File size: 7,841 Bytes
afcc3f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
092423a
 
 
 
afcc3f5
 
38464c2
 
81d2687
afcc3f5
81d2687
afcc3f5
11f72b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
afcc3f5
092423a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dde40de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
afcc3f5
 
 
 
 
 
 
 
 
 
 
 
 
 
11f72b0
 
afcc3f5
 
11f72b0
 
 
afcc3f5
 
 
11f72b0
afcc3f5
 
 
 
11f72b0
afcc3f5
11f72b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
81d2687
 
 
 
 
 
 
 
 
11f72b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
---
library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
base_model: WhereIsAI/UAE-Large-V1
widget:
- source_sentence: 'search_query: i love autotrain'
  sentences:
  - 'search_query: huggingface auto train'
  - 'search_query: hugging face auto train'
  - 'search_query: i love autotrain'
pipeline_tag: sentence-similarity
datasets:
- avemio-digital/GRAG-Embedding-Triples-Hessian-AI
license: mit
language:
- de
- en
---

<img src="https://www.grag.ai/wp-content/uploads/2024/12/GRAG-ICON-TO-WORDLOGO-Animation_Loop-small-ezgif.com-video-to-gif-converter.gif" alt="GRAG Logo" width="400" style="margin-left:'auto' margin-right:'auto' display:'block'"/>

# GRAG-UAE-LARGE-V1-TRIPLES-HESSIAN-AI

This is a [sentence-transformers](https://www.SBERT.net) model trained on this [Dataset](https://huggingface.co/datasets/avemio/GRAG-Embedding-Triples-Hessian-AI) with roughly 300k Triple-Samples. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
<!-- - **Base model:** [Unknown](https://huggingface.co/unknown) -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 1024 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)
```

## Evaluation MTEB-Tasks 

### Classification
- AmazonCounterfactualClassification
- AmazonReviewsClassification
- MassiveIntentClassification
- MassiveScenarioClassification
- MTOPDomainClassification
- MTOPIntentClassification

### Pair Classification
- FalseFriendsGermanEnglish
- PawsXPairClassification

### Retrieval
- GermanQuAD-Retrieval
- GermanDPR

### STS (Semantic Textual Similarity)
- GermanSTSBenchmark

| TASK                                | [UAE](https://huggingface.co/WhereIsAI/UAE-Large-V1/)   | GRAG-UAE | [Merged-UAE](https://huggingface.co/avemio/GRAG-UAE-LARGE-V1-TRIPLES-MERGED-HESSIAN-AI/) | GRAG vs. UAE | Merged vs. UAE |
|-------------------------------------|-------|----------|------------|--------------|----------------|
| AmazonCounterfactualClassification | **0.5650** | 0.5449   | 0.5401     | -2.01%       | -2.48%         |
| AmazonReviewsClassification         | 0.2738 | 0.2745   | **0.2782**     | 0.08%        | 0.44%          |
| FalseFriendsGermanEnglish           | **0.4808** | 0.4777   | 0.4703     | -0.32%       | -1.05%         |
| GermanQuAD-Retrieval                | 0.7811 | 0.8353   | **0.8628**     | 5.42%        | 8.18%          |
| GermanSTSBenchmark                  | 0.6421 | 0.6568   | **0.6754**     | 1.47%        | 3.33%          |
| MassiveIntentClassification         | **0.5139** | 0.4884   | 0.4714     | -2.55%       | -4.25%         |
| MassiveScenarioClassification       | 0.6062 | 0.5837   | **0.6111**     | -2.25%       | 0.49%          |
| GermanDPR                           | 0.6750 | 0.7210   | **0.7507**     | 4.60%        | 7.57%          |
| MTOPDomainClassification            | 0.7625 | 0.7450   | **0.7686**     | -1.75%       | 0.61%          |
| MTOPIntentClassification            | **0.4994** | 0.4516   | 0.4413     | -4.77%       | -5.80%         |
| PawsXPairClassification             | **0.5452** | 0.5077   | 0.5162     | -3.76%       | -2.90%         |


## Evaluation on GRAG-EMBEDDING-BENCHMARK

Accuracy is calculated by evaluating if the relevant context is the highest ranking embedding of the whole context array.
See Eval-Dataset and Evaluation Code [here](https://huggingface.co/datasets/avemio/GRAG-EMBEDDING-BENCHMARK)

| Model Name                                       | Accuracy  |
|-------------------------------------------------|-----------|
| [bge-m3](https://huggingface.co/BAAI/bge-m3  )                                     | 0.8806    |
| [UAE-Large-V1](https://huggingface.co/WhereIsAI/UAE-Large-V1)                            | 0.8393    |
| [GRAG-BGE-M3-TRIPLES-HESSIAN-AI](https://huggingface.co/avemio/GRAG-BGE-M3-TRIPLES-HESSIAN-AI)             | 0.8857    |
| [GRAG-BGE-M3-TRIPLES-MERGED-HESSIAN-AI](https://huggingface.co/avemio/GRAG-BGE-M3-TRIPLES-MERGED-HESSIAN-AI)      | **0.8866** |
| [GRAG-BGE-M3-MERGED-x-SNOWFLAKE-ARCTIC-HESSIAN-AI](https://huggingface.co/avemio/GRAG-BGE-M3-MERGED-x-SNOWFLAKE-ARCTIC-HESSIAN-AI)   | **0.8866** |
| [GRAG-UAE-LARGE-V1-TRIPLES-HESSIAN-AI](https://huggingface.co/avemio/GRAG-UAE-LARGE-V1-TRIPLES-HESSIAN-AI)       | 0.8763    |
| [GRAG-UAE-LARGE-V1-TRIPLES-MERGED-HESSIAN-AI](https://huggingface.co/avemio/GRAG-UAE-LARGE-V1-TRIPLES-MERGED-HESSIAN-AI)   | 0.8771    |

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("avemio/GRAG-UAE-LARGE-V1-TRIPLES-HESSIAN-AI")
# Run inference
sentences = [
    'The weather is lovely today.',
    "It's so sunny outside!",
    'He drove to the stadium.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.2.1
- Transformers: 4.44.2
- PyTorch: 2.5.0+cu121
- Accelerate: 0.34.2
- Datasets: 2.19.0
- Tokenizers: 0.19.1

## Citation

```
@article{li2023angle,
  title={AnglE-optimized Text Embeddings},
  author={Li, Xianming and Li, Jing},
  journal={arXiv preprint arXiv:2309.12871},
  year={2023}
}
```


<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->