athisree commited on
Commit
635e753
·
1 Parent(s): 99c1a5a

End of training

Browse files
README.md ADDED
@@ -0,0 +1,78 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - generated_from_trainer
4
+ datasets:
5
+ - funsd
6
+ model-index:
7
+ - name: layoutlm-funsd
8
+ results: []
9
+ ---
10
+
11
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
12
+ should probably proofread and complete it, then remove this comment. -->
13
+
14
+ # layoutlm-funsd
15
+
16
+ This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the funsd dataset.
17
+ It achieves the following results on the evaluation set:
18
+ - Loss: 0.6675
19
+ - Answer: {'precision': 0.7104972375690608, 'recall': 0.7948084054388134, 'f1': 0.750291715285881, 'number': 809}
20
+ - Header: {'precision': 0.2892561983471074, 'recall': 0.29411764705882354, 'f1': 0.2916666666666667, 'number': 119}
21
+ - Question: {'precision': 0.7677642980935875, 'recall': 0.831924882629108, 'f1': 0.7985579089680036, 'number': 1065}
22
+ - Overall Precision: 0.7174
23
+ - Overall Recall: 0.7847
24
+ - Overall F1: 0.7496
25
+ - Overall Accuracy: 0.8194
26
+
27
+ ## Model description
28
+
29
+ More information needed
30
+
31
+ ## Intended uses & limitations
32
+
33
+ More information needed
34
+
35
+ ## Training and evaluation data
36
+
37
+ More information needed
38
+
39
+ ## Training procedure
40
+
41
+ ### Training hyperparameters
42
+
43
+ The following hyperparameters were used during training:
44
+ - learning_rate: 3e-05
45
+ - train_batch_size: 16
46
+ - eval_batch_size: 8
47
+ - seed: 42
48
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
49
+ - lr_scheduler_type: linear
50
+ - num_epochs: 15
51
+
52
+ ### Training results
53
+
54
+ | Training Loss | Epoch | Step | Validation Loss | Answer | Header | Question | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
55
+ |:-------------:|:-----:|:----:|:---------------:|:------------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
56
+ | 1.7901 | 1.0 | 10 | 1.6070 | {'precision': 0.019525801952580194, 'recall': 0.0173053152039555, 'f1': 0.018348623853211007, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.2396486825595985, 'recall': 0.17934272300469484, 'f1': 0.20515574650912996, 'number': 1065} | 0.1354 | 0.1029 | 0.1169 | 0.3392 |
57
+ | 1.4547 | 2.0 | 20 | 1.2498 | {'precision': 0.21739130434782608, 'recall': 0.22249690976514216, 'f1': 0.21991447770311545, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.464573268921095, 'recall': 0.5417840375586854, 'f1': 0.5002167316861725, 'number': 1065} | 0.3655 | 0.3798 | 0.3725 | 0.5784 |
58
+ | 1.0779 | 3.0 | 30 | 0.9620 | {'precision': 0.46195652173913043, 'recall': 0.42027194066749074, 'f1': 0.4401294498381877, 'number': 809} | {'precision': 0.05405405405405406, 'recall': 0.01680672268907563, 'f1': 0.02564102564102564, 'number': 119} | {'precision': 0.631484794275492, 'recall': 0.6629107981220658, 'f1': 0.6468163078332569, 'number': 1065} | 0.5542 | 0.5258 | 0.5396 | 0.6890 |
59
+ | 0.8184 | 4.0 | 40 | 0.7715 | {'precision': 0.624868282402529, 'recall': 0.7330037082818294, 'f1': 0.6746302616609784, 'number': 809} | {'precision': 0.1875, 'recall': 0.10084033613445378, 'f1': 0.1311475409836066, 'number': 119} | {'precision': 0.6657963446475196, 'recall': 0.7183098591549296, 'f1': 0.6910569105691057, 'number': 1065} | 0.6337 | 0.6874 | 0.6594 | 0.7596 |
60
+ | 0.6687 | 5.0 | 50 | 0.6994 | {'precision': 0.6322778345250255, 'recall': 0.765142150803461, 'f1': 0.692393736017897, 'number': 809} | {'precision': 0.2857142857142857, 'recall': 0.20168067226890757, 'f1': 0.23645320197044337, 'number': 119} | {'precision': 0.7097902097902098, 'recall': 0.7624413145539906, 'f1': 0.7351742870076958, 'number': 1065} | 0.6593 | 0.7301 | 0.6929 | 0.7815 |
61
+ | 0.5553 | 6.0 | 60 | 0.6586 | {'precision': 0.6430769230769231, 'recall': 0.7750309023485785, 'f1': 0.702914798206278, 'number': 809} | {'precision': 0.325, 'recall': 0.2184873949579832, 'f1': 0.26130653266331655, 'number': 119} | {'precision': 0.70863599677159, 'recall': 0.8244131455399061, 'f1': 0.7621527777777778, 'number': 1065} | 0.6674 | 0.7682 | 0.7143 | 0.7961 |
62
+ | 0.4897 | 7.0 | 70 | 0.6659 | {'precision': 0.6706521739130434, 'recall': 0.7626699629171817, 'f1': 0.7137073452862926, 'number': 809} | {'precision': 0.26605504587155965, 'recall': 0.24369747899159663, 'f1': 0.2543859649122807, 'number': 119} | {'precision': 0.7519788918205804, 'recall': 0.8028169014084507, 'f1': 0.7765667574931879, 'number': 1065} | 0.6930 | 0.7531 | 0.7218 | 0.7944 |
63
+ | 0.4407 | 8.0 | 80 | 0.6417 | {'precision': 0.6666666666666666, 'recall': 0.7688504326328801, 'f1': 0.7141216991963261, 'number': 809} | {'precision': 0.2692307692307692, 'recall': 0.23529411764705882, 'f1': 0.25112107623318386, 'number': 119} | {'precision': 0.7383966244725738, 'recall': 0.8215962441314554, 'f1': 0.7777777777777778, 'number': 1065} | 0.6863 | 0.7652 | 0.7236 | 0.8050 |
64
+ | 0.3954 | 9.0 | 90 | 0.6419 | {'precision': 0.6933333333333334, 'recall': 0.7713226205191595, 'f1': 0.7302516091281451, 'number': 809} | {'precision': 0.2698412698412698, 'recall': 0.2857142857142857, 'f1': 0.27755102040816326, 'number': 119} | {'precision': 0.7418273260687342, 'recall': 0.8309859154929577, 'f1': 0.7838795394154118, 'number': 1065} | 0.6954 | 0.7742 | 0.7327 | 0.8089 |
65
+ | 0.3554 | 10.0 | 100 | 0.6524 | {'precision': 0.6996625421822272, 'recall': 0.7688504326328801, 'f1': 0.7326266195524146, 'number': 809} | {'precision': 0.2578125, 'recall': 0.2773109243697479, 'f1': 0.26720647773279355, 'number': 119} | {'precision': 0.7448979591836735, 'recall': 0.8225352112676056, 'f1': 0.781793842034806, 'number': 1065} | 0.6981 | 0.7682 | 0.7315 | 0.8105 |
66
+ | 0.3193 | 11.0 | 110 | 0.6687 | {'precision': 0.6944444444444444, 'recall': 0.7725587144622992, 'f1': 0.7314218841427736, 'number': 809} | {'precision': 0.3076923076923077, 'recall': 0.2689075630252101, 'f1': 0.28699551569506726, 'number': 119} | {'precision': 0.7702349869451697, 'recall': 0.8309859154929577, 'f1': 0.7994579945799458, 'number': 1065} | 0.7162 | 0.7737 | 0.7438 | 0.8105 |
67
+ | 0.3077 | 12.0 | 120 | 0.6657 | {'precision': 0.7019650655021834, 'recall': 0.7948084054388134, 'f1': 0.7455072463768115, 'number': 809} | {'precision': 0.3125, 'recall': 0.29411764705882354, 'f1': 0.30303030303030304, 'number': 119} | {'precision': 0.7712532865907099, 'recall': 0.8262910798122066, 'f1': 0.7978241160471442, 'number': 1065} | 0.7183 | 0.7817 | 0.7487 | 0.8127 |
68
+ | 0.2875 | 13.0 | 130 | 0.6820 | {'precision': 0.6990950226244343, 'recall': 0.7639060568603214, 'f1': 0.7300649734199646, 'number': 809} | {'precision': 0.2608695652173913, 'recall': 0.3025210084033613, 'f1': 0.28015564202334625, 'number': 119} | {'precision': 0.7584415584415585, 'recall': 0.8225352112676056, 'f1': 0.7891891891891892, 'number': 1065} | 0.7028 | 0.7677 | 0.7338 | 0.8094 |
69
+ | 0.2763 | 14.0 | 140 | 0.6680 | {'precision': 0.7062706270627063, 'recall': 0.7935723114956736, 'f1': 0.7473806752037252, 'number': 809} | {'precision': 0.28688524590163933, 'recall': 0.29411764705882354, 'f1': 0.2904564315352697, 'number': 119} | {'precision': 0.7674216027874564, 'recall': 0.8272300469483568, 'f1': 0.7962042476276546, 'number': 1065} | 0.7150 | 0.7817 | 0.7469 | 0.8181 |
70
+ | 0.2776 | 15.0 | 150 | 0.6675 | {'precision': 0.7104972375690608, 'recall': 0.7948084054388134, 'f1': 0.750291715285881, 'number': 809} | {'precision': 0.2892561983471074, 'recall': 0.29411764705882354, 'f1': 0.2916666666666667, 'number': 119} | {'precision': 0.7677642980935875, 'recall': 0.831924882629108, 'f1': 0.7985579089680036, 'number': 1065} | 0.7174 | 0.7847 | 0.7496 | 0.8194 |
71
+
72
+
73
+ ### Framework versions
74
+
75
+ - Transformers 4.26.1
76
+ - Pytorch 1.13.1+cu116
77
+ - Datasets 2.10.1
78
+ - Tokenizers 0.13.2
logs/events.out.tfevents.1678267039.6a965df7e372.1817.0 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:c48b67acf87dfc3b2b9ca23394bfcfcbee8cd1f3ccc775fc169f197deb2d4662
3
- size 12542
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6445cb5ef38bb3674fb9199206736e3923d44fb01c62b8c7fb31f015468084b5
3
+ size 14218
preprocessor_config.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "apply_ocr": true,
3
+ "do_resize": true,
4
+ "feature_extractor_type": "LayoutLMv2FeatureExtractor",
5
+ "image_processor_type": "LayoutLMv2ImageProcessor",
6
+ "ocr_lang": null,
7
+ "processor_class": "LayoutLMv2Processor",
8
+ "resample": 2,
9
+ "size": {
10
+ "height": 224,
11
+ "width": 224
12
+ },
13
+ "tesseract_config": ""
14
+ }
pytorch_model.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:03d369b94ef706660ce19a3d340a67fee855fa12f8558184a68f0645ea683f82
3
  size 450608389
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4a7204ecb40f0f64e2fc687513f7d6b68aa866984048bedd2a2c368e23852c61
3
  size 450608389
special_tokens_map.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": "[CLS]",
3
+ "mask_token": "[MASK]",
4
+ "pad_token": "[PAD]",
5
+ "sep_token": "[SEP]",
6
+ "unk_token": "[UNK]"
7
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": null,
3
+ "apply_ocr": false,
4
+ "cls_token": "[CLS]",
5
+ "cls_token_box": [
6
+ 0,
7
+ 0,
8
+ 0,
9
+ 0
10
+ ],
11
+ "do_basic_tokenize": true,
12
+ "do_lower_case": true,
13
+ "mask_token": "[MASK]",
14
+ "model_max_length": 512,
15
+ "name_or_path": "microsoft/layoutlmv2-base-uncased",
16
+ "never_split": null,
17
+ "only_label_first_subword": true,
18
+ "pad_token": "[PAD]",
19
+ "pad_token_box": [
20
+ 0,
21
+ 0,
22
+ 0,
23
+ 0
24
+ ],
25
+ "pad_token_label": -100,
26
+ "processor_class": "LayoutLMv2Processor",
27
+ "sep_token": "[SEP]",
28
+ "sep_token_box": [
29
+ 1000,
30
+ 1000,
31
+ 1000,
32
+ 1000
33
+ ],
34
+ "special_tokens_map_file": null,
35
+ "strip_accents": null,
36
+ "tokenize_chinese_chars": true,
37
+ "tokenizer_class": "LayoutLMv2Tokenizer",
38
+ "unk_token": "[UNK]"
39
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff