finbert_flang-bert / README.md
avinasht's picture
Acc0.865792759051186, F10.8656018657223895 , Augmented with flang-bert.csv, finetuned on ProsusAI/finbert
d3660cb verified
metadata
base_model: ProsusAI/finbert
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: finbert_flang-bert
    results: []

finbert_flang-bert

This model is a fine-tuned version of ProsusAI/finbert on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5591
  • Accuracy: 0.8612
  • F1: 0.8609
  • Precision: 0.8614
  • Recall: 0.8612

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • num_epochs: 25

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
0.8272 1.0 91 0.7513 0.6849 0.6737 0.6816 0.6849
0.5021 2.0 182 0.4521 0.8346 0.8352 0.8385 0.8346
0.3117 3.0 273 0.4304 0.8440 0.8443 0.8451 0.8440
0.2461 4.0 364 0.5123 0.8346 0.8331 0.8373 0.8346
0.1517 5.0 455 0.5046 0.8393 0.8377 0.8410 0.8393
0.1005 6.0 546 0.5839 0.8502 0.8513 0.8562 0.8502
0.0847 7.0 637 0.5591 0.8612 0.8609 0.8614 0.8612
0.0984 8.0 728 0.7036 0.8268 0.8260 0.8343 0.8268
0.1664 9.0 819 0.6091 0.8346 0.8320 0.8384 0.8346
0.1215 10.0 910 0.6464 0.8393 0.8397 0.8475 0.8393
0.0881 11.0 1001 0.5982 0.8580 0.8563 0.8591 0.8580
0.0579 12.0 1092 0.6472 0.8596 0.8593 0.8592 0.8596

Framework versions

  • Transformers 4.37.0
  • Pytorch 2.1.2
  • Datasets 2.1.0
  • Tokenizers 0.15.1