Asif Ahmad
commited on
Commit
·
a21a06f
1
Parent(s):
0a6a1d7
Create xgb_training.py
Browse files- xgb_training.py +42 -0
xgb_training.py
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# developer: Taoshidev
|
2 |
+
# Copyright © 2023 Taoshi, LLC
|
3 |
+
|
4 |
+
# developer: Taoshidev
|
5 |
+
# Copyright © 2023 Taoshi, LLC
|
6 |
+
|
7 |
+
import random
|
8 |
+
|
9 |
+
import numpy as np
|
10 |
+
from sklearn.preprocessing import MinMaxScaler
|
11 |
+
|
12 |
+
from mining_objects.xgb_mining_model import BaseMiningModel
|
13 |
+
from mining_objects.mining_utils import MiningUtils
|
14 |
+
from time_util.time_util import TimeUtil
|
15 |
+
from vali_objects.dataclasses.client_request import ClientRequest
|
16 |
+
from vali_config import ValiConfig
|
17 |
+
|
18 |
+
import bittensor as bt
|
19 |
+
|
20 |
+
# historical doesnt have timestamps
|
21 |
+
data_structure = MiningUtils.get_file("/runnable/historical_financial_data/data.pickle", True)
|
22 |
+
#data_structure = [data_structure[0][curr_iter:curr_iter+iter_add],
|
23 |
+
# data_structure[1][curr_iter:curr_iter+iter_add],
|
24 |
+
# data_structure[2][curr_iter:curr_iter+iter_add],
|
25 |
+
# data_structure[3][curr_iter:curr_iter+iter_add],
|
26 |
+
# data_structure[4][curr_iter:curr_iter+iter_add]]
|
27 |
+
print(len(data_structure[0]))
|
28 |
+
print("start", TimeUtil.millis_to_timestamp(data_structure[0][0]))
|
29 |
+
print("end", TimeUtil.millis_to_timestamp(data_structure[0][len(data_structure[0])-1]))
|
30 |
+
sds_ndarray = np.array(data_structure).T
|
31 |
+
|
32 |
+
scaler = MinMaxScaler(feature_range=(0, 1))
|
33 |
+
|
34 |
+
scaled_data = scaler.fit_transform(sds_ndarray)
|
35 |
+
scaled_data = scaled_data.T
|
36 |
+
|
37 |
+
|
38 |
+
|
39 |
+
# will iterate and prepare the dataset and train the model as provided
|
40 |
+
prep_dataset = BaseMiningModel.base_model_dataset(scaled_data)
|
41 |
+
base_mining_model = BaseMiningModel(len(prep_dataset.T)).set_model_dir('./mining_models/xgbTrain.model')
|
42 |
+
base_mining_model.train(prep_dataset)#, epochs=25)
|