--- library_name: transformers language: - lg license: mit base_model: facebook/w2v-bert-2.0 tags: - generated_from_trainer datasets: - yogera metrics: - wer model-index: - name: wav2vec2-bert results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Yogera type: yogera metrics: - name: Wer type: wer value: 0.14867316851893853 --- # wav2vec2-bert This model is a fine-tuned version of [facebook/w2v-bert-2.0](https://huggingface.co/facebook/w2v-bert-2.0) on the Yogera dataset. It achieves the following results on the evaluation set: - Loss: 0.2216 - Wer: 0.1487 - Cer: 0.0334 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 100 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:| | 0.6681 | 1.0 | 235 | 0.2226 | 0.2616 | 0.0533 | | 0.1666 | 2.0 | 470 | 0.1639 | 0.2013 | 0.0410 | | 0.1249 | 3.0 | 705 | 0.1608 | 0.1912 | 0.0416 | | 0.101 | 4.0 | 940 | 0.1573 | 0.1835 | 0.0416 | | 0.0833 | 5.0 | 1175 | 0.1567 | 0.1697 | 0.0378 | | 0.0715 | 6.0 | 1410 | 0.1589 | 0.1564 | 0.0346 | | 0.0624 | 7.0 | 1645 | 0.1634 | 0.1728 | 0.0408 | | 0.0541 | 8.0 | 1880 | 0.1592 | 0.1559 | 0.0341 | | 0.0464 | 9.0 | 2115 | 0.1788 | 0.1546 | 0.0336 | | 0.0434 | 10.0 | 2350 | 0.1641 | 0.1575 | 0.0353 | | 0.0385 | 11.0 | 2585 | 0.1854 | 0.1498 | 0.0333 | | 0.0358 | 12.0 | 2820 | 0.1915 | 0.1504 | 0.0345 | | 0.0308 | 13.0 | 3055 | 0.1747 | 0.1514 | 0.0328 | | 0.0283 | 14.0 | 3290 | 0.1966 | 0.1449 | 0.0329 | | 0.0274 | 15.0 | 3525 | 0.1882 | 0.1535 | 0.0342 | | 0.0246 | 16.0 | 3760 | 0.2199 | 0.1588 | 0.0362 | | 0.0212 | 17.0 | 3995 | 0.2108 | 0.1572 | 0.0355 | | 0.0188 | 18.0 | 4230 | 0.2173 | 0.1453 | 0.0320 | | 0.017 | 19.0 | 4465 | 0.2358 | 0.1444 | 0.0324 | | 0.0177 | 20.0 | 4700 | 0.2280 | 0.1548 | 0.0339 | | 0.0174 | 21.0 | 4935 | 0.2142 | 0.1484 | 0.0322 | | 0.0138 | 22.0 | 5170 | 0.2315 | 0.1489 | 0.0338 | | 0.0122 | 23.0 | 5405 | 0.2116 | 0.1483 | 0.0341 | | 0.0125 | 24.0 | 5640 | 0.2216 | 0.1487 | 0.0334 | ### Framework versions - Transformers 4.45.2 - Pytorch 2.1.0+cu118 - Datasets 3.0.1 - Tokenizers 0.20.1