File size: 5,654 Bytes
ff04594
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
# pip install tensorflow
# python -m pip install --no-cache-dir tensorflow

# pip install Flask


import tensorflow.compat.v1 as tf
tf.disable_v2_behavior()
tf.enable_eager_execution()

from tensorflow.keras.models import load_model
from tensorflow.keras.preprocessing import image
import numpy as np


image_size = (224, 224)

# /cropmodel/?modelname=tomatomodel
# /cropmodel/?modelname=sugarcanemodel
# /cropmodel/?modelname=cottonmodel
Model_related_data = {
    "tomatomodel" : {
        "dataset" : {
            "total_images" : 14678,
            "total_classes" : 10,
            "classes_names" : [ 
                                "Late_blight",
                                "healthy",
                                "Early_blight",
                                "Septoria_leaf_spot",
                                "Tomato_Yellow_Leaf_Curl_Virus",
                                "Bacterial_spot",
                                "Target_Spot",
                                "Tomato_mosaic_virus",
                                "Leaf_Mold",
                                "Spider_mites Two-spotted_spider_mite",
                            ],
            },

        "training" : {
            "epochs" : 7,
            "batch_size" : 32,
            "img_frame_size" : (224,224),
            "CNN_layers" : 5,
            "CNN_layer_name" : 'relu',   
            "accuracy" : "89.23%",
            },
        "reference" : "https://www.kaggle.com/code/mrappplg/tomato-disease-detection"
        },

    "sugarcanemodel" : {
        "dataset" : {
            "total_images" : 240,
            "total_classes" : 3,
            "classes_names" : [ "Bacterial Blight", "Healthy", "Red Rot" ],
            },

        "training" : {
            "epochs" : 10,
            "batch_size" : 32,
            "img_frame_size" : (224,224),
            "CNN_layers" : 5,
            "CNN_layer_name" : 'relu', 
            "accuracy" : "94.56%",
            },
        "reference" : "https://www.kaggle.com/code/handmadeprojects/sugarcane-disease-detection"
        },
    
    "cottonmodel" : {
        "dataset" : {
            "total_images" : 1951,
            "total_classes" : 4,
            "classes_names" : ["Diseased Cotton Leaf", "Diseased Cotton Plant", "Fresh Cotton Leaf", "Fresh Cotton Plant"],
            },

        "training" : {
            "epochs" : 10,
            "batch_size" : 32,
            "img_frame_size" : (224,224),
            "CNN_layers" : 4,
            "CNN_layer_name" : 'relu', 
            "accuracy" : "83.13%",
            },
        "reference" : "https://www.kaggle.com/code/handmadeprojects/cotton-disease-detection"
        },

    }

def get_model_details():
    return Model_related_data


def tomatomodel(img_path):
    __classNames = [ 
        "Bacterial_spot",
        "Early_blight",
        "Late_blight",
        "Leaf_Mold",
        "Septoria_leaf_spot",
        "Spider_mites Two-spotted_spider_mite",
        "Target_Spot",
        "Tomato_Yellow_Leaf_Curl_Virus",
        "Tomato_mosaic_virus",
        "Healthy",
     ]

    # Load the saved model
    saved_model = load_model('model_folder/tomato_disease_model.h5')

    # Example inference with a test image
    # img_path = 'uysdeh'
    
    img = image.load_img(img_path, target_size=image_size)
    img_array = image.img_to_array(img)
    img_array = np.expand_dims(img_array, axis=0)
    img_array /= 255.0

    result = saved_model.predict(img_array)

    # Get the predicted class
    classIndex = np.argmax(result)
    predicted_class = __classNames[classIndex]
    print(f"tomatomodel __ Predicted class - {classIndex} : {predicted_class}")

    # Free memory by deleting variables
    del __classNames
    del saved_model
    del img
    del img_array
    del result

    return predicted_class

    

def sugarcanemodel(img_path):
    __classNames = [ "Bacterial Blight", "Healthy", "Red Rot" ]

    # Load the saved model
    saved_model = load_model("model_folder/sugarcane_disease_model.h5")

    # img_path = "test_img_folder/Red Rot/S_RR (12).JPG"

    img = image.load_img(img_path, target_size=image_size)
    img_array = image.img_to_array(img)
    img_array = np.expand_dims(img_array, axis=0) / 255.0
    result = saved_model.predict(img_array)

    # Get the predicted class
    classIndex = np.argmax(result)
    predicted_class = __classNames[classIndex]
    print(f"sugarcanemodel __ Predicted class - {classIndex} : {predicted_class}")

    # Free memory by deleting variables
    del __classNames
    del saved_model
    del img
    del img_array
    del result


    return predicted_class



def cottonmodel(img_path):
    # __classNames = ["Diseased Cotton Leaf", "Diseased Cotton Plant", "Fresh Cotton Leaf", "Fresh Cotton Plant"]
    __classNames = ['fresh cotton plant', 'diseased cotton plant', 'fresh cotton leaf', 'diseased cotton leaf']

    # Load the saved model
    saved_model = load_model('model_folder/cotton_disease_model.h5')

    # img_path = '/kaggle/input/cotton-disease-dataset/Cotton Disease/train/fresh cotton plant/dsd (138)_iaip.jpg'

    img = image.load_img(img_path, target_size=image_size)
    img_array = image.img_to_array(img)
    img_array = np.expand_dims(img_array, axis=0)
    result = saved_model.predict(img_array)

    # Get the predicted class
    classIndex = np.argmax(result)
    predicted_class = __classNames[classIndex]
    print(f"cottonmodel __ Predicted class - {classIndex} : {predicted_class}")

    # Free memory by deleting variables
    del __classNames
    del saved_model
    del img
    del img_array
    del result


    return predicted_class