atasoglu commited on
Commit
7a9ae4a
·
verified ·
1 Parent(s): b383850

update README.md

Browse files
Files changed (1) hide show
  1. README.md +2 -2
README.md CHANGED
@@ -33,7 +33,7 @@ Then you can use the model like this:
33
 
34
  ```python
35
  from sentence_transformers import SentenceTransformer
36
- sentences = ["This is an example sentence", "Each sentence is converted"]
37
 
38
  model = SentenceTransformer('atasoglu/turkish-mini-bert-uncased-mean-nli-stsb-tr')
39
  embeddings = model.encode(sentences)
@@ -58,7 +58,7 @@ def mean_pooling(model_output, attention_mask):
58
 
59
 
60
  # Sentences we want sentence embeddings for
61
- sentences = ['This is an example sentence', 'Each sentence is converted']
62
 
63
  # Load model from HuggingFace Hub
64
  tokenizer = AutoTokenizer.from_pretrained('atasoglu/turkish-mini-bert-uncased-mean-nli-stsb-tr')
 
33
 
34
  ```python
35
  from sentence_transformers import SentenceTransformer
36
+ sentences = ["Bu örnek bir cümle", "Her cümle dönüştürülür"]
37
 
38
  model = SentenceTransformer('atasoglu/turkish-mini-bert-uncased-mean-nli-stsb-tr')
39
  embeddings = model.encode(sentences)
 
58
 
59
 
60
  # Sentences we want sentence embeddings for
61
+ sentences = ["Bu örnek bir cümle", "Her cümle dönüştürülür"]
62
 
63
  # Load model from HuggingFace Hub
64
  tokenizer = AutoTokenizer.from_pretrained('atasoglu/turkish-mini-bert-uncased-mean-nli-stsb-tr')