--- base_model: SALT-NLP/FLANG-ELECTRA tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: FLANG-ELECTRA_Synonym-wordnet results: [] --- # FLANG-ELECTRA_Synonym-wordnet This model is a fine-tuned version of [SALT-NLP/FLANG-ELECTRA](https://huggingface.co/SALT-NLP/FLANG-ELECTRA) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3701 - Accuracy: 0.9376 - F1: 0.9374 - Precision: 0.9374 - Recall: 0.9376 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.6271 | 1.0 | 181 | 0.4625 | 0.8409 | 0.8408 | 0.8424 | 0.8409 | | 0.3372 | 2.0 | 362 | 0.3312 | 0.8955 | 0.8959 | 0.8991 | 0.8955 | | 0.1762 | 3.0 | 543 | 0.3046 | 0.9048 | 0.9040 | 0.9050 | 0.9048 | | 0.313 | 4.0 | 724 | 0.3908 | 0.8986 | 0.8988 | 0.9018 | 0.8986 | | 0.2564 | 5.0 | 905 | 0.3268 | 0.9080 | 0.9073 | 0.9078 | 0.9080 | | 0.3189 | 6.0 | 1086 | 0.6418 | 0.7956 | 0.7933 | 0.8130 | 0.7956 | | 0.365 | 7.0 | 1267 | 0.7276 | 0.7894 | 0.7889 | 0.7890 | 0.7894 | | 0.1356 | 8.0 | 1448 | 0.6091 | 0.8814 | 0.8811 | 0.8816 | 0.8814 | | 0.1139 | 9.0 | 1629 | 0.4184 | 0.8924 | 0.8916 | 0.8948 | 0.8924 | | 0.1238 | 10.0 | 1810 | 0.3155 | 0.9220 | 0.9213 | 0.9231 | 0.9220 | | 0.077 | 11.0 | 1991 | 0.4511 | 0.9017 | 0.9025 | 0.9061 | 0.9017 | | 0.0613 | 12.0 | 2172 | 0.4132 | 0.9142 | 0.9141 | 0.9145 | 0.9142 | | 0.0514 | 13.0 | 2353 | 0.3735 | 0.9298 | 0.9296 | 0.9321 | 0.9298 | | 0.057 | 14.0 | 2534 | 0.3701 | 0.9376 | 0.9374 | 0.9374 | 0.9376 | | 0.0152 | 15.0 | 2715 | 0.3872 | 0.9360 | 0.9357 | 0.9384 | 0.9360 | | 0.0236 | 16.0 | 2896 | 0.4117 | 0.9314 | 0.9310 | 0.9320 | 0.9314 | | 0.0277 | 17.0 | 3077 | 0.5325 | 0.9204 | 0.9197 | 0.9208 | 0.9204 | | 0.0021 | 18.0 | 3258 | 0.4227 | 0.9236 | 0.9229 | 0.9236 | 0.9236 | | 0.0005 | 19.0 | 3439 | 0.5409 | 0.9314 | 0.9308 | 0.9334 | 0.9314 | ### Framework versions - Transformers 4.37.0 - Pytorch 2.1.2 - Datasets 2.1.0 - Tokenizers 0.15.1