aur0307 commited on
Commit
3ffed48
1 Parent(s): 47df6a7

Upload BertForTokenClassification

Browse files
Files changed (3) hide show
  1. README.md +199 -0
  2. config.json +257 -0
  3. model.safetensors +3 -0
README.md ADDED
@@ -0,0 +1,199 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ tags: []
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+ This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
config.json ADDED
@@ -0,0 +1,257 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "bert-base-multilingual-cased",
3
+ "architectures": [
4
+ "BertForTokenClassification"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "directionality": "bidi",
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "id2label": {
13
+ "0": "I-DOB",
14
+ "1": "B-STATE",
15
+ "2": "I-JOBAREA",
16
+ "3": "B-NEARBYGPSCOORDINATE",
17
+ "4": "B-COMPANYNAME",
18
+ "5": "I-PHONENUMBER",
19
+ "6": "B-BUILDINGNUMBER",
20
+ "7": "I-LITECOINADDRESS",
21
+ "8": "I-CITY",
22
+ "9": "I-ACCOUNTNUMBER",
23
+ "10": "B-SECONDARYADDRESS",
24
+ "11": "B-PHONEIMEI",
25
+ "12": "I-ACCOUNTNAME",
26
+ "13": "I-AGE",
27
+ "14": "B-CURRENCYSYMBOL",
28
+ "15": "B-BIC",
29
+ "16": "B-ACCOUNTNAME",
30
+ "17": "B-TIME",
31
+ "18": "B-DATE",
32
+ "19": "I-CREDITCARDISSUER",
33
+ "20": "I-CURRENCYSYMBOL",
34
+ "21": "I-BIC",
35
+ "22": "B-SSN",
36
+ "23": "I-GENDER",
37
+ "24": "B-ORDINALDIRECTION",
38
+ "25": "B-PHONENUMBER",
39
+ "26": "I-CURRENCY",
40
+ "27": "B-CURRENCYCODE",
41
+ "28": "I-PHONEIMEI",
42
+ "29": "B-JOBTITLE",
43
+ "30": "I-USERAGENT",
44
+ "31": "B-IPV4",
45
+ "32": "I-IPV4",
46
+ "33": "B-CREDITCARDISSUER",
47
+ "34": "B-GENDER",
48
+ "35": "I-PREFIX",
49
+ "36": "B-AMOUNT",
50
+ "37": "B-CURRENCY",
51
+ "38": "I-EMAIL",
52
+ "39": "I-ETHEREUMADDRESS",
53
+ "40": "B-CURRENCYNAME",
54
+ "41": "I-SSN",
55
+ "42": "B-LASTNAME",
56
+ "43": "I-STREET",
57
+ "44": "I-DATE",
58
+ "45": "I-CREDITCARDNUMBER",
59
+ "46": "I-CURRENCYCODE",
60
+ "47": "B-JOBTYPE",
61
+ "48": "B-CREDITCARDCVV",
62
+ "49": "I-VEHICLEVIN",
63
+ "50": "B-CREDITCARDNUMBER",
64
+ "51": "I-JOBTITLE",
65
+ "52": "I-ZIPCODE",
66
+ "53": "B-USERNAME",
67
+ "54": "I-FIRSTNAME",
68
+ "55": "B-DOB",
69
+ "56": "I-TIME",
70
+ "57": "I-BITCOINADDRESS",
71
+ "58": "I-COUNTY",
72
+ "59": "I-PIN",
73
+ "60": "B-LITECOINADDRESS",
74
+ "61": "B-AGE",
75
+ "62": "B-IPV6",
76
+ "63": "B-STREET",
77
+ "64": "I-IP",
78
+ "65": "B-HEIGHT",
79
+ "66": "B-BITCOINADDRESS",
80
+ "67": "B-IP",
81
+ "68": "B-PREFIX",
82
+ "69": "B-PASSWORD",
83
+ "70": "I-EYECOLOR",
84
+ "71": "B-FIRSTNAME",
85
+ "72": "I-BUILDINGNUMBER",
86
+ "73": "B-JOBAREA",
87
+ "74": "I-PASSWORD",
88
+ "75": "I-NEARBYGPSCOORDINATE",
89
+ "76": "B-ZIPCODE",
90
+ "77": "I-VEHICLEVRM",
91
+ "78": "B-USERAGENT",
92
+ "79": "I-URL",
93
+ "80": "I-SECONDARYADDRESS",
94
+ "81": "B-PIN",
95
+ "82": "I-HEIGHT",
96
+ "83": "B-ACCOUNTNUMBER",
97
+ "84": "I-LASTNAME",
98
+ "85": "B-SEX",
99
+ "86": "I-IPV6",
100
+ "87": "I-JOBTYPE",
101
+ "88": "I-CURRENCYNAME",
102
+ "89": "B-VEHICLEVIN",
103
+ "90": "B-MAC",
104
+ "91": "B-MIDDLENAME",
105
+ "92": "O",
106
+ "93": "I-MIDDLENAME",
107
+ "94": "B-COUNTY",
108
+ "95": "I-CREDITCARDCVV",
109
+ "96": "B-EYECOLOR",
110
+ "97": "B-CITY",
111
+ "98": "I-USERNAME",
112
+ "99": "B-EMAIL",
113
+ "100": "B-IBAN",
114
+ "101": "I-MASKEDNUMBER",
115
+ "102": "B-MASKEDNUMBER",
116
+ "103": "I-AMOUNT",
117
+ "104": "B-VEHICLEVRM",
118
+ "105": "I-STATE",
119
+ "106": "I-IBAN",
120
+ "107": "I-COMPANYNAME",
121
+ "108": "B-ETHEREUMADDRESS",
122
+ "109": "I-MAC",
123
+ "110": "B-URL"
124
+ },
125
+ "initializer_range": 0.02,
126
+ "intermediate_size": 3072,
127
+ "label2id": {
128
+ "B-ACCOUNTNAME": 16,
129
+ "B-ACCOUNTNUMBER": 83,
130
+ "B-AGE": 61,
131
+ "B-AMOUNT": 36,
132
+ "B-BIC": 15,
133
+ "B-BITCOINADDRESS": 66,
134
+ "B-BUILDINGNUMBER": 6,
135
+ "B-CITY": 97,
136
+ "B-COMPANYNAME": 4,
137
+ "B-COUNTY": 94,
138
+ "B-CREDITCARDCVV": 48,
139
+ "B-CREDITCARDISSUER": 33,
140
+ "B-CREDITCARDNUMBER": 50,
141
+ "B-CURRENCY": 37,
142
+ "B-CURRENCYCODE": 27,
143
+ "B-CURRENCYNAME": 40,
144
+ "B-CURRENCYSYMBOL": 14,
145
+ "B-DATE": 18,
146
+ "B-DOB": 55,
147
+ "B-EMAIL": 99,
148
+ "B-ETHEREUMADDRESS": 108,
149
+ "B-EYECOLOR": 96,
150
+ "B-FIRSTNAME": 71,
151
+ "B-GENDER": 34,
152
+ "B-HEIGHT": 65,
153
+ "B-IBAN": 100,
154
+ "B-IP": 67,
155
+ "B-IPV4": 31,
156
+ "B-IPV6": 62,
157
+ "B-JOBAREA": 73,
158
+ "B-JOBTITLE": 29,
159
+ "B-JOBTYPE": 47,
160
+ "B-LASTNAME": 42,
161
+ "B-LITECOINADDRESS": 60,
162
+ "B-MAC": 90,
163
+ "B-MASKEDNUMBER": 102,
164
+ "B-MIDDLENAME": 91,
165
+ "B-NEARBYGPSCOORDINATE": 3,
166
+ "B-ORDINALDIRECTION": 24,
167
+ "B-PASSWORD": 69,
168
+ "B-PHONEIMEI": 11,
169
+ "B-PHONENUMBER": 25,
170
+ "B-PIN": 81,
171
+ "B-PREFIX": 68,
172
+ "B-SECONDARYADDRESS": 10,
173
+ "B-SEX": 85,
174
+ "B-SSN": 22,
175
+ "B-STATE": 1,
176
+ "B-STREET": 63,
177
+ "B-TIME": 17,
178
+ "B-URL": 110,
179
+ "B-USERAGENT": 78,
180
+ "B-USERNAME": 53,
181
+ "B-VEHICLEVIN": 89,
182
+ "B-VEHICLEVRM": 104,
183
+ "B-ZIPCODE": 76,
184
+ "I-ACCOUNTNAME": 12,
185
+ "I-ACCOUNTNUMBER": 9,
186
+ "I-AGE": 13,
187
+ "I-AMOUNT": 103,
188
+ "I-BIC": 21,
189
+ "I-BITCOINADDRESS": 57,
190
+ "I-BUILDINGNUMBER": 72,
191
+ "I-CITY": 8,
192
+ "I-COMPANYNAME": 107,
193
+ "I-COUNTY": 58,
194
+ "I-CREDITCARDCVV": 95,
195
+ "I-CREDITCARDISSUER": 19,
196
+ "I-CREDITCARDNUMBER": 45,
197
+ "I-CURRENCY": 26,
198
+ "I-CURRENCYCODE": 46,
199
+ "I-CURRENCYNAME": 88,
200
+ "I-CURRENCYSYMBOL": 20,
201
+ "I-DATE": 44,
202
+ "I-DOB": 0,
203
+ "I-EMAIL": 38,
204
+ "I-ETHEREUMADDRESS": 39,
205
+ "I-EYECOLOR": 70,
206
+ "I-FIRSTNAME": 54,
207
+ "I-GENDER": 23,
208
+ "I-HEIGHT": 82,
209
+ "I-IBAN": 106,
210
+ "I-IP": 64,
211
+ "I-IPV4": 32,
212
+ "I-IPV6": 86,
213
+ "I-JOBAREA": 2,
214
+ "I-JOBTITLE": 51,
215
+ "I-JOBTYPE": 87,
216
+ "I-LASTNAME": 84,
217
+ "I-LITECOINADDRESS": 7,
218
+ "I-MAC": 109,
219
+ "I-MASKEDNUMBER": 101,
220
+ "I-MIDDLENAME": 93,
221
+ "I-NEARBYGPSCOORDINATE": 75,
222
+ "I-PASSWORD": 74,
223
+ "I-PHONEIMEI": 28,
224
+ "I-PHONENUMBER": 5,
225
+ "I-PIN": 59,
226
+ "I-PREFIX": 35,
227
+ "I-SECONDARYADDRESS": 80,
228
+ "I-SSN": 41,
229
+ "I-STATE": 105,
230
+ "I-STREET": 43,
231
+ "I-TIME": 56,
232
+ "I-URL": 79,
233
+ "I-USERAGENT": 30,
234
+ "I-USERNAME": 98,
235
+ "I-VEHICLEVIN": 49,
236
+ "I-VEHICLEVRM": 77,
237
+ "I-ZIPCODE": 52,
238
+ "O": 92
239
+ },
240
+ "layer_norm_eps": 1e-12,
241
+ "max_position_embeddings": 512,
242
+ "model_type": "bert",
243
+ "num_attention_heads": 12,
244
+ "num_hidden_layers": 12,
245
+ "pad_token_id": 0,
246
+ "pooler_fc_size": 768,
247
+ "pooler_num_attention_heads": 12,
248
+ "pooler_num_fc_layers": 3,
249
+ "pooler_size_per_head": 128,
250
+ "pooler_type": "first_token_transform",
251
+ "position_embedding_type": "absolute",
252
+ "torch_dtype": "float32",
253
+ "transformers_version": "4.40.2",
254
+ "type_vocab_size": 2,
255
+ "use_cache": true,
256
+ "vocab_size": 119547
257
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d96ecc985736ddee17f989c6467070e40fa95089ecb00a7440acad68cc586990
3
+ size 709416188