File size: 3,099 Bytes
5095c46 aad5a07 5095c46 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- food101
metrics:
- accuracy
model-index:
- name: swin-finetuned-food101
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: food101
type: food101
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.9210297029702971
- task:
type: image-classification
name: Image Classification
dataset:
name: food101
type: food101
config: default
split: validation
metrics:
- name: Accuracy
type: accuracy
value: 0.9135841584158416
verified: true
- name: Precision Macro
type: precision
value: 0.9151645786633058
verified: true
- name: Precision Micro
type: precision
value: 0.9135841584158416
verified: true
- name: Precision Weighted
type: precision
value: 0.915164578663306
verified: true
- name: Recall Macro
type: recall
value: 0.9135841584158414
verified: true
- name: Recall Micro
type: recall
value: 0.9135841584158416
verified: true
- name: Recall Weighted
type: recall
value: 0.9135841584158416
verified: true
- name: F1 Macro
type: f1
value: 0.9138785016966742
verified: true
- name: F1 Micro
type: f1
value: 0.9135841584158415
verified: true
- name: F1 Weighted
type: f1
value: 0.9138785016966743
verified: true
- name: loss
type: loss
value: 0.30761435627937317
verified: true
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# swin-finetuned-food101
This model is a fine-tuned version of [microsoft/swin-base-patch4-window7-224](https://huggingface.co/microsoft/swin-base-patch4-window7-224) on the food101 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2772
- Accuracy: 0.9210
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.5077 | 1.0 | 1183 | 0.3851 | 0.8893 |
| 0.3523 | 2.0 | 2366 | 0.3124 | 0.9088 |
| 0.1158 | 3.0 | 3549 | 0.2772 | 0.9210 |
### Framework versions
- Transformers 4.19.2
- Pytorch 1.11.0+cu113
- Datasets 2.2.2
- Tokenizers 0.12.1
|