k=50, 
    top_p=0.95, 
    num_return_sequences=1
)

print("Output:\n" + 100 * '-')
print(tokenizer.decode(beam_outputs[0], skip_special_tokens=True))
```

#### Limitations and bias

Large language models tend to replicate the biases found in pre-training datasets, such as gender discrimination or offensive content generation.

To limit exposition to too much explicit material, we carefully choose the sources beforehand. This process — detailed in our paper — aims to limit offensive content generation from the model without performing manual and arbitrary filtering.

However, some societal biases, contained in the data, might be reflected by the model. For example on gender equality, we generated the following sentence sequence "Ma femme/Mon mari vient d'obtenir un nouveau poste en tant \_\_\_\_\_\_\_". We used top-k random sampling strategy with k=50 and stopped at the first punctuation element.
The positions generated for the wife is '_que professeur de français._' while the position for the husband is '_que chef de projet._'. We do appreciate your feedback to better qualitatively and quantitatively assess such effects.

## Training data

We created a dedicated corpus to train our generative model. Indeed the model uses a fixed-length context size of 1,024 and require long documents to be trained.  We aggregated existing corpora: [Wikipedia](https://dumps.wikimedia.org/frwiki/), [OpenSubtitle](http://opus.nlpl.eu/download.php?f=OpenSubtitles/v2016/mono/) ([Tiedemann, 2012](#tiedemann-2012)), [Gutenberg](http://www.gutenberg.org) and [Common Crawl](http://data.statmt.org/ngrams/deduped2017/) ([Li et al., 2019](li-2019)). Corpora are filtered and separated into sentences. Successive sentences are then concatenated within the limit of 1,024 tokens per document.

## Training procedure

We pre-trained the model on the new CNRS (French National Centre for Scientific Research) [Jean Zay](http://www.idris.fr/eng/jean-zay/) supercomputer. We perform the training within a total of 140 hours of computation on Tesla V-100 hardware (TDP of 300W). The training was distributed on 4 compute nodes of 8 GPUs. We used data parallelization in order to divide each micro-batch on the computing units. We estimated the total emissions at 580.61 kgCO2eq, using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al., (2019)](lacoste-2019).

## Eval results

We packaged **GPT-fr** with a dedicated language model evaluation benchmark for French. 
In line with the [WikiText](https://blog.einstein.ai/the-wikitext-long-term-dependency-language-modeling-dataset/) benchmark in English, we collected over 70 million tokens from the set of verified [good](https://fr.wikipedia.org/wiki/Wikip%C3%A9dia:Articles_de_qualit%C3%A9) and [featured](https://fr.wikipedia.org/wiki/Wikip%C3%A9dia:Bons_articles) articles on Wikipedia. The model reaches a zero-shot perplexity of **12.9** on the test set. 

### BibTeX entry and citation info

Along with the model hosted by HuggingFace transformers library, we maintain a [git repository](https://github.com/AntoineSimoulin/gpt-fr).
If you use **GPT-fr** for your scientific publications or your industrial applications, please cite the following paper:

```bibtex
@inproceedings{simoulin:hal-03265900,
  TITLE = {{Un mod{\`e}le Transformer G{\'e}n{\'e}ratif Pr{\'e}-entrain{\'e} pour le \_\_\_\_\_\_ fran{\c c}ais}},
  AUTHOR = {Simoulin, Antoine and Crabb{\'e}, Benoit},
  URL = {https://hal.archives-ouvertes.fr/hal-03265900},
  BOOKTITLE = {{Traitement Automatique des Langues Naturelles}},
  ADDRESS = {Lille, France},
  EDITOR = {Denis, Pascal and Grabar, Natalia and Fraisse, Amel and Cardon, R{\'e}mi and Jacquemin, Bernard and Kergosien, Eric and Balvet, Antonio},
  PUBLISHER = {{ATALA}},
  PAGES = {246-255},
  YEAR = {2021},
  KEYWORDS = {fran{\c c}ais. ; GPT ; G{\'e}n{\'e}ratif ; Transformer ; Pr{\'e}-entra{\^i}n{\'e}},
  PDF = {https://hal.archives-ouvertes.fr/hal-03265900/file/7.pdf},
  HAL_ID = {hal-03265900},
  HAL_VERSION = {v1},
}
```

### References

><div name="tiedemann-2012">Jörg Tiedemann: Parallel Data, Tools and Interfaces in OPUS. LREC 2012: 2214-2218</div>

><div name="li-2019">Xian Li, Paul Michel, Antonios Anastasopoulos, Yonatan Belinkov, Nadir Durrani, Orhan Firat, Philipp Koehn, Graham Neubig, Juan Pino, Hassan Sajjad: Findings of the First Shared Task on Machine Translation Robustness. WMT (2) 2019: 91-102</div>

><div name="shoeybi-2019">Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper, Bryan Catanzaro: Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism. CoRR abs/1909.08053 (2019)</div>

><div name="lacoste-2019">Alexandre Lacoste, Alexandra Luccioni, Victor Schmidt, Thomas Dandres: Quantifying the Carbon Emissions of Machine Learning. CoRR abs/1910.09700 (2019)</div>