avemio-digital commited on
Commit
b39f34a
·
verified ·
1 Parent(s): 9bc5261

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +13 -13
README.md CHANGED
@@ -13,18 +13,18 @@ widget:
13
  - 'search_query: i love autotrain'
14
  pipeline_tag: sentence-similarity
15
  datasets:
16
- - avemio/German_RAG-EMBEDDING-TRIPLES-HESSIAN-AI
17
  license: mit
18
  language:
19
  - de
20
  - en
21
  ---
22
 
23
- <img src="https://www.German_RAG.ai/wp-content/uploads/2024/12/German_RAG-ICON-TO-WORDLOGO-Animation_Loop-small-ezgif.com-video-to-gif-converter.gif" alt="German_RAG Logo" width="400" style="margin-left:'auto' margin-right:'auto' display:'block'"/>
24
 
25
- # German_RAG-UAE-LARGE-V1-TRIPLES-HESSIAN-AI
26
 
27
- This is a [sentence-transformers](https://www.SBERT.net) model trained on this [Dataset](https://huggingface.co/datasets/avemio/German_RAG-Embedding-Triples-Hessian-AI) with roughly 300k Triple-Samples. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
28
 
29
  ## Model Details
30
 
@@ -75,7 +75,7 @@ SentenceTransformer(
75
  ### STS (Semantic Textual Similarity)
76
  - GermanSTSBenchmark
77
 
78
- | TASK | [UAE](https://huggingface.co/WhereIsAI/UAE-Large-V1/) | German_RAG-UAE | [Merged-UAE](https://huggingface.co/avemio/German_RAG-UAE-LARGE-V1-TRIPLES-MERGED-HESSIAN-AI/) | German_RAG vs. UAE | Merged vs. UAE |
79
  |-------------------------------------|-------|----------|------------|--------------|----------------|
80
  | AmazonCounterfactualClassification | **0.5650** | 0.5449 | 0.5401 | -2.01% | -2.48% |
81
  | AmazonReviewsClassification | 0.2738 | 0.2745 | **0.2782** | 0.08% | 0.44% |
@@ -90,20 +90,20 @@ SentenceTransformer(
90
  | PawsXPairClassification | **0.5452** | 0.5077 | 0.5162 | -3.76% | -2.90% |
91
 
92
 
93
- ## Evaluation on German_RAG-EMBEDDING-BENCHMARK
94
 
95
  Accuracy is calculated by evaluating if the relevant context is the highest ranking embedding of the whole context array.
96
- See Eval-Dataset and Evaluation Code [here](https://huggingface.co/datasets/avemio/German_RAG-EMBEDDING-BENCHMARK)
97
 
98
  | Model Name | Accuracy |
99
  |-------------------------------------------------|-----------|
100
  | [bge-m3](https://huggingface.co/BAAI/bge-m3 ) | 0.8806 |
101
  | [UAE-Large-V1](https://huggingface.co/WhereIsAI/UAE-Large-V1) | 0.8393 |
102
- | [German_RAG-BGE-M3-TRIPLES-HESSIAN-AI](https://huggingface.co/avemio/German_RAG-BGE-M3-TRIPLES-HESSIAN-AI) | 0.8857 |
103
- | [German_RAG-BGE-M3-TRIPLES-MERGED-HESSIAN-AI](https://huggingface.co/avemio/German_RAG-BGE-M3-TRIPLES-MERGED-HESSIAN-AI) | **0.8866** |
104
- | [German_RAG-BGE-M3-MERGED-x-SNOWFLAKE-ARCTIC-HESSIAN-AI](https://huggingface.co/avemio/German_RAG-BGE-M3-MERGED-x-SNOWFLAKE-ARCTIC-HESSIAN-AI) | **0.8866** |
105
- | [German_RAG-UAE-LARGE-V1-TRIPLES-HESSIAN-AI](https://huggingface.co/avemio/German_RAG-UAE-LARGE-V1-TRIPLES-HESSIAN-AI) | 0.8763 |
106
- | [German_RAG-UAE-LARGE-V1-TRIPLES-MERGED-HESSIAN-AI](https://huggingface.co/avemio/German_RAG-UAE-LARGE-V1-TRIPLES-MERGED-HESSIAN-AI) | 0.8771 |
107
 
108
  ## Usage
109
 
@@ -120,7 +120,7 @@ Then you can load this model and run inference.
120
  from sentence_transformers import SentenceTransformer
121
 
122
  # Download from the 🤗 Hub
123
- model = SentenceTransformer("avemio/German_RAG-UAE-LARGE-V1-TRIPLES-HESSIAN-AI")
124
  # Run inference
125
  sentences = [
126
  'The weather is lovely today.',
 
13
  - 'search_query: i love autotrain'
14
  pipeline_tag: sentence-similarity
15
  datasets:
16
+ - avemio/German-RAG-EMBEDDING-TRIPLES-HESSIAN-AI
17
  license: mit
18
  language:
19
  - de
20
  - en
21
  ---
22
 
23
+ <img src="https://www.German-RAG.ai/wp-content/uploads/2024/12/German-RAG-ICON-TO-WORDLOGO-Animation_Loop-small-ezgif.com-video-to-gif-converter.gif" alt="German-RAG Logo" width="400" style="margin-left:'auto' margin-right:'auto' display:'block'"/>
24
 
25
+ # German-RAG-UAE-LARGE-V1-TRIPLES-HESSIAN-AI
26
 
27
+ This is a [sentence-transformers](https://www.SBERT.net) model trained on this [Dataset](https://huggingface.co/datasets/avemio/German-RAG-Embedding-Triples-Hessian-AI) with roughly 300k Triple-Samples. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
28
 
29
  ## Model Details
30
 
 
75
  ### STS (Semantic Textual Similarity)
76
  - GermanSTSBenchmark
77
 
78
+ | TASK | [UAE](https://huggingface.co/WhereIsAI/UAE-Large-V1/) | German-RAG-UAE | [Merged-UAE](https://huggingface.co/avemio/German-RAG-UAE-LARGE-V1-TRIPLES-MERGED-HESSIAN-AI/) | German-RAG vs. UAE | Merged vs. UAE |
79
  |-------------------------------------|-------|----------|------------|--------------|----------------|
80
  | AmazonCounterfactualClassification | **0.5650** | 0.5449 | 0.5401 | -2.01% | -2.48% |
81
  | AmazonReviewsClassification | 0.2738 | 0.2745 | **0.2782** | 0.08% | 0.44% |
 
90
  | PawsXPairClassification | **0.5452** | 0.5077 | 0.5162 | -3.76% | -2.90% |
91
 
92
 
93
+ ## Evaluation on German-RAG-EMBEDDING-BENCHMARK
94
 
95
  Accuracy is calculated by evaluating if the relevant context is the highest ranking embedding of the whole context array.
96
+ See Eval-Dataset and Evaluation Code [here](https://huggingface.co/datasets/avemio/German-RAG-EMBEDDING-BENCHMARK)
97
 
98
  | Model Name | Accuracy |
99
  |-------------------------------------------------|-----------|
100
  | [bge-m3](https://huggingface.co/BAAI/bge-m3 ) | 0.8806 |
101
  | [UAE-Large-V1](https://huggingface.co/WhereIsAI/UAE-Large-V1) | 0.8393 |
102
+ | [German-RAG-BGE-M3-TRIPLES-HESSIAN-AI](https://huggingface.co/avemio/German-RAG-BGE-M3-TRIPLES-HESSIAN-AI) | 0.8857 |
103
+ | [German-RAG-BGE-M3-TRIPLES-MERGED-HESSIAN-AI](https://huggingface.co/avemio/German-RAG-BGE-M3-TRIPLES-MERGED-HESSIAN-AI) | **0.8866** |
104
+ | [German-RAG-BGE-M3-MERGED-x-SNOWFLAKE-ARCTIC-HESSIAN-AI](https://huggingface.co/avemio/German-RAG-BGE-M3-MERGED-x-SNOWFLAKE-ARCTIC-HESSIAN-AI) | **0.8866** |
105
+ | [German-RAG-UAE-LARGE-V1-TRIPLES-HESSIAN-AI](https://huggingface.co/avemio/German-RAG-UAE-LARGE-V1-TRIPLES-HESSIAN-AI) | 0.8763 |
106
+ | [German-RAG-UAE-LARGE-V1-TRIPLES-MERGED-HESSIAN-AI](https://huggingface.co/avemio/German-RAG-UAE-LARGE-V1-TRIPLES-MERGED-HESSIAN-AI) | 0.8771 |
107
 
108
  ## Usage
109
 
 
120
  from sentence_transformers import SentenceTransformer
121
 
122
  # Download from the 🤗 Hub
123
+ model = SentenceTransformer("avemio/German-RAG-UAE-LARGE-V1-TRIPLES-HESSIAN-AI")
124
  # Run inference
125
  sentences = [
126
  'The weather is lovely today.',