Ahmet
commited on
Commit
·
7c4e56b
1
Parent(s):
27a1a08
update model
Browse files- README.md +13 -7
- config.json +1 -1
- pytorch_model.bin +2 -2
README.md
CHANGED
@@ -21,6 +21,12 @@ This model was adapted from [ytu-ce-cosmos/turkish-medium-bert-uncased](https://
|
|
21 |
- [nli_tr](https://huggingface.co/datasets/nli_tr)
|
22 |
- [emrecan/stsb-mt-turkish](https://huggingface.co/datasets/emrecan/stsb-mt-turkish)
|
23 |
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
## Usage (Sentence-Transformers)
|
25 |
|
26 |
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
|
@@ -85,10 +91,10 @@ print(sentence_embeddings)
|
|
85 |
Achieved results on the [STS-b](https://huggingface.co/datasets/emrecan/stsb-mt-turkish) test split are given below:
|
86 |
|
87 |
```txt
|
88 |
-
Cosine-Similarity :
|
89 |
-
Manhattan-Distance:
|
90 |
-
Euclidean-Distance:
|
91 |
-
Dot-Product-Similarity:
|
92 |
```
|
93 |
|
94 |
|
@@ -109,8 +115,8 @@ The model was trained with the parameters:
|
|
109 |
Parameters of the fit()-Method:
|
110 |
```
|
111 |
{
|
112 |
-
"epochs":
|
113 |
-
"evaluation_steps":
|
114 |
"evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator",
|
115 |
"max_grad_norm": 1,
|
116 |
"optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
|
@@ -119,7 +125,7 @@ Parameters of the fit()-Method:
|
|
119 |
},
|
120 |
"scheduler": "WarmupLinear",
|
121 |
"steps_per_epoch": null,
|
122 |
-
"warmup_steps":
|
123 |
"weight_decay": 0.01
|
124 |
}
|
125 |
```
|
|
|
21 |
- [nli_tr](https://huggingface.co/datasets/nli_tr)
|
22 |
- [emrecan/stsb-mt-turkish](https://huggingface.co/datasets/emrecan/stsb-mt-turkish)
|
23 |
|
24 |
+
:warning: **All texts were manually lowercased,** [as stated](https://huggingface.co/ytu-ce-cosmos/turkish-medium-bert-uncased#%E2%9A%A0-uncased-use-requires-manual-lowercase-conversion) by the model's authors:
|
25 |
+
|
26 |
+
```python
|
27 |
+
text.replace("I", "ı").lower()
|
28 |
+
```
|
29 |
+
|
30 |
## Usage (Sentence-Transformers)
|
31 |
|
32 |
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
|
|
|
91 |
Achieved results on the [STS-b](https://huggingface.co/datasets/emrecan/stsb-mt-turkish) test split are given below:
|
92 |
|
93 |
```txt
|
94 |
+
Cosine-Similarity : Pearson: 0.8329 Spearman: 0.8336
|
95 |
+
Manhattan-Distance: Pearson: 0.8193 Spearman: 0.8188
|
96 |
+
Euclidean-Distance: Pearson: 0.8198 Spearman: 0.8195
|
97 |
+
Dot-Product-Similarity: Pearson: 0.7888 Spearman: 0.7822
|
98 |
```
|
99 |
|
100 |
|
|
|
115 |
Parameters of the fit()-Method:
|
116 |
```
|
117 |
{
|
118 |
+
"epochs": 4,
|
119 |
+
"evaluation_steps": 9,
|
120 |
"evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator",
|
121 |
"max_grad_norm": 1,
|
122 |
"optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
|
|
|
125 |
},
|
126 |
"scheduler": "WarmupLinear",
|
127 |
"steps_per_epoch": null,
|
128 |
+
"warmup_steps": 36,
|
129 |
"weight_decay": 0.01
|
130 |
}
|
131 |
```
|
config.json
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
{
|
2 |
-
"_name_or_path": "
|
3 |
"architectures": [
|
4 |
"BertModel"
|
5 |
],
|
|
|
1 |
{
|
2 |
+
"_name_or_path": "ytu_ce_cosmos-turkish_medium_bert_uncased-b64-e4-nli\\",
|
3 |
"architectures": [
|
4 |
"BertModel"
|
5 |
],
|
pytorch_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fb088867528093ee52e3f2c60b690dae20696531b7d55e744038bc7c78ebf565
|
3 |
+
size 168569197
|