--- library_name: transformers license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer metrics: - wer model-index: - name: whisper-small-CV_Fleurs_AMMI_ALFFA-sw-1hrs-v1 results: [] --- # whisper-small-CV_Fleurs_AMMI_ALFFA-sw-1hrs-v1 This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.0750 - Wer: 0.6608 - Cer: 0.3094 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_HF with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 100 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:| | 2.8725 | 1.0 | 72 | 1.4755 | 0.9300 | 0.3706 | | 0.9122 | 2.0 | 144 | 1.2054 | 0.7693 | 0.3183 | | 0.4127 | 3.0 | 216 | 1.1717 | 0.6751 | 0.2664 | | 0.2043 | 4.0 | 288 | 1.2860 | 0.7312 | 0.3201 | | 0.1703 | 5.0 | 360 | 1.3121 | 0.5544 | 0.2231 | | 0.1509 | 6.0 | 432 | 1.3884 | 0.5587 | 0.2045 | | 0.1646 | 7.0 | 504 | 1.5089 | 0.6426 | 0.2695 | | 0.1761 | 8.0 | 576 | 1.5317 | 0.5963 | 0.2422 | | 0.1725 | 9.0 | 648 | 1.5984 | 0.5842 | 0.2437 | | 0.1968 | 10.0 | 720 | 1.7078 | 0.6239 | 0.2540 | | 0.1949 | 11.0 | 792 | 1.8013 | 0.6542 | 0.2965 | | 0.1738 | 12.0 | 864 | 1.8570 | 0.9835 | 0.6013 | | 0.1511 | 13.0 | 936 | 1.9424 | 0.6105 | 0.2695 | | 0.1478 | 14.0 | 1008 | 1.8473 | 0.7972 | 0.3916 | | 0.127 | 15.0 | 1080 | 1.8845 | 0.7513 | 0.3836 | | 0.1058 | 16.0 | 1152 | 2.0406 | 0.6778 | 0.3159 | | 0.0982 | 17.0 | 1224 | 2.0612 | 0.6522 | 0.3179 | | 0.0938 | 18.0 | 1296 | 2.0644 | 0.6445 | 0.3006 | | 0.0832 | 19.0 | 1368 | 2.0671 | 0.8840 | 0.4900 | | 0.0787 | 20.0 | 1440 | 2.0750 | 0.6608 | 0.3094 | ### Framework versions - Transformers 4.48.0 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0