finetuned on balanced data
Browse files- README.md +85 -0
- config.json +37 -0
- model.safetensors +3 -0
- training_args.bin +3 -0
README.md
ADDED
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model: bert-base-uncased
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- accuracy
|
8 |
+
- f1
|
9 |
+
- precision
|
10 |
+
- recall
|
11 |
+
model-index:
|
12 |
+
- name: FPB_finetuned_v1
|
13 |
+
results: []
|
14 |
+
---
|
15 |
+
|
16 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
17 |
+
should probably proofread and complete it, then remove this comment. -->
|
18 |
+
|
19 |
+
# FPB_finetuned_v1
|
20 |
+
|
21 |
+
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset.
|
22 |
+
It achieves the following results on the evaluation set:
|
23 |
+
- Loss: 0.4649
|
24 |
+
- Accuracy: 0.9303
|
25 |
+
- F1: 0.9303
|
26 |
+
- Precision: 0.9303
|
27 |
+
- Recall: 0.9303
|
28 |
+
|
29 |
+
## Model description
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Intended uses & limitations
|
34 |
+
|
35 |
+
More information needed
|
36 |
+
|
37 |
+
## Training and evaluation data
|
38 |
+
|
39 |
+
More information needed
|
40 |
+
|
41 |
+
## Training procedure
|
42 |
+
|
43 |
+
### Training hyperparameters
|
44 |
+
|
45 |
+
The following hyperparameters were used during training:
|
46 |
+
- learning_rate: 0.0001
|
47 |
+
- train_batch_size: 64
|
48 |
+
- eval_batch_size: 64
|
49 |
+
- seed: 42
|
50 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
51 |
+
- lr_scheduler_type: linear
|
52 |
+
- lr_scheduler_warmup_steps: 1000
|
53 |
+
- num_epochs: 20
|
54 |
+
|
55 |
+
### Training results
|
56 |
+
|
57 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
|
58 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
|
59 |
+
| 0.7905 | 1.0 | 97 | 0.6913 | 0.7504 | 0.7471 | 0.7458 | 0.7504 |
|
60 |
+
| 0.3516 | 2.0 | 194 | 0.3914 | 0.8476 | 0.8480 | 0.8517 | 0.8476 |
|
61 |
+
| 0.2545 | 3.0 | 291 | 0.3302 | 0.8882 | 0.8870 | 0.8911 | 0.8882 |
|
62 |
+
| 0.1225 | 4.0 | 388 | 0.3488 | 0.8723 | 0.8730 | 0.8801 | 0.8723 |
|
63 |
+
| 0.0674 | 5.0 | 485 | 0.3910 | 0.8970 | 0.8961 | 0.8963 | 0.8970 |
|
64 |
+
| 0.0458 | 6.0 | 582 | 0.4545 | 0.9028 | 0.9022 | 0.9036 | 0.9028 |
|
65 |
+
| 0.0963 | 7.0 | 679 | 0.3467 | 0.9100 | 0.9100 | 0.9104 | 0.9100 |
|
66 |
+
| 0.0781 | 8.0 | 776 | 0.4528 | 0.8999 | 0.8991 | 0.8996 | 0.8999 |
|
67 |
+
| 0.0961 | 9.0 | 873 | 0.3966 | 0.9042 | 0.9049 | 0.9091 | 0.9042 |
|
68 |
+
| 0.0643 | 10.0 | 970 | 0.3486 | 0.9158 | 0.9159 | 0.9160 | 0.9158 |
|
69 |
+
| 0.0521 | 11.0 | 1067 | 0.5745 | 0.8955 | 0.8931 | 0.9030 | 0.8955 |
|
70 |
+
| 0.0162 | 12.0 | 1164 | 0.4968 | 0.9042 | 0.9047 | 0.9070 | 0.9042 |
|
71 |
+
| 0.0106 | 13.0 | 1261 | 0.4925 | 0.9158 | 0.9161 | 0.9171 | 0.9158 |
|
72 |
+
| 0.0056 | 14.0 | 1358 | 0.5128 | 0.9129 | 0.9126 | 0.9149 | 0.9129 |
|
73 |
+
| 0.0116 | 15.0 | 1455 | 0.4791 | 0.9202 | 0.9199 | 0.9197 | 0.9202 |
|
74 |
+
| 0.0004 | 16.0 | 1552 | 0.4417 | 0.9216 | 0.9214 | 0.9218 | 0.9216 |
|
75 |
+
| 0.0121 | 17.0 | 1649 | 0.4378 | 0.9202 | 0.9199 | 0.9205 | 0.9202 |
|
76 |
+
| 0.0003 | 18.0 | 1746 | 0.4624 | 0.9245 | 0.9245 | 0.9247 | 0.9245 |
|
77 |
+
| 0.0001 | 19.0 | 1843 | 0.4697 | 0.9274 | 0.9275 | 0.9277 | 0.9274 |
|
78 |
+
| 0.0001 | 20.0 | 1940 | 0.4649 | 0.9303 | 0.9303 | 0.9303 | 0.9303 |
|
79 |
+
|
80 |
+
|
81 |
+
### Framework versions
|
82 |
+
|
83 |
+
- Transformers 4.37.2
|
84 |
+
- Pytorch 2.1.0+cu121
|
85 |
+
- Tokenizers 0.15.2
|
config.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "bert-base-uncased",
|
3 |
+
"architectures": [
|
4 |
+
"BertForSequenceClassification"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"classifier_dropout": null,
|
8 |
+
"gradient_checkpointing": false,
|
9 |
+
"hidden_act": "gelu",
|
10 |
+
"hidden_dropout_prob": 0.1,
|
11 |
+
"hidden_size": 768,
|
12 |
+
"id2label": {
|
13 |
+
"0": "LABEL_0",
|
14 |
+
"1": "LABEL_1",
|
15 |
+
"2": "LABEL_2"
|
16 |
+
},
|
17 |
+
"initializer_range": 0.02,
|
18 |
+
"intermediate_size": 3072,
|
19 |
+
"label2id": {
|
20 |
+
"LABEL_0": 0,
|
21 |
+
"LABEL_1": 1,
|
22 |
+
"LABEL_2": 2
|
23 |
+
},
|
24 |
+
"layer_norm_eps": 1e-12,
|
25 |
+
"max_position_embeddings": 512,
|
26 |
+
"model_type": "bert",
|
27 |
+
"num_attention_heads": 12,
|
28 |
+
"num_hidden_layers": 12,
|
29 |
+
"pad_token_id": 0,
|
30 |
+
"position_embedding_type": "absolute",
|
31 |
+
"problem_type": "single_label_classification",
|
32 |
+
"torch_dtype": "float32",
|
33 |
+
"transformers_version": "4.37.2",
|
34 |
+
"type_vocab_size": 2,
|
35 |
+
"use_cache": true,
|
36 |
+
"vocab_size": 30522
|
37 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8686aaa98147a23b6726c039b87d22ac5104f4ae6978de8977060474de84a6d5
|
3 |
+
size 437961724
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fec2f827b83f24c607d79a4685652a18ca5d28cc359c25936a5305d7fff3472d
|
3 |
+
size 4664
|