File size: 12,573 Bytes
16f4f18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42ed865
16f4f18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42ed865
16f4f18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15c7fb8
16f4f18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15c7fb8
16f4f18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ea71f34
 
16f4f18
 
 
42ed865
 
 
 
 
 
16f4f18
 
 
15c7fb8
16f4f18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
da91a0c
16f4f18
 
 
 
 
 
 
 
 
af56925
682ae47
 
 
 
af56925
 
 
682ae47
 
 
e6c2ed8
16f4f18
 
fbe7fc9
 
682ae47
 
 
cd3d8c2
 
af56925
16f4f18
 
 
 
 
 
 
 
 
 
 
 
 
 
15c7fb8
16f4f18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
# handler.py
import io
from typing import Any, Dict, List

import numpy as np
import requests
import torch
from PIL import Image
from transformers import (
    CLIPModel,
    CLIPProcessor,
    CLIPTokenizerFast,
    pipeline,
    AutoProcessor,
    AutoModelForCausalLM,
)
from huggingface_hub import logging
from concurrent.futures import ThreadPoolExecutor, as_completed

import timeit
import easyocr

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")


# multi-model list
multi_model_list = [
    {"model_id": "openai/clip-vit-base-patch32", "task": "Custom"},
    {"model_id": "microsoft/git-large-coco", "task": "Custom"},
]


class EndpointHandler:
    def __init__(self, path=""):
        clip_model_id = "openai/clip-vit-base-patch32"
        # self.device = "cuda" if torch.cuda.is_available() else "cpu"
        self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        self.processor_clip = CLIPProcessor.from_pretrained(clip_model_id)
        self.model_clip = CLIPModel.from_pretrained(clip_model_id).to(self.device)
        self.tokenizer_clip = CLIPTokenizerFast.from_pretrained(clip_model_id)
        self.processor_git = AutoProcessor.from_pretrained("microsoft/git-large-coco")
        self.model_git = AutoModelForCausalLM.from_pretrained(
            "microsoft/git-large-coco"
        )

        self.model_git.to(device)
        self.model_clip.to(device)

        logging.set_verbosity_debug()
        self.logger = logging.get_logger(__name__)
        self.reader = easyocr.Reader(["de", "en"])

    def download_image(self, url: str) -> bytes:
        """
        Download an image from a given URL.

        Parameters:
        - url: str
            The URL from where the image needs to be downloaded.

        Returns:
        - bytes
            The downloaded image data in bytes.

        Raises:
        - Exception: If the image download request fails.
        """
        response = requests.get(url)
        if response.status_code == 200:
            return response.content
        else:
            self.logger.error(f"Error downloading image from :{str(url)}")
            raise Exception(
                f"Failed to download image from {url}. Status code: {response.status_code}"
            )

    def download_images_in_parallel(
        self, urls: List[str], images_metadata_list: List[dict]
    ) -> List[bytes]:
        """
        Download multiple images in parallel and collect their metadata.

        Parameters:
        - urls: List[str]
            A list of URLs from where the images need to be downloaded.
        - images_metadata_list: List[dict]
            A list of metadata corresponding to each image URL.

        Returns:
        - Tuple[List[bytes], List[dict]]
            A tuple containing a list of downloaded image data in bytes and
            a list of metadata for the successfully downloaded images.
        """
        with ThreadPoolExecutor() as executor:
            # Start the load operations and mark each future with its URL and metadata
            future_to_metadata = {
                executor.submit(self.download_image, url): (url, metadata)
                for url, metadata in zip(urls, images_metadata_list)
            }

            results = []
            successful_metadata = []
            for future in as_completed(future_to_metadata):
                url, metadata = future_to_metadata[future]
                try:
                    data = future.result()
                    results.append(data)
                    metadata["url"] = url
                    successful_metadata.append(metadata)
                except Exception as exc:
                    self.logger.error("%r generated an exception: %s" % (url, exc))
            return results, successful_metadata

    def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
        """
        Process the input data based on its type and return the embeddings.

        This method accepts a dictionary with a 'process_type' key that can be either 'images' or 'text'.
        If 'process_type' is 'images', the method expects a list of image URLs under the 'images_urls' key.
        It downloads and processes these images, and returns their embeddings.
        If 'process_type' is 'text', the method expects a string query under the 'query' key.
        It processes this text and returns its embedding.

        Parameters:
        - data: Dict[str, Any]
            A dictionary containing the data to be processed.
            It must include a 'process_type' key with value either 'images' or 'text'.
            If 'process_type' is 'images', data should also include 'images_urls' key with a list of image URLs.
            If 'process_type' is 'text', data should also include 'query' key with a string query.

        Returns:
        - List[Dict[str, Any]]
            A list of dictionaries, each containing the embeddings of the processed data.
            If an error occurs during processing, the dictionary will include an 'error' key with the error message.

        Raises:
        - ValueError: If the 'process_type' key is not present in data, or if the required keys for 'images' or 'text' are not present or are of the wrong type.
        """

        if data["process_type"] == "images":
            try:
                # Check if 'inputs' key is in data and it has the right type
                if "images_urls" not in data or not isinstance(
                    data["images_urls"], list
                ):
                    raise ValueError(
                        "Data must contain 'images_urls' key with a list of images urls."
                    )

                batch_size = 50
                if "batch_size" in data:
                    batch_size = int(data["batch_size"])
                # Download and process the images (just downloading in this example)
                images_batches = []
                processed_metadata = []
                for i in range(0, len(data["images_urls"]), batch_size):
                    # select batch of images
                    batches = data["images_urls"][i : i + batch_size]
                    batches_metadata = data["images_metadata"][i : i + batch_size]

                    download_start_time = timeit.default_timer()

                    # Download images in parallel along with their metadata
                    (
                        downloaded_images,
                        images_metadata,
                    ) = self.download_images_in_parallel(batches, batches_metadata)

                    download_end_time = timeit.default_timer()
                    self.logger.info(
                        f"Image downloading took {download_end_time - download_start_time} seconds"
                    )
                    processing_start_time = timeit.default_timer()

                    for image_content, image_metadata in zip(
                        downloaded_images, images_metadata
                    ):
                        try:
                            image = Image.open(io.BytesIO(image_content)).convert("RGB")
                            image_array = np.array(image)
                            images_batches.append(image_array)
                            complete_image_metadata = {
                                # "text": image_metadata["caption"],
                                # "source": image_metadata["url"],
                                "source_type": "images",
                                **image_metadata,
                            }
                            # Extract text from image using easyocr
                            extracted_text = self.reader.readtext(
                                np.array(image), detail=0
                            )
                            complete_image_metadata["extracted_text"] = extracted_text

                            processed_metadata.append(complete_image_metadata)

                        except Exception as e:
                            self.logger.error(f"Error image processing: {str(e)}")
                            print(e)
                    # This should be a list of images as np.arrays
                    processing_end_time = timeit.default_timer()
                    self.logger.info(
                        f"Image processing took {processing_end_time - processing_start_time} seconds"
                    )

                embedding_start_time = timeit.default_timer()
                with torch.no_grad():  # This line ensures that the code inside the block doesn't track gradients
                    batch = self.processor_clip(
                        text=None,
                        images=images_batches,
                        return_tensors="pt",
                        padding=True,
                    )["pixel_values"].to(self.model_clip.device)
                    batch_git = self.processor_git(
                        images=images_batches,
                        return_tensors="pt",
                    )
                    git_pixel_values = batch_git.pixel_values.to(self.model_git.device)
                    # get image captions
                    generated_ids = self.model_git.generate(
                        pixel_values=git_pixel_values, max_length=35
                    )

                    generated_captions = self.processor_git.batch_decode(
                        generated_ids, skip_special_tokens=True
                    )

                    # get image embeddings
                    batch_emb = self.model_clip.get_image_features(pixel_values=batch)
                    # detach text emb from graph, move to CPU, and convert to numpy array

                    self.logger.info(
                        f"Shape of batch_emb after get_image_features: {batch_emb.shape}"
                    )

                    # Check the shape of the tensor before squeezing
                    if batch_emb.shape[0] > 1:
                        batch_emb = batch_emb.squeeze(0)
                    self.logger.info(
                        f"Shape of batch_emb after squeeze: {batch_emb.shape}"
                    )

                    batch_emb = batch_emb.cpu().detach().numpy()
                    # NORMALIZE
                    if batch_emb.ndim > 1:
                        batch_emb = batch_emb.T / np.linalg.norm(batch_emb, axis=1)
                        self.logger.info(
                            f"Shape of batch_emb after normalization (2D case): {batch_emb.shape}"
                        )
                        # transpose back to (21, 512)
                        batch_emb = batch_emb.T.tolist()

                embedding_end_time = timeit.default_timer()
                self.logger.info(
                    f"Embedding calculation took {embedding_end_time - embedding_start_time} seconds"
                )

                # Return the embeddings
                return {
                    "embeddings": batch_emb,
                    "metadata": processed_metadata,
                    "captions": generated_captions,
                }

            except Exception as e:
                print(f"Error during Images processing: {str(e)}")
                self.logger.error(f"Error during Images processing: {str(e)}")
                return {"embeddings": [], "error": str(e)}

        elif data["process_type"] == "text":
            if "query" not in data or not isinstance(data["query"], str):
                raise ValueError("Data must contain 'query' key which is a str.")
            query = data["query"]
            inputs = self.tokenizer_clip(query, return_tensors="pt").to(self.device)
            text_emb = self.model_clip.get_text_features(**inputs)
            # detach text emb from graph, move to CPU, and convert to numpy array
            text_emb = text_emb.detach().cpu().numpy()

            # calculate value to normalize each vector by and normalize them
            norm_factor = np.linalg.norm(text_emb, axis=1)

            text_emb = text_emb.T / norm_factor
            # transpose back to (21, 512)
            text_emb = text_emb.T

            # Converting tensor to list for JSON response
            text_emb_list = text_emb.tolist()

            return {"embeddings": text_emb_list}

        else:
            print(
                f"Error during CLIP endpoint processing: data['process_type']: {data['process_type']} neither 'images' or 'text'"
            )
            return {"embeddings": [], "error": str(e)}