--- language: en datasets: - squad_v2 license: cc-by-4.0 model-index: - name: autoevaluate/roberta-base-squad2 results: - task: type: question-answering name: Question Answering dataset: name: squad_v2 type: squad_v2 config: squad_v2 split: validation metrics: - name: Exact Match type: exact_match value: 79.9309 verified: true - name: F1 type: f1 value: 82.9501 verified: true - name: total type: total value: 11869 verified: true --- # roberta-base for QA > Note: this is a clone of [`roberta-base-squad2`](https://huggingface.co/deepset/roberta-base-squad2) for internal testing. This is the [roberta-base](https://huggingface.co/roberta-base) model, fine-tuned using the [SQuAD2.0](https://huggingface.co/datasets/squad_v2) dataset. It's been trained on question-answer pairs, including unanswerable questions, for the task of Question Answering. ## Overview **Language model:** roberta-base **Language:** English **Downstream-task:** Extractive QA **Training data:** SQuAD 2.0 **Eval data:** SQuAD 2.0 **Code:** See [an example QA pipeline on Haystack](https://haystack.deepset.ai/tutorials/first-qa-system) **Infrastructure**: 4x Tesla v100 ## Hyperparameters ``` batch_size = 96 n_epochs = 2 base_LM_model = "roberta-base" max_seq_len = 386 learning_rate = 3e-5 lr_schedule = LinearWarmup warmup_proportion = 0.2 doc_stride=128 max_query_length=64 ``` ## Using a distilled model instead Please note that we have also released a distilled version of this model called [deepset/tinyroberta-squad2](https://huggingface.co/deepset/tinyroberta-squad2). The distilled model has a comparable prediction quality and runs at twice the speed of the base model. ## Usage ### In Haystack Haystack is an NLP framework by deepset. You can use this model in a Haystack pipeline to do question answering at scale (over many documents). To load the model in [Haystack](https://github.com/deepset-ai/haystack/): ```python reader = FARMReader(model_name_or_path="deepset/roberta-base-squad2") # or reader = TransformersReader(model_name_or_path="deepset/roberta-base-squad2",tokenizer="deepset/roberta-base-squad2") ``` For a complete example of ``roberta-base-squad2`` being used for Question Answering, check out the [Tutorials in Haystack Documentation](https://haystack.deepset.ai/tutorials/first-qa-system) ### In Transformers ```python from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline model_name = "deepset/roberta-base-squad2" # a) Get predictions nlp = pipeline('question-answering', model=model_name, tokenizer=model_name) QA_input = { 'question': 'Why is model conversion important?', 'context': 'The option to convert models between FARM and transformers gives freedom to the user and let people easily switch between frameworks.' } res = nlp(QA_input) # b) Load model & tokenizer model = AutoModelForQuestionAnswering.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) ``` ## Performance Evaluated on the SQuAD 2.0 dev set with the [official eval script](https://worksheets.codalab.org/rest/bundles/0x6b567e1cf2e041ec80d7098f031c5c9e/contents/blob/). ``` "exact": 79.87029394424324, "f1": 82.91251169582613, "total": 11873, "HasAns_exact": 77.93522267206478, "HasAns_f1": 84.02838248389763, "HasAns_total": 5928, "NoAns_exact": 81.79983179142137, "NoAns_f1": 81.79983179142137, "NoAns_total": 5945 ``` Using the official [question answering notebook](https://github.com/huggingface/notebooks/blob/main/examples/question_answering.ipynb) from `transformers` yields: ``` {'HasAns_exact': 77.93522267206478, 'HasAns_f1': 83.93715663402219, 'HasAns_total': 5928, 'NoAns_exact': 81.90075693860386, 'NoAns_f1': 81.90075693860386, 'NoAns_total': 5945, 'best_exact': 79.92082877116145, 'best_exact_thresh': 0.0, 'best_f1': 82.91749890730902, 'best_f1_thresh': 0.0, 'exact': 79.92082877116145, 'f1': 82.91749890730917, 'total': 11873} ``` which is consistent with the officially reported results. Using the question answering `Evaluator` from `evaluate` gives: ``` {'HasAns_exact': 77.91835357624831, 'HasAns_f1': 84.07820736158186, 'HasAns_total': 5928, 'NoAns_exact': 81.91757779646763, 'NoAns_f1': 81.91757779646763, 'NoAns_total': 5945, 'best_exact': 79.92082877116145, 'best_exact_thresh': 0.996823787689209, 'best_f1': 82.99634576260925, 'best_f1_thresh': 0.996823787689209, 'exact': 79.92082877116145, 'f1': 82.9963457626089, 'latency_in_seconds': 0.016523243643392558, 'samples_per_second': 60.52080460605492, 'total': 11873, 'total_time_in_seconds': 196.18047177799986} ``` which is also consistent with the officially reported results. ## Authors **Branden Chan:** branden.chan@deepset.ai **Timo Möller:** timo.moeller@deepset.ai **Malte Pietsch:** malte.pietsch@deepset.ai **Tanay Soni:** tanay.soni@deepset.ai ## About us
For more info on Haystack, visit our GitHub repo and Documentation. We also have a community open to everyone!
[Twitter](https://twitter.com/deepset_ai) | [LinkedIn](https://www.linkedin.com/company/deepset-ai/) | [Slack](https://haystack.deepset.ai/community/join) | [GitHub Discussions](https://github.com/deepset-ai/haystack/discussions) | [Website](https://deepset.ai) By the way: [we're hiring!](http://www.deepset.ai/jobs)