File size: 2,276 Bytes
ac65a53
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
---
license: mit
base_model: facebook/w2v-bert-2.0
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: malayalam_combined_Extempore
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/krishnan-aravind/huggingface/runs/xe6xq146)
# malayalam_combined_Extempore

This model is a fine-tuned version of [facebook/w2v-bert-2.0](https://huggingface.co/facebook/w2v-bert-2.0) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4866
- Wer: 0.4837

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 50
- num_epochs: 10
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Wer    |
|:-------------:|:------:|:----:|:---------------:|:------:|
| 0.8139        | 0.9794 | 500  | 0.8389          | 0.6821 |
| 0.6539        | 1.9589 | 1000 | 0.6815          | 0.6041 |
| 0.5383        | 2.9383 | 1500 | 0.5827          | 0.5705 |
| 0.4772        | 3.9177 | 2000 | 0.5398          | 0.5548 |
| 0.4351        | 4.8972 | 2500 | 0.5342          | 0.5407 |
| 0.3866        | 5.8766 | 3000 | 0.5411          | 0.5174 |
| 0.3567        | 6.8560 | 3500 | 0.5063          | 0.5085 |
| 0.3047        | 7.8355 | 4000 | 0.4886          | 0.4986 |
| 0.2879        | 8.8149 | 4500 | 0.4878          | 0.4884 |
| 0.2648        | 9.7943 | 5000 | 0.4866          | 0.4837 |


### Framework versions

- Transformers 4.43.0.dev0
- Pytorch 1.14.0a0+44dac51
- Datasets 2.16.1
- Tokenizers 0.19.1