--- library_name: transformers language: - bem license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - BIG_C_and_AMMI-BEMBA_SPEECH_CORPUS/BEMBA metrics: - wer model-index: - name: Whisper Small Bemba - Beijuka Bruno results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: BEMBA type: BIG_C_and_AMMI-BEMBA_SPEECH_CORPUS/BEMBA args: 'config: bemba, split: test' metrics: - name: Wer type: wer value: 0.35305995080582986 --- # Whisper Small Bemba - Beijuka Bruno This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the BEMBA dataset. It achieves the following results on the evaluation set: - Loss: 0.5013 - Wer: 0.3531 - Cer: 0.1008 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.025 - num_epochs: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:| | 0.9062 | 1.0 | 5914 | 0.4964 | 0.4258 | 0.1059 | | 0.5025 | 2.0 | 11828 | 0.4104 | 0.3567 | 0.0887 | | 0.4079 | 3.0 | 17742 | 0.3767 | 0.3252 | 0.0827 | | 0.3239 | 4.0 | 23656 | 0.3676 | 0.3133 | 0.0804 | | 0.2438 | 5.0 | 29570 | 0.3798 | 0.3219 | 0.0846 | | 0.1655 | 6.0 | 35484 | 0.4092 | 0.3124 | 0.0787 | | 0.0986 | 7.0 | 41398 | 0.4579 | 0.3251 | 0.0845 | | 0.0554 | 8.0 | 47312 | 0.4980 | 0.3231 | 0.0844 | | 0.0342 | 9.0 | 53226 | 0.5362 | 0.3174 | 0.0820 | | 0.0255 | 10.0 | 59140 | 0.5647 | 0.3150 | 0.0810 | | 0.021 | 11.0 | 65054 | 0.5882 | 0.3153 | 0.0797 | | 0.0184 | 12.0 | 70968 | 0.6067 | 0.3162 | 0.0805 | | 0.0161 | 13.0 | 76882 | 0.6337 | 0.3192 | 0.0842 | | 0.0146 | 14.0 | 82796 | 0.6493 | 0.3138 | 0.0819 | ### Framework versions - Transformers 4.45.2 - Pytorch 2.1.0+cu118 - Datasets 3.0.1 - Tokenizers 0.20.1