File size: 2,544 Bytes
d3660cb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 |
---
base_model: ProsusAI/finbert
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: finbert_flang-bert
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finbert_flang-bert
This model is a fine-tuned version of [ProsusAI/finbert](https://huggingface.co/ProsusAI/finbert) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5591
- Accuracy: 0.8612
- F1: 0.8609
- Precision: 0.8614
- Recall: 0.8612
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 25
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
| 0.8272 | 1.0 | 91 | 0.7513 | 0.6849 | 0.6737 | 0.6816 | 0.6849 |
| 0.5021 | 2.0 | 182 | 0.4521 | 0.8346 | 0.8352 | 0.8385 | 0.8346 |
| 0.3117 | 3.0 | 273 | 0.4304 | 0.8440 | 0.8443 | 0.8451 | 0.8440 |
| 0.2461 | 4.0 | 364 | 0.5123 | 0.8346 | 0.8331 | 0.8373 | 0.8346 |
| 0.1517 | 5.0 | 455 | 0.5046 | 0.8393 | 0.8377 | 0.8410 | 0.8393 |
| 0.1005 | 6.0 | 546 | 0.5839 | 0.8502 | 0.8513 | 0.8562 | 0.8502 |
| 0.0847 | 7.0 | 637 | 0.5591 | 0.8612 | 0.8609 | 0.8614 | 0.8612 |
| 0.0984 | 8.0 | 728 | 0.7036 | 0.8268 | 0.8260 | 0.8343 | 0.8268 |
| 0.1664 | 9.0 | 819 | 0.6091 | 0.8346 | 0.8320 | 0.8384 | 0.8346 |
| 0.1215 | 10.0 | 910 | 0.6464 | 0.8393 | 0.8397 | 0.8475 | 0.8393 |
| 0.0881 | 11.0 | 1001 | 0.5982 | 0.8580 | 0.8563 | 0.8591 | 0.8580 |
| 0.0579 | 12.0 | 1092 | 0.6472 | 0.8596 | 0.8593 | 0.8592 | 0.8596 |
### Framework versions
- Transformers 4.37.0
- Pytorch 2.1.2
- Datasets 2.1.0
- Tokenizers 0.15.1
|