avsolatorio commited on
Commit
b387470
·
1 Parent(s): 8ee96fb

Fix the computation of the mean embedding

Browse files

Signed-off-by: Aivin V. Solatorio <avsolatorio@gmail.com>

1_Pooling/config.json ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true,
10
+ "output_key": "sentence_embedding"
11
+ }
2_Pooling/config.json ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true,
10
+ "output_key": "query_embedding"
11
+ }
README.md CHANGED
@@ -1,3 +1,2676 @@
1
- ---
2
- license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ library_name: sentence-transformers
5
+ license: mit
6
+ pipeline_tag: sentence-similarity
7
+ tags:
8
+ - feature-extraction
9
+ - mteb
10
+ - sentence-similarity
11
+ - sentence-transformers
12
+ - transformers
13
+ model-index:
14
+ - name: NoInstruct-small-Embedding-v0
15
+ results:
16
+ - task:
17
+ type: Classification
18
+ dataset:
19
+ type: mteb/amazon_counterfactual
20
+ name: MTEB AmazonCounterfactualClassification (en)
21
+ config: en
22
+ split: test
23
+ revision: e8379541af4e31359cca9fbcf4b00f2671dba205
24
+ metrics:
25
+ - type: accuracy
26
+ value: 75.76119402985074
27
+ - type: ap
28
+ value: 39.03628777559392
29
+ - type: f1
30
+ value: 69.85860402259618
31
+ - task:
32
+ type: Classification
33
+ dataset:
34
+ type: mteb/amazon_polarity
35
+ name: MTEB AmazonPolarityClassification
36
+ config: default
37
+ split: test
38
+ revision: e2d317d38cd51312af73b3d32a06d1a08b442046
39
+ metrics:
40
+ - type: accuracy
41
+ value: 93.29920000000001
42
+ - type: ap
43
+ value: 90.03479490717608
44
+ - type: f1
45
+ value: 93.28554395248467
46
+ - task:
47
+ type: Classification
48
+ dataset:
49
+ type: mteb/amazon_reviews_multi
50
+ name: MTEB AmazonReviewsClassification (en)
51
+ config: en
52
+ split: test
53
+ revision: 1399c76144fd37290681b995c656ef9b2e06e26d
54
+ metrics:
55
+ - type: accuracy
56
+ value: 49.98799999999999
57
+ - type: f1
58
+ value: 49.46151232451642
59
+ - task:
60
+ type: Retrieval
61
+ dataset:
62
+ type: mteb/arguana
63
+ name: MTEB ArguAna
64
+ config: default
65
+ split: test
66
+ revision: c22ab2a51041ffd869aaddef7af8d8215647e41a
67
+ metrics:
68
+ - type: map_at_1
69
+ value: 31.935000000000002
70
+ - type: map_at_10
71
+ value: 48.791000000000004
72
+ - type: map_at_100
73
+ value: 49.619
74
+ - type: map_at_1000
75
+ value: 49.623
76
+ - type: map_at_3
77
+ value: 44.334
78
+ - type: map_at_5
79
+ value: 46.908
80
+ - type: mrr_at_1
81
+ value: 32.93
82
+ - type: mrr_at_10
83
+ value: 49.158
84
+ - type: mrr_at_100
85
+ value: 50.00599999999999
86
+ - type: mrr_at_1000
87
+ value: 50.01
88
+ - type: mrr_at_3
89
+ value: 44.618
90
+ - type: mrr_at_5
91
+ value: 47.325
92
+ - type: ndcg_at_1
93
+ value: 31.935000000000002
94
+ - type: ndcg_at_10
95
+ value: 57.593
96
+ - type: ndcg_at_100
97
+ value: 60.841
98
+ - type: ndcg_at_1000
99
+ value: 60.924
100
+ - type: ndcg_at_3
101
+ value: 48.416
102
+ - type: ndcg_at_5
103
+ value: 53.05
104
+ - type: precision_at_1
105
+ value: 31.935000000000002
106
+ - type: precision_at_10
107
+ value: 8.549
108
+ - type: precision_at_100
109
+ value: 0.9900000000000001
110
+ - type: precision_at_1000
111
+ value: 0.1
112
+ - type: precision_at_3
113
+ value: 20.081
114
+ - type: precision_at_5
115
+ value: 14.296000000000001
116
+ - type: recall_at_1
117
+ value: 31.935000000000002
118
+ - type: recall_at_10
119
+ value: 85.491
120
+ - type: recall_at_100
121
+ value: 99.004
122
+ - type: recall_at_1000
123
+ value: 99.644
124
+ - type: recall_at_3
125
+ value: 60.242
126
+ - type: recall_at_5
127
+ value: 71.479
128
+ - task:
129
+ type: Clustering
130
+ dataset:
131
+ type: mteb/arxiv-clustering-p2p
132
+ name: MTEB ArxivClusteringP2P
133
+ config: default
134
+ split: test
135
+ revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
136
+ metrics:
137
+ - type: v_measure
138
+ value: 47.78438534940855
139
+ - task:
140
+ type: Clustering
141
+ dataset:
142
+ type: mteb/arxiv-clustering-s2s
143
+ name: MTEB ArxivClusteringS2S
144
+ config: default
145
+ split: test
146
+ revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
147
+ metrics:
148
+ - type: v_measure
149
+ value: 40.12916178519471
150
+ - task:
151
+ type: Reranking
152
+ dataset:
153
+ type: mteb/askubuntudupquestions-reranking
154
+ name: MTEB AskUbuntuDupQuestions
155
+ config: default
156
+ split: test
157
+ revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
158
+ metrics:
159
+ - type: map
160
+ value: 62.125361608299855
161
+ - type: mrr
162
+ value: 74.92525172580574
163
+ - task:
164
+ type: STS
165
+ dataset:
166
+ type: mteb/biosses-sts
167
+ name: MTEB BIOSSES
168
+ config: default
169
+ split: test
170
+ revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
171
+ metrics:
172
+ - type: cos_sim_pearson
173
+ value: 88.64322910336641
174
+ - type: cos_sim_spearman
175
+ value: 87.20138453306345
176
+ - type: euclidean_pearson
177
+ value: 87.08547818178234
178
+ - type: euclidean_spearman
179
+ value: 87.17066094143931
180
+ - type: manhattan_pearson
181
+ value: 87.30053110771618
182
+ - type: manhattan_spearman
183
+ value: 86.86824441211934
184
+ - task:
185
+ type: Classification
186
+ dataset:
187
+ type: mteb/banking77
188
+ name: MTEB Banking77Classification
189
+ config: default
190
+ split: test
191
+ revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
192
+ metrics:
193
+ - type: accuracy
194
+ value: 86.3961038961039
195
+ - type: f1
196
+ value: 86.3669961645295
197
+ - task:
198
+ type: Clustering
199
+ dataset:
200
+ type: mteb/biorxiv-clustering-p2p
201
+ name: MTEB BiorxivClusteringP2P
202
+ config: default
203
+ split: test
204
+ revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
205
+ metrics:
206
+ - type: v_measure
207
+ value: 39.40291404289857
208
+ - task:
209
+ type: Clustering
210
+ dataset:
211
+ type: mteb/biorxiv-clustering-s2s
212
+ name: MTEB BiorxivClusteringS2S
213
+ config: default
214
+ split: test
215
+ revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
216
+ metrics:
217
+ - type: v_measure
218
+ value: 35.102356817746816
219
+ - task:
220
+ type: Retrieval
221
+ dataset:
222
+ type: mteb/cqadupstack-android
223
+ name: MTEB CQADupstackAndroidRetrieval
224
+ config: default
225
+ split: test
226
+ revision: f46a197baaae43b4f621051089b82a364682dfeb
227
+ metrics:
228
+ - type: map_at_1
229
+ value: 31.013
230
+ - type: map_at_10
231
+ value: 42.681999999999995
232
+ - type: map_at_100
233
+ value: 44.24
234
+ - type: map_at_1000
235
+ value: 44.372
236
+ - type: map_at_3
237
+ value: 39.181
238
+ - type: map_at_5
239
+ value: 41.071999999999996
240
+ - type: mrr_at_1
241
+ value: 38.196999999999996
242
+ - type: mrr_at_10
243
+ value: 48.604
244
+ - type: mrr_at_100
245
+ value: 49.315
246
+ - type: mrr_at_1000
247
+ value: 49.363
248
+ - type: mrr_at_3
249
+ value: 45.756
250
+ - type: mrr_at_5
251
+ value: 47.43
252
+ - type: ndcg_at_1
253
+ value: 38.196999999999996
254
+ - type: ndcg_at_10
255
+ value: 49.344
256
+ - type: ndcg_at_100
257
+ value: 54.662
258
+ - type: ndcg_at_1000
259
+ value: 56.665
260
+ - type: ndcg_at_3
261
+ value: 44.146
262
+ - type: ndcg_at_5
263
+ value: 46.514
264
+ - type: precision_at_1
265
+ value: 38.196999999999996
266
+ - type: precision_at_10
267
+ value: 9.571
268
+ - type: precision_at_100
269
+ value: 1.542
270
+ - type: precision_at_1000
271
+ value: 0.202
272
+ - type: precision_at_3
273
+ value: 21.364
274
+ - type: precision_at_5
275
+ value: 15.336
276
+ - type: recall_at_1
277
+ value: 31.013
278
+ - type: recall_at_10
279
+ value: 61.934999999999995
280
+ - type: recall_at_100
281
+ value: 83.923
282
+ - type: recall_at_1000
283
+ value: 96.601
284
+ - type: recall_at_3
285
+ value: 46.86
286
+ - type: recall_at_5
287
+ value: 53.620000000000005
288
+ - task:
289
+ type: Retrieval
290
+ dataset:
291
+ type: mteb/cqadupstack-english
292
+ name: MTEB CQADupstackEnglishRetrieval
293
+ config: default
294
+ split: test
295
+ revision: ad9991cb51e31e31e430383c75ffb2885547b5f0
296
+ metrics:
297
+ - type: map_at_1
298
+ value: 29.84
299
+ - type: map_at_10
300
+ value: 39.335
301
+ - type: map_at_100
302
+ value: 40.647
303
+ - type: map_at_1000
304
+ value: 40.778
305
+ - type: map_at_3
306
+ value: 36.556
307
+ - type: map_at_5
308
+ value: 38.048
309
+ - type: mrr_at_1
310
+ value: 36.815
311
+ - type: mrr_at_10
312
+ value: 45.175
313
+ - type: mrr_at_100
314
+ value: 45.907
315
+ - type: mrr_at_1000
316
+ value: 45.946999999999996
317
+ - type: mrr_at_3
318
+ value: 42.909000000000006
319
+ - type: mrr_at_5
320
+ value: 44.227
321
+ - type: ndcg_at_1
322
+ value: 36.815
323
+ - type: ndcg_at_10
324
+ value: 44.783
325
+ - type: ndcg_at_100
326
+ value: 49.551
327
+ - type: ndcg_at_1000
328
+ value: 51.612
329
+ - type: ndcg_at_3
330
+ value: 40.697
331
+ - type: ndcg_at_5
332
+ value: 42.558
333
+ - type: precision_at_1
334
+ value: 36.815
335
+ - type: precision_at_10
336
+ value: 8.363
337
+ - type: precision_at_100
338
+ value: 1.385
339
+ - type: precision_at_1000
340
+ value: 0.186
341
+ - type: precision_at_3
342
+ value: 19.342000000000002
343
+ - type: precision_at_5
344
+ value: 13.706999999999999
345
+ - type: recall_at_1
346
+ value: 29.84
347
+ - type: recall_at_10
348
+ value: 54.164
349
+ - type: recall_at_100
350
+ value: 74.36
351
+ - type: recall_at_1000
352
+ value: 87.484
353
+ - type: recall_at_3
354
+ value: 42.306
355
+ - type: recall_at_5
356
+ value: 47.371
357
+ - task:
358
+ type: Retrieval
359
+ dataset:
360
+ type: mteb/cqadupstack-gaming
361
+ name: MTEB CQADupstackGamingRetrieval
362
+ config: default
363
+ split: test
364
+ revision: 4885aa143210c98657558c04aaf3dc47cfb54340
365
+ metrics:
366
+ - type: map_at_1
367
+ value: 39.231
368
+ - type: map_at_10
369
+ value: 51.44800000000001
370
+ - type: map_at_100
371
+ value: 52.574
372
+ - type: map_at_1000
373
+ value: 52.629999999999995
374
+ - type: map_at_3
375
+ value: 48.077
376
+ - type: map_at_5
377
+ value: 50.019000000000005
378
+ - type: mrr_at_1
379
+ value: 44.89
380
+ - type: mrr_at_10
381
+ value: 54.803000000000004
382
+ - type: mrr_at_100
383
+ value: 55.556000000000004
384
+ - type: mrr_at_1000
385
+ value: 55.584
386
+ - type: mrr_at_3
387
+ value: 52.32
388
+ - type: mrr_at_5
389
+ value: 53.846000000000004
390
+ - type: ndcg_at_1
391
+ value: 44.89
392
+ - type: ndcg_at_10
393
+ value: 57.228
394
+ - type: ndcg_at_100
395
+ value: 61.57
396
+ - type: ndcg_at_1000
397
+ value: 62.613
398
+ - type: ndcg_at_3
399
+ value: 51.727000000000004
400
+ - type: ndcg_at_5
401
+ value: 54.496
402
+ - type: precision_at_1
403
+ value: 44.89
404
+ - type: precision_at_10
405
+ value: 9.266
406
+ - type: precision_at_100
407
+ value: 1.2309999999999999
408
+ - type: precision_at_1000
409
+ value: 0.136
410
+ - type: precision_at_3
411
+ value: 23.051
412
+ - type: precision_at_5
413
+ value: 15.987000000000002
414
+ - type: recall_at_1
415
+ value: 39.231
416
+ - type: recall_at_10
417
+ value: 70.82000000000001
418
+ - type: recall_at_100
419
+ value: 89.446
420
+ - type: recall_at_1000
421
+ value: 96.665
422
+ - type: recall_at_3
423
+ value: 56.40500000000001
424
+ - type: recall_at_5
425
+ value: 62.993
426
+ - task:
427
+ type: Retrieval
428
+ dataset:
429
+ type: mteb/cqadupstack-gis
430
+ name: MTEB CQADupstackGisRetrieval
431
+ config: default
432
+ split: test
433
+ revision: 5003b3064772da1887988e05400cf3806fe491f2
434
+ metrics:
435
+ - type: map_at_1
436
+ value: 25.296000000000003
437
+ - type: map_at_10
438
+ value: 34.021
439
+ - type: map_at_100
440
+ value: 35.158
441
+ - type: map_at_1000
442
+ value: 35.233
443
+ - type: map_at_3
444
+ value: 31.424999999999997
445
+ - type: map_at_5
446
+ value: 33.046
447
+ - type: mrr_at_1
448
+ value: 27.232
449
+ - type: mrr_at_10
450
+ value: 36.103
451
+ - type: mrr_at_100
452
+ value: 37.076
453
+ - type: mrr_at_1000
454
+ value: 37.135
455
+ - type: mrr_at_3
456
+ value: 33.635
457
+ - type: mrr_at_5
458
+ value: 35.211
459
+ - type: ndcg_at_1
460
+ value: 27.232
461
+ - type: ndcg_at_10
462
+ value: 38.878
463
+ - type: ndcg_at_100
464
+ value: 44.284
465
+ - type: ndcg_at_1000
466
+ value: 46.268
467
+ - type: ndcg_at_3
468
+ value: 33.94
469
+ - type: ndcg_at_5
470
+ value: 36.687
471
+ - type: precision_at_1
472
+ value: 27.232
473
+ - type: precision_at_10
474
+ value: 5.921
475
+ - type: precision_at_100
476
+ value: 0.907
477
+ - type: precision_at_1000
478
+ value: 0.11199999999999999
479
+ - type: precision_at_3
480
+ value: 14.426
481
+ - type: precision_at_5
482
+ value: 10.215
483
+ - type: recall_at_1
484
+ value: 25.296000000000003
485
+ - type: recall_at_10
486
+ value: 51.708
487
+ - type: recall_at_100
488
+ value: 76.36699999999999
489
+ - type: recall_at_1000
490
+ value: 91.306
491
+ - type: recall_at_3
492
+ value: 38.651
493
+ - type: recall_at_5
494
+ value: 45.201
495
+ - task:
496
+ type: Retrieval
497
+ dataset:
498
+ type: mteb/cqadupstack-mathematica
499
+ name: MTEB CQADupstackMathematicaRetrieval
500
+ config: default
501
+ split: test
502
+ revision: 90fceea13679c63fe563ded68f3b6f06e50061de
503
+ metrics:
504
+ - type: map_at_1
505
+ value: 16.24
506
+ - type: map_at_10
507
+ value: 24.696
508
+ - type: map_at_100
509
+ value: 25.945
510
+ - type: map_at_1000
511
+ value: 26.069
512
+ - type: map_at_3
513
+ value: 22.542
514
+ - type: map_at_5
515
+ value: 23.526
516
+ - type: mrr_at_1
517
+ value: 20.149
518
+ - type: mrr_at_10
519
+ value: 29.584
520
+ - type: mrr_at_100
521
+ value: 30.548
522
+ - type: mrr_at_1000
523
+ value: 30.618000000000002
524
+ - type: mrr_at_3
525
+ value: 27.301
526
+ - type: mrr_at_5
527
+ value: 28.563
528
+ - type: ndcg_at_1
529
+ value: 20.149
530
+ - type: ndcg_at_10
531
+ value: 30.029
532
+ - type: ndcg_at_100
533
+ value: 35.812
534
+ - type: ndcg_at_1000
535
+ value: 38.755
536
+ - type: ndcg_at_3
537
+ value: 26.008
538
+ - type: ndcg_at_5
539
+ value: 27.517000000000003
540
+ - type: precision_at_1
541
+ value: 20.149
542
+ - type: precision_at_10
543
+ value: 5.647
544
+ - type: precision_at_100
545
+ value: 0.968
546
+ - type: precision_at_1000
547
+ value: 0.136
548
+ - type: precision_at_3
549
+ value: 12.934999999999999
550
+ - type: precision_at_5
551
+ value: 8.955
552
+ - type: recall_at_1
553
+ value: 16.24
554
+ - type: recall_at_10
555
+ value: 41.464
556
+ - type: recall_at_100
557
+ value: 66.781
558
+ - type: recall_at_1000
559
+ value: 87.85300000000001
560
+ - type: recall_at_3
561
+ value: 29.822
562
+ - type: recall_at_5
563
+ value: 34.096
564
+ - task:
565
+ type: Retrieval
566
+ dataset:
567
+ type: mteb/cqadupstack-physics
568
+ name: MTEB CQADupstackPhysicsRetrieval
569
+ config: default
570
+ split: test
571
+ revision: 79531abbd1fb92d06c6d6315a0cbbbf5bb247ea4
572
+ metrics:
573
+ - type: map_at_1
574
+ value: 29.044999999999998
575
+ - type: map_at_10
576
+ value: 39.568999999999996
577
+ - type: map_at_100
578
+ value: 40.831
579
+ - type: map_at_1000
580
+ value: 40.948
581
+ - type: map_at_3
582
+ value: 36.495
583
+ - type: map_at_5
584
+ value: 38.21
585
+ - type: mrr_at_1
586
+ value: 35.611
587
+ - type: mrr_at_10
588
+ value: 45.175
589
+ - type: mrr_at_100
590
+ value: 45.974
591
+ - type: mrr_at_1000
592
+ value: 46.025
593
+ - type: mrr_at_3
594
+ value: 42.765
595
+ - type: mrr_at_5
596
+ value: 44.151
597
+ - type: ndcg_at_1
598
+ value: 35.611
599
+ - type: ndcg_at_10
600
+ value: 45.556999999999995
601
+ - type: ndcg_at_100
602
+ value: 50.86000000000001
603
+ - type: ndcg_at_1000
604
+ value: 52.983000000000004
605
+ - type: ndcg_at_3
606
+ value: 40.881
607
+ - type: ndcg_at_5
608
+ value: 43.035000000000004
609
+ - type: precision_at_1
610
+ value: 35.611
611
+ - type: precision_at_10
612
+ value: 8.306
613
+ - type: precision_at_100
614
+ value: 1.276
615
+ - type: precision_at_1000
616
+ value: 0.165
617
+ - type: precision_at_3
618
+ value: 19.57
619
+ - type: precision_at_5
620
+ value: 13.725000000000001
621
+ - type: recall_at_1
622
+ value: 29.044999999999998
623
+ - type: recall_at_10
624
+ value: 57.513999999999996
625
+ - type: recall_at_100
626
+ value: 80.152
627
+ - type: recall_at_1000
628
+ value: 93.982
629
+ - type: recall_at_3
630
+ value: 44.121
631
+ - type: recall_at_5
632
+ value: 50.007000000000005
633
+ - task:
634
+ type: Retrieval
635
+ dataset:
636
+ type: mteb/cqadupstack-programmers
637
+ name: MTEB CQADupstackProgrammersRetrieval
638
+ config: default
639
+ split: test
640
+ revision: 6184bc1440d2dbc7612be22b50686b8826d22b32
641
+ metrics:
642
+ - type: map_at_1
643
+ value: 22.349
644
+ - type: map_at_10
645
+ value: 33.434000000000005
646
+ - type: map_at_100
647
+ value: 34.8
648
+ - type: map_at_1000
649
+ value: 34.919
650
+ - type: map_at_3
651
+ value: 30.348000000000003
652
+ - type: map_at_5
653
+ value: 31.917
654
+ - type: mrr_at_1
655
+ value: 28.195999999999998
656
+ - type: mrr_at_10
657
+ value: 38.557
658
+ - type: mrr_at_100
659
+ value: 39.550999999999995
660
+ - type: mrr_at_1000
661
+ value: 39.607
662
+ - type: mrr_at_3
663
+ value: 36.035000000000004
664
+ - type: mrr_at_5
665
+ value: 37.364999999999995
666
+ - type: ndcg_at_1
667
+ value: 28.195999999999998
668
+ - type: ndcg_at_10
669
+ value: 39.656000000000006
670
+ - type: ndcg_at_100
671
+ value: 45.507999999999996
672
+ - type: ndcg_at_1000
673
+ value: 47.848
674
+ - type: ndcg_at_3
675
+ value: 34.609
676
+ - type: ndcg_at_5
677
+ value: 36.65
678
+ - type: precision_at_1
679
+ value: 28.195999999999998
680
+ - type: precision_at_10
681
+ value: 7.534000000000001
682
+ - type: precision_at_100
683
+ value: 1.217
684
+ - type: precision_at_1000
685
+ value: 0.158
686
+ - type: precision_at_3
687
+ value: 17.085
688
+ - type: precision_at_5
689
+ value: 12.169
690
+ - type: recall_at_1
691
+ value: 22.349
692
+ - type: recall_at_10
693
+ value: 53.127
694
+ - type: recall_at_100
695
+ value: 77.884
696
+ - type: recall_at_1000
697
+ value: 93.705
698
+ - type: recall_at_3
699
+ value: 38.611000000000004
700
+ - type: recall_at_5
701
+ value: 44.182
702
+ - task:
703
+ type: Retrieval
704
+ dataset:
705
+ type: mteb/cqadupstack
706
+ name: MTEB CQADupstackRetrieval
707
+ config: default
708
+ split: test
709
+ revision: 4ffe81d471b1924886b33c7567bfb200e9eec5c4
710
+ metrics:
711
+ - type: map_at_1
712
+ value: 25.215749999999996
713
+ - type: map_at_10
714
+ value: 34.332750000000004
715
+ - type: map_at_100
716
+ value: 35.58683333333333
717
+ - type: map_at_1000
718
+ value: 35.70458333333333
719
+ - type: map_at_3
720
+ value: 31.55441666666667
721
+ - type: map_at_5
722
+ value: 33.100833333333334
723
+ - type: mrr_at_1
724
+ value: 29.697250000000004
725
+ - type: mrr_at_10
726
+ value: 38.372249999999994
727
+ - type: mrr_at_100
728
+ value: 39.26708333333334
729
+ - type: mrr_at_1000
730
+ value: 39.3265
731
+ - type: mrr_at_3
732
+ value: 35.946083333333334
733
+ - type: mrr_at_5
734
+ value: 37.336999999999996
735
+ - type: ndcg_at_1
736
+ value: 29.697250000000004
737
+ - type: ndcg_at_10
738
+ value: 39.64575
739
+ - type: ndcg_at_100
740
+ value: 44.996833333333335
741
+ - type: ndcg_at_1000
742
+ value: 47.314499999999995
743
+ - type: ndcg_at_3
744
+ value: 34.93383333333334
745
+ - type: ndcg_at_5
746
+ value: 37.15291666666667
747
+ - type: precision_at_1
748
+ value: 29.697250000000004
749
+ - type: precision_at_10
750
+ value: 6.98825
751
+ - type: precision_at_100
752
+ value: 1.138
753
+ - type: precision_at_1000
754
+ value: 0.15283333333333332
755
+ - type: precision_at_3
756
+ value: 16.115583333333333
757
+ - type: precision_at_5
758
+ value: 11.460916666666666
759
+ - type: recall_at_1
760
+ value: 25.215749999999996
761
+ - type: recall_at_10
762
+ value: 51.261250000000004
763
+ - type: recall_at_100
764
+ value: 74.67258333333334
765
+ - type: recall_at_1000
766
+ value: 90.72033333333334
767
+ - type: recall_at_3
768
+ value: 38.1795
769
+ - type: recall_at_5
770
+ value: 43.90658333333334
771
+ - task:
772
+ type: Retrieval
773
+ dataset:
774
+ type: mteb/cqadupstack-stats
775
+ name: MTEB CQADupstackStatsRetrieval
776
+ config: default
777
+ split: test
778
+ revision: 65ac3a16b8e91f9cee4c9828cc7c335575432a2a
779
+ metrics:
780
+ - type: map_at_1
781
+ value: 24.352
782
+ - type: map_at_10
783
+ value: 30.576999999999998
784
+ - type: map_at_100
785
+ value: 31.545
786
+ - type: map_at_1000
787
+ value: 31.642
788
+ - type: map_at_3
789
+ value: 28.605000000000004
790
+ - type: map_at_5
791
+ value: 29.828
792
+ - type: mrr_at_1
793
+ value: 26.994
794
+ - type: mrr_at_10
795
+ value: 33.151
796
+ - type: mrr_at_100
797
+ value: 33.973
798
+ - type: mrr_at_1000
799
+ value: 34.044999999999995
800
+ - type: mrr_at_3
801
+ value: 31.135
802
+ - type: mrr_at_5
803
+ value: 32.262
804
+ - type: ndcg_at_1
805
+ value: 26.994
806
+ - type: ndcg_at_10
807
+ value: 34.307
808
+ - type: ndcg_at_100
809
+ value: 39.079
810
+ - type: ndcg_at_1000
811
+ value: 41.548
812
+ - type: ndcg_at_3
813
+ value: 30.581000000000003
814
+ - type: ndcg_at_5
815
+ value: 32.541
816
+ - type: precision_at_1
817
+ value: 26.994
818
+ - type: precision_at_10
819
+ value: 5.244999999999999
820
+ - type: precision_at_100
821
+ value: 0.831
822
+ - type: precision_at_1000
823
+ value: 0.11100000000000002
824
+ - type: precision_at_3
825
+ value: 12.781
826
+ - type: precision_at_5
827
+ value: 9.017999999999999
828
+ - type: recall_at_1
829
+ value: 24.352
830
+ - type: recall_at_10
831
+ value: 43.126999999999995
832
+ - type: recall_at_100
833
+ value: 64.845
834
+ - type: recall_at_1000
835
+ value: 83.244
836
+ - type: recall_at_3
837
+ value: 33.308
838
+ - type: recall_at_5
839
+ value: 37.984
840
+ - task:
841
+ type: Retrieval
842
+ dataset:
843
+ type: mteb/cqadupstack-tex
844
+ name: MTEB CQADupstackTexRetrieval
845
+ config: default
846
+ split: test
847
+ revision: 46989137a86843e03a6195de44b09deda022eec7
848
+ metrics:
849
+ - type: map_at_1
850
+ value: 16.592000000000002
851
+ - type: map_at_10
852
+ value: 23.29
853
+ - type: map_at_100
854
+ value: 24.423000000000002
855
+ - type: map_at_1000
856
+ value: 24.554000000000002
857
+ - type: map_at_3
858
+ value: 20.958
859
+ - type: map_at_5
860
+ value: 22.267
861
+ - type: mrr_at_1
862
+ value: 20.061999999999998
863
+ - type: mrr_at_10
864
+ value: 26.973999999999997
865
+ - type: mrr_at_100
866
+ value: 27.944999999999997
867
+ - type: mrr_at_1000
868
+ value: 28.023999999999997
869
+ - type: mrr_at_3
870
+ value: 24.839
871
+ - type: mrr_at_5
872
+ value: 26.033
873
+ - type: ndcg_at_1
874
+ value: 20.061999999999998
875
+ - type: ndcg_at_10
876
+ value: 27.682000000000002
877
+ - type: ndcg_at_100
878
+ value: 33.196
879
+ - type: ndcg_at_1000
880
+ value: 36.246
881
+ - type: ndcg_at_3
882
+ value: 23.559
883
+ - type: ndcg_at_5
884
+ value: 25.507
885
+ - type: precision_at_1
886
+ value: 20.061999999999998
887
+ - type: precision_at_10
888
+ value: 5.086
889
+ - type: precision_at_100
890
+ value: 0.9249999999999999
891
+ - type: precision_at_1000
892
+ value: 0.136
893
+ - type: precision_at_3
894
+ value: 11.046
895
+ - type: precision_at_5
896
+ value: 8.149000000000001
897
+ - type: recall_at_1
898
+ value: 16.592000000000002
899
+ - type: recall_at_10
900
+ value: 37.181999999999995
901
+ - type: recall_at_100
902
+ value: 62.224999999999994
903
+ - type: recall_at_1000
904
+ value: 84.072
905
+ - type: recall_at_3
906
+ value: 25.776
907
+ - type: recall_at_5
908
+ value: 30.680000000000003
909
+ - task:
910
+ type: Retrieval
911
+ dataset:
912
+ type: mteb/cqadupstack-unix
913
+ name: MTEB CQADupstackUnixRetrieval
914
+ config: default
915
+ split: test
916
+ revision: 6c6430d3a6d36f8d2a829195bc5dc94d7e063e53
917
+ metrics:
918
+ - type: map_at_1
919
+ value: 26.035999999999998
920
+ - type: map_at_10
921
+ value: 34.447
922
+ - type: map_at_100
923
+ value: 35.697
924
+ - type: map_at_1000
925
+ value: 35.802
926
+ - type: map_at_3
927
+ value: 31.64
928
+ - type: map_at_5
929
+ value: 33.056999999999995
930
+ - type: mrr_at_1
931
+ value: 29.851
932
+ - type: mrr_at_10
933
+ value: 38.143
934
+ - type: mrr_at_100
935
+ value: 39.113
936
+ - type: mrr_at_1000
937
+ value: 39.175
938
+ - type: mrr_at_3
939
+ value: 35.665
940
+ - type: mrr_at_5
941
+ value: 36.901
942
+ - type: ndcg_at_1
943
+ value: 29.851
944
+ - type: ndcg_at_10
945
+ value: 39.554
946
+ - type: ndcg_at_100
947
+ value: 45.091
948
+ - type: ndcg_at_1000
949
+ value: 47.504000000000005
950
+ - type: ndcg_at_3
951
+ value: 34.414
952
+ - type: ndcg_at_5
953
+ value: 36.508
954
+ - type: precision_at_1
955
+ value: 29.851
956
+ - type: precision_at_10
957
+ value: 6.614000000000001
958
+ - type: precision_at_100
959
+ value: 1.051
960
+ - type: precision_at_1000
961
+ value: 0.13699999999999998
962
+ - type: precision_at_3
963
+ value: 15.329999999999998
964
+ - type: precision_at_5
965
+ value: 10.671999999999999
966
+ - type: recall_at_1
967
+ value: 26.035999999999998
968
+ - type: recall_at_10
969
+ value: 51.396
970
+ - type: recall_at_100
971
+ value: 75.09
972
+ - type: recall_at_1000
973
+ value: 91.904
974
+ - type: recall_at_3
975
+ value: 37.378
976
+ - type: recall_at_5
977
+ value: 42.69
978
+ - task:
979
+ type: Retrieval
980
+ dataset:
981
+ type: mteb/cqadupstack-webmasters
982
+ name: MTEB CQADupstackWebmastersRetrieval
983
+ config: default
984
+ split: test
985
+ revision: 160c094312a0e1facb97e55eeddb698c0abe3571
986
+ metrics:
987
+ - type: map_at_1
988
+ value: 23.211000000000002
989
+ - type: map_at_10
990
+ value: 32.231
991
+ - type: map_at_100
992
+ value: 33.772999999999996
993
+ - type: map_at_1000
994
+ value: 33.982
995
+ - type: map_at_3
996
+ value: 29.128
997
+ - type: map_at_5
998
+ value: 31.002999999999997
999
+ - type: mrr_at_1
1000
+ value: 27.668
1001
+ - type: mrr_at_10
1002
+ value: 36.388
1003
+ - type: mrr_at_100
1004
+ value: 37.384
1005
+ - type: mrr_at_1000
1006
+ value: 37.44
1007
+ - type: mrr_at_3
1008
+ value: 33.762
1009
+ - type: mrr_at_5
1010
+ value: 35.234
1011
+ - type: ndcg_at_1
1012
+ value: 27.668
1013
+ - type: ndcg_at_10
1014
+ value: 38.043
1015
+ - type: ndcg_at_100
1016
+ value: 44.21
1017
+ - type: ndcg_at_1000
1018
+ value: 46.748
1019
+ - type: ndcg_at_3
1020
+ value: 32.981
1021
+ - type: ndcg_at_5
1022
+ value: 35.58
1023
+ - type: precision_at_1
1024
+ value: 27.668
1025
+ - type: precision_at_10
1026
+ value: 7.352
1027
+ - type: precision_at_100
1028
+ value: 1.5
1029
+ - type: precision_at_1000
1030
+ value: 0.23700000000000002
1031
+ - type: precision_at_3
1032
+ value: 15.613
1033
+ - type: precision_at_5
1034
+ value: 11.501999999999999
1035
+ - type: recall_at_1
1036
+ value: 23.211000000000002
1037
+ - type: recall_at_10
1038
+ value: 49.851
1039
+ - type: recall_at_100
1040
+ value: 77.596
1041
+ - type: recall_at_1000
1042
+ value: 93.683
1043
+ - type: recall_at_3
1044
+ value: 35.403
1045
+ - type: recall_at_5
1046
+ value: 42.485
1047
+ - task:
1048
+ type: Retrieval
1049
+ dataset:
1050
+ type: mteb/cqadupstack-wordpress
1051
+ name: MTEB CQADupstackWordpressRetrieval
1052
+ config: default
1053
+ split: test
1054
+ revision: 4ffe81d471b1924886b33c7567bfb200e9eec5c4
1055
+ metrics:
1056
+ - type: map_at_1
1057
+ value: 19.384
1058
+ - type: map_at_10
1059
+ value: 26.262999999999998
1060
+ - type: map_at_100
1061
+ value: 27.409
1062
+ - type: map_at_1000
1063
+ value: 27.526
1064
+ - type: map_at_3
1065
+ value: 23.698
1066
+ - type: map_at_5
1067
+ value: 25.217
1068
+ - type: mrr_at_1
1069
+ value: 20.702
1070
+ - type: mrr_at_10
1071
+ value: 27.810000000000002
1072
+ - type: mrr_at_100
1073
+ value: 28.863
1074
+ - type: mrr_at_1000
1075
+ value: 28.955
1076
+ - type: mrr_at_3
1077
+ value: 25.230999999999998
1078
+ - type: mrr_at_5
1079
+ value: 26.821
1080
+ - type: ndcg_at_1
1081
+ value: 20.702
1082
+ - type: ndcg_at_10
1083
+ value: 30.688
1084
+ - type: ndcg_at_100
1085
+ value: 36.138999999999996
1086
+ - type: ndcg_at_1000
1087
+ value: 38.984
1088
+ - type: ndcg_at_3
1089
+ value: 25.663000000000004
1090
+ - type: ndcg_at_5
1091
+ value: 28.242
1092
+ - type: precision_at_1
1093
+ value: 20.702
1094
+ - type: precision_at_10
1095
+ value: 4.954
1096
+ - type: precision_at_100
1097
+ value: 0.823
1098
+ - type: precision_at_1000
1099
+ value: 0.11800000000000001
1100
+ - type: precision_at_3
1101
+ value: 10.844
1102
+ - type: precision_at_5
1103
+ value: 8.096
1104
+ - type: recall_at_1
1105
+ value: 19.384
1106
+ - type: recall_at_10
1107
+ value: 42.847
1108
+ - type: recall_at_100
1109
+ value: 67.402
1110
+ - type: recall_at_1000
1111
+ value: 88.145
1112
+ - type: recall_at_3
1113
+ value: 29.513
1114
+ - type: recall_at_5
1115
+ value: 35.57
1116
+ - task:
1117
+ type: Retrieval
1118
+ dataset:
1119
+ type: mteb/climate-fever
1120
+ name: MTEB ClimateFEVER
1121
+ config: default
1122
+ split: test
1123
+ revision: 47f2ac6acb640fc46020b02a5b59fdda04d39380
1124
+ metrics:
1125
+ - type: map_at_1
1126
+ value: 14.915000000000001
1127
+ - type: map_at_10
1128
+ value: 25.846999999999998
1129
+ - type: map_at_100
1130
+ value: 27.741
1131
+ - type: map_at_1000
1132
+ value: 27.921000000000003
1133
+ - type: map_at_3
1134
+ value: 21.718
1135
+ - type: map_at_5
1136
+ value: 23.948
1137
+ - type: mrr_at_1
1138
+ value: 33.941
1139
+ - type: mrr_at_10
1140
+ value: 46.897
1141
+ - type: mrr_at_100
1142
+ value: 47.63
1143
+ - type: mrr_at_1000
1144
+ value: 47.658
1145
+ - type: mrr_at_3
1146
+ value: 43.919999999999995
1147
+ - type: mrr_at_5
1148
+ value: 45.783
1149
+ - type: ndcg_at_1
1150
+ value: 33.941
1151
+ - type: ndcg_at_10
1152
+ value: 35.202
1153
+ - type: ndcg_at_100
1154
+ value: 42.132
1155
+ - type: ndcg_at_1000
1156
+ value: 45.190999999999995
1157
+ - type: ndcg_at_3
1158
+ value: 29.68
1159
+ - type: ndcg_at_5
1160
+ value: 31.631999999999998
1161
+ - type: precision_at_1
1162
+ value: 33.941
1163
+ - type: precision_at_10
1164
+ value: 10.906
1165
+ - type: precision_at_100
1166
+ value: 1.8339999999999999
1167
+ - type: precision_at_1000
1168
+ value: 0.241
1169
+ - type: precision_at_3
1170
+ value: 22.606
1171
+ - type: precision_at_5
1172
+ value: 17.081
1173
+ - type: recall_at_1
1174
+ value: 14.915000000000001
1175
+ - type: recall_at_10
1176
+ value: 40.737
1177
+ - type: recall_at_100
1178
+ value: 64.42
1179
+ - type: recall_at_1000
1180
+ value: 81.435
1181
+ - type: recall_at_3
1182
+ value: 26.767000000000003
1183
+ - type: recall_at_5
1184
+ value: 32.895
1185
+ - task:
1186
+ type: Retrieval
1187
+ dataset:
1188
+ type: mteb/dbpedia
1189
+ name: MTEB DBPedia
1190
+ config: default
1191
+ split: test
1192
+ revision: c0f706b76e590d620bd6618b3ca8efdd34e2d659
1193
+ metrics:
1194
+ - type: map_at_1
1195
+ value: 8.665000000000001
1196
+ - type: map_at_10
1197
+ value: 19.087
1198
+ - type: map_at_100
1199
+ value: 26.555
1200
+ - type: map_at_1000
1201
+ value: 28.105999999999998
1202
+ - type: map_at_3
1203
+ value: 13.858999999999998
1204
+ - type: map_at_5
1205
+ value: 16.083
1206
+ - type: mrr_at_1
1207
+ value: 68.5
1208
+ - type: mrr_at_10
1209
+ value: 76.725
1210
+ - type: mrr_at_100
1211
+ value: 76.974
1212
+ - type: mrr_at_1000
1213
+ value: 76.981
1214
+ - type: mrr_at_3
1215
+ value: 75.583
1216
+ - type: mrr_at_5
1217
+ value: 76.208
1218
+ - type: ndcg_at_1
1219
+ value: 55.875
1220
+ - type: ndcg_at_10
1221
+ value: 41.018
1222
+ - type: ndcg_at_100
1223
+ value: 44.982
1224
+ - type: ndcg_at_1000
1225
+ value: 52.43
1226
+ - type: ndcg_at_3
1227
+ value: 46.534
1228
+ - type: ndcg_at_5
1229
+ value: 43.083
1230
+ - type: precision_at_1
1231
+ value: 68.5
1232
+ - type: precision_at_10
1233
+ value: 32.35
1234
+ - type: precision_at_100
1235
+ value: 10.078
1236
+ - type: precision_at_1000
1237
+ value: 1.957
1238
+ - type: precision_at_3
1239
+ value: 50.083
1240
+ - type: precision_at_5
1241
+ value: 41.3
1242
+ - type: recall_at_1
1243
+ value: 8.665000000000001
1244
+ - type: recall_at_10
1245
+ value: 24.596999999999998
1246
+ - type: recall_at_100
1247
+ value: 50.612
1248
+ - type: recall_at_1000
1249
+ value: 74.24
1250
+ - type: recall_at_3
1251
+ value: 15.337
1252
+ - type: recall_at_5
1253
+ value: 18.796
1254
+ - task:
1255
+ type: Classification
1256
+ dataset:
1257
+ type: mteb/emotion
1258
+ name: MTEB EmotionClassification
1259
+ config: default
1260
+ split: test
1261
+ revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
1262
+ metrics:
1263
+ - type: accuracy
1264
+ value: 55.06500000000001
1265
+ - type: f1
1266
+ value: 49.827367590822035
1267
+ - task:
1268
+ type: Retrieval
1269
+ dataset:
1270
+ type: mteb/fever
1271
+ name: MTEB FEVER
1272
+ config: default
1273
+ split: test
1274
+ revision: bea83ef9e8fb933d90a2f1d5515737465d613e12
1275
+ metrics:
1276
+ - type: map_at_1
1277
+ value: 76.059
1278
+ - type: map_at_10
1279
+ value: 83.625
1280
+ - type: map_at_100
1281
+ value: 83.845
1282
+ - type: map_at_1000
1283
+ value: 83.858
1284
+ - type: map_at_3
1285
+ value: 82.67099999999999
1286
+ - type: map_at_5
1287
+ value: 83.223
1288
+ - type: mrr_at_1
1289
+ value: 82.013
1290
+ - type: mrr_at_10
1291
+ value: 88.44800000000001
1292
+ - type: mrr_at_100
1293
+ value: 88.535
1294
+ - type: mrr_at_1000
1295
+ value: 88.537
1296
+ - type: mrr_at_3
1297
+ value: 87.854
1298
+ - type: mrr_at_5
1299
+ value: 88.221
1300
+ - type: ndcg_at_1
1301
+ value: 82.013
1302
+ - type: ndcg_at_10
1303
+ value: 87.128
1304
+ - type: ndcg_at_100
1305
+ value: 87.922
1306
+ - type: ndcg_at_1000
1307
+ value: 88.166
1308
+ - type: ndcg_at_3
1309
+ value: 85.648
1310
+ - type: ndcg_at_5
1311
+ value: 86.366
1312
+ - type: precision_at_1
1313
+ value: 82.013
1314
+ - type: precision_at_10
1315
+ value: 10.32
1316
+ - type: precision_at_100
1317
+ value: 1.093
1318
+ - type: precision_at_1000
1319
+ value: 0.11299999999999999
1320
+ - type: precision_at_3
1321
+ value: 32.408
1322
+ - type: precision_at_5
1323
+ value: 19.973
1324
+ - type: recall_at_1
1325
+ value: 76.059
1326
+ - type: recall_at_10
1327
+ value: 93.229
1328
+ - type: recall_at_100
1329
+ value: 96.387
1330
+ - type: recall_at_1000
1331
+ value: 97.916
1332
+ - type: recall_at_3
1333
+ value: 89.025
1334
+ - type: recall_at_5
1335
+ value: 90.96300000000001
1336
+ - task:
1337
+ type: Retrieval
1338
+ dataset:
1339
+ type: mteb/fiqa
1340
+ name: MTEB FiQA2018
1341
+ config: default
1342
+ split: test
1343
+ revision: 27a168819829fe9bcd655c2df245fb19452e8e06
1344
+ metrics:
1345
+ - type: map_at_1
1346
+ value: 20.479
1347
+ - type: map_at_10
1348
+ value: 33.109
1349
+ - type: map_at_100
1350
+ value: 34.803
1351
+ - type: map_at_1000
1352
+ value: 35.003
1353
+ - type: map_at_3
1354
+ value: 28.967
1355
+ - type: map_at_5
1356
+ value: 31.385
1357
+ - type: mrr_at_1
1358
+ value: 40.278000000000006
1359
+ - type: mrr_at_10
1360
+ value: 48.929
1361
+ - type: mrr_at_100
1362
+ value: 49.655
1363
+ - type: mrr_at_1000
1364
+ value: 49.691
1365
+ - type: mrr_at_3
1366
+ value: 46.605000000000004
1367
+ - type: mrr_at_5
1368
+ value: 48.056
1369
+ - type: ndcg_at_1
1370
+ value: 40.278000000000006
1371
+ - type: ndcg_at_10
1372
+ value: 40.649
1373
+ - type: ndcg_at_100
1374
+ value: 47.027
1375
+ - type: ndcg_at_1000
1376
+ value: 50.249
1377
+ - type: ndcg_at_3
1378
+ value: 37.364000000000004
1379
+ - type: ndcg_at_5
1380
+ value: 38.494
1381
+ - type: precision_at_1
1382
+ value: 40.278000000000006
1383
+ - type: precision_at_10
1384
+ value: 11.327
1385
+ - type: precision_at_100
1386
+ value: 1.802
1387
+ - type: precision_at_1000
1388
+ value: 0.23700000000000002
1389
+ - type: precision_at_3
1390
+ value: 25.102999999999998
1391
+ - type: precision_at_5
1392
+ value: 18.457
1393
+ - type: recall_at_1
1394
+ value: 20.479
1395
+ - type: recall_at_10
1396
+ value: 46.594
1397
+ - type: recall_at_100
1398
+ value: 71.101
1399
+ - type: recall_at_1000
1400
+ value: 90.31099999999999
1401
+ - type: recall_at_3
1402
+ value: 33.378
1403
+ - type: recall_at_5
1404
+ value: 39.587
1405
+ - task:
1406
+ type: Retrieval
1407
+ dataset:
1408
+ type: mteb/hotpotqa
1409
+ name: MTEB HotpotQA
1410
+ config: default
1411
+ split: test
1412
+ revision: ab518f4d6fcca38d87c25209f94beba119d02014
1413
+ metrics:
1414
+ - type: map_at_1
1415
+ value: 36.59
1416
+ - type: map_at_10
1417
+ value: 58.178
1418
+ - type: map_at_100
1419
+ value: 59.095
1420
+ - type: map_at_1000
1421
+ value: 59.16400000000001
1422
+ - type: map_at_3
1423
+ value: 54.907
1424
+ - type: map_at_5
1425
+ value: 56.89999999999999
1426
+ - type: mrr_at_1
1427
+ value: 73.18
1428
+ - type: mrr_at_10
1429
+ value: 79.935
1430
+ - type: mrr_at_100
1431
+ value: 80.16799999999999
1432
+ - type: mrr_at_1000
1433
+ value: 80.17800000000001
1434
+ - type: mrr_at_3
1435
+ value: 78.776
1436
+ - type: mrr_at_5
1437
+ value: 79.522
1438
+ - type: ndcg_at_1
1439
+ value: 73.18
1440
+ - type: ndcg_at_10
1441
+ value: 66.538
1442
+ - type: ndcg_at_100
1443
+ value: 69.78
1444
+ - type: ndcg_at_1000
1445
+ value: 71.102
1446
+ - type: ndcg_at_3
1447
+ value: 61.739
1448
+ - type: ndcg_at_5
1449
+ value: 64.35600000000001
1450
+ - type: precision_at_1
1451
+ value: 73.18
1452
+ - type: precision_at_10
1453
+ value: 14.035
1454
+ - type: precision_at_100
1455
+ value: 1.657
1456
+ - type: precision_at_1000
1457
+ value: 0.183
1458
+ - type: precision_at_3
1459
+ value: 39.684999999999995
1460
+ - type: precision_at_5
1461
+ value: 25.885
1462
+ - type: recall_at_1
1463
+ value: 36.59
1464
+ - type: recall_at_10
1465
+ value: 70.176
1466
+ - type: recall_at_100
1467
+ value: 82.836
1468
+ - type: recall_at_1000
1469
+ value: 91.526
1470
+ - type: recall_at_3
1471
+ value: 59.526999999999994
1472
+ - type: recall_at_5
1473
+ value: 64.713
1474
+ - task:
1475
+ type: Classification
1476
+ dataset:
1477
+ type: mteb/imdb
1478
+ name: MTEB ImdbClassification
1479
+ config: default
1480
+ split: test
1481
+ revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
1482
+ metrics:
1483
+ - type: accuracy
1484
+ value: 90.1472
1485
+ - type: ap
1486
+ value: 85.73994227076815
1487
+ - type: f1
1488
+ value: 90.1271700788608
1489
+ - task:
1490
+ type: Retrieval
1491
+ dataset:
1492
+ type: mteb/msmarco
1493
+ name: MTEB MSMARCO
1494
+ config: default
1495
+ split: dev
1496
+ revision: c5a29a104738b98a9e76336939199e264163d4a0
1497
+ metrics:
1498
+ - type: map_at_1
1499
+ value: 21.689
1500
+ - type: map_at_10
1501
+ value: 33.518
1502
+ - type: map_at_100
1503
+ value: 34.715
1504
+ - type: map_at_1000
1505
+ value: 34.766000000000005
1506
+ - type: map_at_3
1507
+ value: 29.781000000000002
1508
+ - type: map_at_5
1509
+ value: 31.838
1510
+ - type: mrr_at_1
1511
+ value: 22.249
1512
+ - type: mrr_at_10
1513
+ value: 34.085
1514
+ - type: mrr_at_100
1515
+ value: 35.223
1516
+ - type: mrr_at_1000
1517
+ value: 35.266999999999996
1518
+ - type: mrr_at_3
1519
+ value: 30.398999999999997
1520
+ - type: mrr_at_5
1521
+ value: 32.437
1522
+ - type: ndcg_at_1
1523
+ value: 22.249
1524
+ - type: ndcg_at_10
1525
+ value: 40.227000000000004
1526
+ - type: ndcg_at_100
1527
+ value: 45.961999999999996
1528
+ - type: ndcg_at_1000
1529
+ value: 47.248000000000005
1530
+ - type: ndcg_at_3
1531
+ value: 32.566
1532
+ - type: ndcg_at_5
1533
+ value: 36.229
1534
+ - type: precision_at_1
1535
+ value: 22.249
1536
+ - type: precision_at_10
1537
+ value: 6.358
1538
+ - type: precision_at_100
1539
+ value: 0.923
1540
+ - type: precision_at_1000
1541
+ value: 0.10300000000000001
1542
+ - type: precision_at_3
1543
+ value: 13.83
1544
+ - type: precision_at_5
1545
+ value: 10.145999999999999
1546
+ - type: recall_at_1
1547
+ value: 21.689
1548
+ - type: recall_at_10
1549
+ value: 60.92999999999999
1550
+ - type: recall_at_100
1551
+ value: 87.40599999999999
1552
+ - type: recall_at_1000
1553
+ value: 97.283
1554
+ - type: recall_at_3
1555
+ value: 40.01
1556
+ - type: recall_at_5
1557
+ value: 48.776
1558
+ - task:
1559
+ type: Classification
1560
+ dataset:
1561
+ type: mteb/mtop_domain
1562
+ name: MTEB MTOPDomainClassification (en)
1563
+ config: en
1564
+ split: test
1565
+ revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
1566
+ metrics:
1567
+ - type: accuracy
1568
+ value: 95.28727770177838
1569
+ - type: f1
1570
+ value: 95.02577308660041
1571
+ - task:
1572
+ type: Classification
1573
+ dataset:
1574
+ type: mteb/mtop_intent
1575
+ name: MTEB MTOPIntentClassification (en)
1576
+ config: en
1577
+ split: test
1578
+ revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
1579
+ metrics:
1580
+ - type: accuracy
1581
+ value: 79.5736434108527
1582
+ - type: f1
1583
+ value: 61.2451202054398
1584
+ - task:
1585
+ type: Classification
1586
+ dataset:
1587
+ type: mteb/amazon_massive_intent
1588
+ name: MTEB MassiveIntentClassification (en)
1589
+ config: en
1590
+ split: test
1591
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
1592
+ metrics:
1593
+ - type: accuracy
1594
+ value: 76.01210490921318
1595
+ - type: f1
1596
+ value: 73.70188053982473
1597
+ - task:
1598
+ type: Classification
1599
+ dataset:
1600
+ type: mteb/amazon_massive_scenario
1601
+ name: MTEB MassiveScenarioClassification (en)
1602
+ config: en
1603
+ split: test
1604
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
1605
+ metrics:
1606
+ - type: accuracy
1607
+ value: 79.33422999327504
1608
+ - type: f1
1609
+ value: 79.48369022509658
1610
+ - task:
1611
+ type: Clustering
1612
+ dataset:
1613
+ type: mteb/medrxiv-clustering-p2p
1614
+ name: MTEB MedrxivClusteringP2P
1615
+ config: default
1616
+ split: test
1617
+ revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
1618
+ metrics:
1619
+ - type: v_measure
1620
+ value: 34.70891567267726
1621
+ - task:
1622
+ type: Clustering
1623
+ dataset:
1624
+ type: mteb/medrxiv-clustering-s2s
1625
+ name: MTEB MedrxivClusteringS2S
1626
+ config: default
1627
+ split: test
1628
+ revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
1629
+ metrics:
1630
+ - type: v_measure
1631
+ value: 32.15203494451706
1632
+ - task:
1633
+ type: Reranking
1634
+ dataset:
1635
+ type: mteb/mind_small
1636
+ name: MTEB MindSmallReranking
1637
+ config: default
1638
+ split: test
1639
+ revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
1640
+ metrics:
1641
+ - type: map
1642
+ value: 31.919517862194173
1643
+ - type: mrr
1644
+ value: 33.15466289140483
1645
+ - task:
1646
+ type: Retrieval
1647
+ dataset:
1648
+ type: mteb/nfcorpus
1649
+ name: MTEB NFCorpus
1650
+ config: default
1651
+ split: test
1652
+ revision: ec0fa4fe99da2ff19ca1214b7966684033a58814
1653
+ metrics:
1654
+ - type: map_at_1
1655
+ value: 5.992
1656
+ - type: map_at_10
1657
+ value: 13.197000000000001
1658
+ - type: map_at_100
1659
+ value: 16.907
1660
+ - type: map_at_1000
1661
+ value: 18.44
1662
+ - type: map_at_3
1663
+ value: 9.631
1664
+ - type: map_at_5
1665
+ value: 11.243
1666
+ - type: mrr_at_1
1667
+ value: 44.272
1668
+ - type: mrr_at_10
1669
+ value: 53.321
1670
+ - type: mrr_at_100
1671
+ value: 53.903
1672
+ - type: mrr_at_1000
1673
+ value: 53.952999999999996
1674
+ - type: mrr_at_3
1675
+ value: 51.393
1676
+ - type: mrr_at_5
1677
+ value: 52.708999999999996
1678
+ - type: ndcg_at_1
1679
+ value: 42.415000000000006
1680
+ - type: ndcg_at_10
1681
+ value: 34.921
1682
+ - type: ndcg_at_100
1683
+ value: 32.384
1684
+ - type: ndcg_at_1000
1685
+ value: 41.260000000000005
1686
+ - type: ndcg_at_3
1687
+ value: 40.186
1688
+ - type: ndcg_at_5
1689
+ value: 37.89
1690
+ - type: precision_at_1
1691
+ value: 44.272
1692
+ - type: precision_at_10
1693
+ value: 26.006
1694
+ - type: precision_at_100
1695
+ value: 8.44
1696
+ - type: precision_at_1000
1697
+ value: 2.136
1698
+ - type: precision_at_3
1699
+ value: 37.977
1700
+ - type: precision_at_5
1701
+ value: 32.755
1702
+ - type: recall_at_1
1703
+ value: 5.992
1704
+ - type: recall_at_10
1705
+ value: 17.01
1706
+ - type: recall_at_100
1707
+ value: 33.080999999999996
1708
+ - type: recall_at_1000
1709
+ value: 65.054
1710
+ - type: recall_at_3
1711
+ value: 10.528
1712
+ - type: recall_at_5
1713
+ value: 13.233
1714
+ - task:
1715
+ type: Retrieval
1716
+ dataset:
1717
+ type: mteb/nq
1718
+ name: MTEB NQ
1719
+ config: default
1720
+ split: test
1721
+ revision: b774495ed302d8c44a3a7ea25c90dbce03968f31
1722
+ metrics:
1723
+ - type: map_at_1
1724
+ value: 28.871999999999996
1725
+ - type: map_at_10
1726
+ value: 43.286
1727
+ - type: map_at_100
1728
+ value: 44.432
1729
+ - type: map_at_1000
1730
+ value: 44.464999999999996
1731
+ - type: map_at_3
1732
+ value: 38.856
1733
+ - type: map_at_5
1734
+ value: 41.514
1735
+ - type: mrr_at_1
1736
+ value: 32.619
1737
+ - type: mrr_at_10
1738
+ value: 45.75
1739
+ - type: mrr_at_100
1740
+ value: 46.622
1741
+ - type: mrr_at_1000
1742
+ value: 46.646
1743
+ - type: mrr_at_3
1744
+ value: 41.985
1745
+ - type: mrr_at_5
1746
+ value: 44.277
1747
+ - type: ndcg_at_1
1748
+ value: 32.59
1749
+ - type: ndcg_at_10
1750
+ value: 50.895999999999994
1751
+ - type: ndcg_at_100
1752
+ value: 55.711999999999996
1753
+ - type: ndcg_at_1000
1754
+ value: 56.48800000000001
1755
+ - type: ndcg_at_3
1756
+ value: 42.504999999999995
1757
+ - type: ndcg_at_5
1758
+ value: 46.969
1759
+ - type: precision_at_1
1760
+ value: 32.59
1761
+ - type: precision_at_10
1762
+ value: 8.543000000000001
1763
+ - type: precision_at_100
1764
+ value: 1.123
1765
+ - type: precision_at_1000
1766
+ value: 0.12
1767
+ - type: precision_at_3
1768
+ value: 19.448
1769
+ - type: precision_at_5
1770
+ value: 14.218
1771
+ - type: recall_at_1
1772
+ value: 28.871999999999996
1773
+ - type: recall_at_10
1774
+ value: 71.748
1775
+ - type: recall_at_100
1776
+ value: 92.55499999999999
1777
+ - type: recall_at_1000
1778
+ value: 98.327
1779
+ - type: recall_at_3
1780
+ value: 49.944
1781
+ - type: recall_at_5
1782
+ value: 60.291
1783
+ - task:
1784
+ type: Retrieval
1785
+ dataset:
1786
+ type: mteb/quora
1787
+ name: MTEB QuoraRetrieval
1788
+ config: default
1789
+ split: test
1790
+ revision: e4e08e0b7dbe3c8700f0daef558ff32256715259
1791
+ metrics:
1792
+ - type: map_at_1
1793
+ value: 70.664
1794
+ - type: map_at_10
1795
+ value: 84.681
1796
+ - type: map_at_100
1797
+ value: 85.289
1798
+ - type: map_at_1000
1799
+ value: 85.306
1800
+ - type: map_at_3
1801
+ value: 81.719
1802
+ - type: map_at_5
1803
+ value: 83.601
1804
+ - type: mrr_at_1
1805
+ value: 81.35
1806
+ - type: mrr_at_10
1807
+ value: 87.591
1808
+ - type: mrr_at_100
1809
+ value: 87.691
1810
+ - type: mrr_at_1000
1811
+ value: 87.693
1812
+ - type: mrr_at_3
1813
+ value: 86.675
1814
+ - type: mrr_at_5
1815
+ value: 87.29299999999999
1816
+ - type: ndcg_at_1
1817
+ value: 81.33
1818
+ - type: ndcg_at_10
1819
+ value: 88.411
1820
+ - type: ndcg_at_100
1821
+ value: 89.579
1822
+ - type: ndcg_at_1000
1823
+ value: 89.687
1824
+ - type: ndcg_at_3
1825
+ value: 85.613
1826
+ - type: ndcg_at_5
1827
+ value: 87.17
1828
+ - type: precision_at_1
1829
+ value: 81.33
1830
+ - type: precision_at_10
1831
+ value: 13.422
1832
+ - type: precision_at_100
1833
+ value: 1.5270000000000001
1834
+ - type: precision_at_1000
1835
+ value: 0.157
1836
+ - type: precision_at_3
1837
+ value: 37.463
1838
+ - type: precision_at_5
1839
+ value: 24.646
1840
+ - type: recall_at_1
1841
+ value: 70.664
1842
+ - type: recall_at_10
1843
+ value: 95.54
1844
+ - type: recall_at_100
1845
+ value: 99.496
1846
+ - type: recall_at_1000
1847
+ value: 99.978
1848
+ - type: recall_at_3
1849
+ value: 87.481
1850
+ - type: recall_at_5
1851
+ value: 91.88499999999999
1852
+ - task:
1853
+ type: Clustering
1854
+ dataset:
1855
+ type: mteb/reddit-clustering
1856
+ name: MTEB RedditClustering
1857
+ config: default
1858
+ split: test
1859
+ revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
1860
+ metrics:
1861
+ - type: v_measure
1862
+ value: 55.40341814991112
1863
+ - task:
1864
+ type: Clustering
1865
+ dataset:
1866
+ type: mteb/reddit-clustering-p2p
1867
+ name: MTEB RedditClusteringP2P
1868
+ config: default
1869
+ split: test
1870
+ revision: 385e3cb46b4cfa89021f56c4380204149d0efe33
1871
+ metrics:
1872
+ - type: v_measure
1873
+ value: 61.231318481346655
1874
+ - task:
1875
+ type: Retrieval
1876
+ dataset:
1877
+ type: mteb/scidocs
1878
+ name: MTEB SCIDOCS
1879
+ config: default
1880
+ split: test
1881
+ revision: f8c2fcf00f625baaa80f62ec5bd9e1fff3b8ae88
1882
+ metrics:
1883
+ - type: map_at_1
1884
+ value: 4.833
1885
+ - type: map_at_10
1886
+ value: 13.149
1887
+ - type: map_at_100
1888
+ value: 15.578
1889
+ - type: map_at_1000
1890
+ value: 15.963
1891
+ - type: map_at_3
1892
+ value: 9.269
1893
+ - type: map_at_5
1894
+ value: 11.182
1895
+ - type: mrr_at_1
1896
+ value: 23.9
1897
+ - type: mrr_at_10
1898
+ value: 35.978
1899
+ - type: mrr_at_100
1900
+ value: 37.076
1901
+ - type: mrr_at_1000
1902
+ value: 37.126
1903
+ - type: mrr_at_3
1904
+ value: 32.333
1905
+ - type: mrr_at_5
1906
+ value: 34.413
1907
+ - type: ndcg_at_1
1908
+ value: 23.9
1909
+ - type: ndcg_at_10
1910
+ value: 21.823
1911
+ - type: ndcg_at_100
1912
+ value: 30.833
1913
+ - type: ndcg_at_1000
1914
+ value: 36.991
1915
+ - type: ndcg_at_3
1916
+ value: 20.465
1917
+ - type: ndcg_at_5
1918
+ value: 17.965999999999998
1919
+ - type: precision_at_1
1920
+ value: 23.9
1921
+ - type: precision_at_10
1922
+ value: 11.49
1923
+ - type: precision_at_100
1924
+ value: 2.444
1925
+ - type: precision_at_1000
1926
+ value: 0.392
1927
+ - type: precision_at_3
1928
+ value: 19.3
1929
+ - type: precision_at_5
1930
+ value: 15.959999999999999
1931
+ - type: recall_at_1
1932
+ value: 4.833
1933
+ - type: recall_at_10
1934
+ value: 23.294999999999998
1935
+ - type: recall_at_100
1936
+ value: 49.63
1937
+ - type: recall_at_1000
1938
+ value: 79.49199999999999
1939
+ - type: recall_at_3
1940
+ value: 11.732
1941
+ - type: recall_at_5
1942
+ value: 16.167
1943
+ - task:
1944
+ type: STS
1945
+ dataset:
1946
+ type: mteb/sickr-sts
1947
+ name: MTEB SICK-R
1948
+ config: default
1949
+ split: test
1950
+ revision: 20a6d6f312dd54037fe07a32d58e5e168867909d
1951
+ metrics:
1952
+ - type: cos_sim_pearson
1953
+ value: 85.62938108735759
1954
+ - type: cos_sim_spearman
1955
+ value: 80.30777094408789
1956
+ - type: euclidean_pearson
1957
+ value: 82.94516686659536
1958
+ - type: euclidean_spearman
1959
+ value: 80.34489663248169
1960
+ - type: manhattan_pearson
1961
+ value: 82.85830094736245
1962
+ - type: manhattan_spearman
1963
+ value: 80.24902623215449
1964
+ - task:
1965
+ type: STS
1966
+ dataset:
1967
+ type: mteb/sts12-sts
1968
+ name: MTEB STS12
1969
+ config: default
1970
+ split: test
1971
+ revision: a0d554a64d88156834ff5ae9920b964011b16384
1972
+ metrics:
1973
+ - type: cos_sim_pearson
1974
+ value: 85.23777464247604
1975
+ - type: cos_sim_spearman
1976
+ value: 75.75714864112797
1977
+ - type: euclidean_pearson
1978
+ value: 82.33806918604493
1979
+ - type: euclidean_spearman
1980
+ value: 75.45282124387357
1981
+ - type: manhattan_pearson
1982
+ value: 82.32555620660538
1983
+ - type: manhattan_spearman
1984
+ value: 75.49228731684082
1985
+ - task:
1986
+ type: STS
1987
+ dataset:
1988
+ type: mteb/sts13-sts
1989
+ name: MTEB STS13
1990
+ config: default
1991
+ split: test
1992
+ revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
1993
+ metrics:
1994
+ - type: cos_sim_pearson
1995
+ value: 84.88151620954451
1996
+ - type: cos_sim_spearman
1997
+ value: 86.08377598473446
1998
+ - type: euclidean_pearson
1999
+ value: 85.36958329369413
2000
+ - type: euclidean_spearman
2001
+ value: 86.10274219670679
2002
+ - type: manhattan_pearson
2003
+ value: 85.25873897594711
2004
+ - type: manhattan_spearman
2005
+ value: 85.98096461661584
2006
+ - task:
2007
+ type: STS
2008
+ dataset:
2009
+ type: mteb/sts14-sts
2010
+ name: MTEB STS14
2011
+ config: default
2012
+ split: test
2013
+ revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
2014
+ metrics:
2015
+ - type: cos_sim_pearson
2016
+ value: 84.29360558735978
2017
+ - type: cos_sim_spearman
2018
+ value: 82.28284203795577
2019
+ - type: euclidean_pearson
2020
+ value: 83.81636655536633
2021
+ - type: euclidean_spearman
2022
+ value: 82.24340438530236
2023
+ - type: manhattan_pearson
2024
+ value: 83.83914453428608
2025
+ - type: manhattan_spearman
2026
+ value: 82.28391354080694
2027
+ - task:
2028
+ type: STS
2029
+ dataset:
2030
+ type: mteb/sts15-sts
2031
+ name: MTEB STS15
2032
+ config: default
2033
+ split: test
2034
+ revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
2035
+ metrics:
2036
+ - type: cos_sim_pearson
2037
+ value: 87.47344180426744
2038
+ - type: cos_sim_spearman
2039
+ value: 88.90045649789438
2040
+ - type: euclidean_pearson
2041
+ value: 88.43020815961273
2042
+ - type: euclidean_spearman
2043
+ value: 89.0087449011776
2044
+ - type: manhattan_pearson
2045
+ value: 88.37601826505525
2046
+ - type: manhattan_spearman
2047
+ value: 88.96756360690617
2048
+ - task:
2049
+ type: STS
2050
+ dataset:
2051
+ type: mteb/sts16-sts
2052
+ name: MTEB STS16
2053
+ config: default
2054
+ split: test
2055
+ revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
2056
+ metrics:
2057
+ - type: cos_sim_pearson
2058
+ value: 83.35997025304613
2059
+ - type: cos_sim_spearman
2060
+ value: 85.18237675717147
2061
+ - type: euclidean_pearson
2062
+ value: 84.46478196990202
2063
+ - type: euclidean_spearman
2064
+ value: 85.27748677712205
2065
+ - type: manhattan_pearson
2066
+ value: 84.29342543953123
2067
+ - type: manhattan_spearman
2068
+ value: 85.10579612516567
2069
+ - task:
2070
+ type: STS
2071
+ dataset:
2072
+ type: mteb/sts17-crosslingual-sts
2073
+ name: MTEB STS17 (en-en)
2074
+ config: en-en
2075
+ split: test
2076
+ revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
2077
+ metrics:
2078
+ - type: cos_sim_pearson
2079
+ value: 88.56668329596836
2080
+ - type: cos_sim_spearman
2081
+ value: 88.72837234129177
2082
+ - type: euclidean_pearson
2083
+ value: 89.39395650897828
2084
+ - type: euclidean_spearman
2085
+ value: 88.82001247906778
2086
+ - type: manhattan_pearson
2087
+ value: 89.41735354368878
2088
+ - type: manhattan_spearman
2089
+ value: 88.95159141850039
2090
+ - task:
2091
+ type: STS
2092
+ dataset:
2093
+ type: mteb/sts22-crosslingual-sts
2094
+ name: MTEB STS22 (en)
2095
+ config: en
2096
+ split: test
2097
+ revision: eea2b4fe26a775864c896887d910b76a8098ad3f
2098
+ metrics:
2099
+ - type: cos_sim_pearson
2100
+ value: 67.466167902991
2101
+ - type: cos_sim_spearman
2102
+ value: 68.54466147197274
2103
+ - type: euclidean_pearson
2104
+ value: 69.35551179564695
2105
+ - type: euclidean_spearman
2106
+ value: 68.75455717749132
2107
+ - type: manhattan_pearson
2108
+ value: 69.42432368208264
2109
+ - type: manhattan_spearman
2110
+ value: 68.83203709670562
2111
+ - task:
2112
+ type: STS
2113
+ dataset:
2114
+ type: mteb/stsbenchmark-sts
2115
+ name: MTEB STSBenchmark
2116
+ config: default
2117
+ split: test
2118
+ revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
2119
+ metrics:
2120
+ - type: cos_sim_pearson
2121
+ value: 85.33241300373689
2122
+ - type: cos_sim_spearman
2123
+ value: 86.97909372129874
2124
+ - type: euclidean_pearson
2125
+ value: 86.99526113559924
2126
+ - type: euclidean_spearman
2127
+ value: 87.02644372623219
2128
+ - type: manhattan_pearson
2129
+ value: 86.78744182759846
2130
+ - type: manhattan_spearman
2131
+ value: 86.8886180198196
2132
+ - task:
2133
+ type: Reranking
2134
+ dataset:
2135
+ type: mteb/scidocs-reranking
2136
+ name: MTEB SciDocsRR
2137
+ config: default
2138
+ split: test
2139
+ revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
2140
+ metrics:
2141
+ - type: map
2142
+ value: 86.18374413668717
2143
+ - type: mrr
2144
+ value: 95.93213068703264
2145
+ - task:
2146
+ type: Retrieval
2147
+ dataset:
2148
+ type: mteb/scifact
2149
+ name: MTEB SciFact
2150
+ config: default
2151
+ split: test
2152
+ revision: 0228b52cf27578f30900b9e5271d331663a030d7
2153
+ metrics:
2154
+ - type: map_at_1
2155
+ value: 58.31699999999999
2156
+ - type: map_at_10
2157
+ value: 67.691
2158
+ - type: map_at_100
2159
+ value: 68.201
2160
+ - type: map_at_1000
2161
+ value: 68.232
2162
+ - type: map_at_3
2163
+ value: 64.47800000000001
2164
+ - type: map_at_5
2165
+ value: 66.51
2166
+ - type: mrr_at_1
2167
+ value: 61.0
2168
+ - type: mrr_at_10
2169
+ value: 68.621
2170
+ - type: mrr_at_100
2171
+ value: 68.973
2172
+ - type: mrr_at_1000
2173
+ value: 69.002
2174
+ - type: mrr_at_3
2175
+ value: 66.111
2176
+ - type: mrr_at_5
2177
+ value: 67.578
2178
+ - type: ndcg_at_1
2179
+ value: 61.0
2180
+ - type: ndcg_at_10
2181
+ value: 72.219
2182
+ - type: ndcg_at_100
2183
+ value: 74.397
2184
+ - type: ndcg_at_1000
2185
+ value: 75.021
2186
+ - type: ndcg_at_3
2187
+ value: 66.747
2188
+ - type: ndcg_at_5
2189
+ value: 69.609
2190
+ - type: precision_at_1
2191
+ value: 61.0
2192
+ - type: precision_at_10
2193
+ value: 9.6
2194
+ - type: precision_at_100
2195
+ value: 1.08
2196
+ - type: precision_at_1000
2197
+ value: 0.11299999999999999
2198
+ - type: precision_at_3
2199
+ value: 25.667
2200
+ - type: precision_at_5
2201
+ value: 17.267
2202
+ - type: recall_at_1
2203
+ value: 58.31699999999999
2204
+ - type: recall_at_10
2205
+ value: 85.233
2206
+ - type: recall_at_100
2207
+ value: 95.167
2208
+ - type: recall_at_1000
2209
+ value: 99.667
2210
+ - type: recall_at_3
2211
+ value: 70.589
2212
+ - type: recall_at_5
2213
+ value: 77.628
2214
+ - task:
2215
+ type: PairClassification
2216
+ dataset:
2217
+ type: mteb/sprintduplicatequestions-pairclassification
2218
+ name: MTEB SprintDuplicateQuestions
2219
+ config: default
2220
+ split: test
2221
+ revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
2222
+ metrics:
2223
+ - type: cos_sim_accuracy
2224
+ value: 99.83267326732673
2225
+ - type: cos_sim_ap
2226
+ value: 96.13707107038228
2227
+ - type: cos_sim_f1
2228
+ value: 91.48830263812842
2229
+ - type: cos_sim_precision
2230
+ value: 91.0802775024777
2231
+ - type: cos_sim_recall
2232
+ value: 91.9
2233
+ - type: dot_accuracy
2234
+ value: 99.83069306930693
2235
+ - type: dot_ap
2236
+ value: 96.21199069147254
2237
+ - type: dot_f1
2238
+ value: 91.36295556665004
2239
+ - type: dot_precision
2240
+ value: 91.22632103688933
2241
+ - type: dot_recall
2242
+ value: 91.5
2243
+ - type: euclidean_accuracy
2244
+ value: 99.83267326732673
2245
+ - type: euclidean_ap
2246
+ value: 96.08957801367436
2247
+ - type: euclidean_f1
2248
+ value: 91.33004926108374
2249
+ - type: euclidean_precision
2250
+ value: 90.0
2251
+ - type: euclidean_recall
2252
+ value: 92.7
2253
+ - type: manhattan_accuracy
2254
+ value: 99.83564356435643
2255
+ - type: manhattan_ap
2256
+ value: 96.10534946461945
2257
+ - type: manhattan_f1
2258
+ value: 91.74950298210736
2259
+ - type: manhattan_precision
2260
+ value: 91.20553359683794
2261
+ - type: manhattan_recall
2262
+ value: 92.30000000000001
2263
+ - type: max_accuracy
2264
+ value: 99.83564356435643
2265
+ - type: max_ap
2266
+ value: 96.21199069147254
2267
+ - type: max_f1
2268
+ value: 91.74950298210736
2269
+ - task:
2270
+ type: Clustering
2271
+ dataset:
2272
+ type: mteb/stackexchange-clustering
2273
+ name: MTEB StackExchangeClustering
2274
+ config: default
2275
+ split: test
2276
+ revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
2277
+ metrics:
2278
+ - type: v_measure
2279
+ value: 62.045718843534736
2280
+ - task:
2281
+ type: Clustering
2282
+ dataset:
2283
+ type: mteb/stackexchange-clustering-p2p
2284
+ name: MTEB StackExchangeClusteringP2P
2285
+ config: default
2286
+ split: test
2287
+ revision: 815ca46b2622cec33ccafc3735d572c266efdb44
2288
+ metrics:
2289
+ - type: v_measure
2290
+ value: 36.6501777041092
2291
+ - task:
2292
+ type: Reranking
2293
+ dataset:
2294
+ type: mteb/stackoverflowdupquestions-reranking
2295
+ name: MTEB StackOverflowDupQuestions
2296
+ config: default
2297
+ split: test
2298
+ revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
2299
+ metrics:
2300
+ - type: map
2301
+ value: 52.963913408053955
2302
+ - type: mrr
2303
+ value: 53.87972423818012
2304
+ - task:
2305
+ type: Summarization
2306
+ dataset:
2307
+ type: mteb/summeval
2308
+ name: MTEB SummEval
2309
+ config: default
2310
+ split: test
2311
+ revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
2312
+ metrics:
2313
+ - type: cos_sim_pearson
2314
+ value: 30.44195730764998
2315
+ - type: cos_sim_spearman
2316
+ value: 30.59626288679397
2317
+ - type: dot_pearson
2318
+ value: 30.22974492404086
2319
+ - type: dot_spearman
2320
+ value: 29.345245972906497
2321
+ - task:
2322
+ type: Retrieval
2323
+ dataset:
2324
+ type: mteb/trec-covid
2325
+ name: MTEB TRECCOVID
2326
+ config: default
2327
+ split: test
2328
+ revision: bb9466bac8153a0349341eb1b22e06409e78ef4e
2329
+ metrics:
2330
+ - type: map_at_1
2331
+ value: 0.24
2332
+ - type: map_at_10
2333
+ value: 2.01
2334
+ - type: map_at_100
2335
+ value: 11.928999999999998
2336
+ - type: map_at_1000
2337
+ value: 29.034
2338
+ - type: map_at_3
2339
+ value: 0.679
2340
+ - type: map_at_5
2341
+ value: 1.064
2342
+ - type: mrr_at_1
2343
+ value: 92.0
2344
+ - type: mrr_at_10
2345
+ value: 96.0
2346
+ - type: mrr_at_100
2347
+ value: 96.0
2348
+ - type: mrr_at_1000
2349
+ value: 96.0
2350
+ - type: mrr_at_3
2351
+ value: 96.0
2352
+ - type: mrr_at_5
2353
+ value: 96.0
2354
+ - type: ndcg_at_1
2355
+ value: 87.0
2356
+ - type: ndcg_at_10
2357
+ value: 80.118
2358
+ - type: ndcg_at_100
2359
+ value: 60.753
2360
+ - type: ndcg_at_1000
2361
+ value: 54.632999999999996
2362
+ - type: ndcg_at_3
2363
+ value: 83.073
2364
+ - type: ndcg_at_5
2365
+ value: 80.733
2366
+ - type: precision_at_1
2367
+ value: 92.0
2368
+ - type: precision_at_10
2369
+ value: 84.8
2370
+ - type: precision_at_100
2371
+ value: 62.019999999999996
2372
+ - type: precision_at_1000
2373
+ value: 24.028
2374
+ - type: precision_at_3
2375
+ value: 87.333
2376
+ - type: precision_at_5
2377
+ value: 85.2
2378
+ - type: recall_at_1
2379
+ value: 0.24
2380
+ - type: recall_at_10
2381
+ value: 2.205
2382
+ - type: recall_at_100
2383
+ value: 15.068000000000001
2384
+ - type: recall_at_1000
2385
+ value: 51.796
2386
+ - type: recall_at_3
2387
+ value: 0.698
2388
+ - type: recall_at_5
2389
+ value: 1.1199999999999999
2390
+ - task:
2391
+ type: Retrieval
2392
+ dataset:
2393
+ type: mteb/touche2020
2394
+ name: MTEB Touche2020
2395
+ config: default
2396
+ split: test
2397
+ revision: a34f9a33db75fa0cbb21bb5cfc3dae8dc8bec93f
2398
+ metrics:
2399
+ - type: map_at_1
2400
+ value: 3.066
2401
+ - type: map_at_10
2402
+ value: 9.219
2403
+ - type: map_at_100
2404
+ value: 15.387
2405
+ - type: map_at_1000
2406
+ value: 16.957
2407
+ - type: map_at_3
2408
+ value: 5.146
2409
+ - type: map_at_5
2410
+ value: 6.6739999999999995
2411
+ - type: mrr_at_1
2412
+ value: 40.816
2413
+ - type: mrr_at_10
2414
+ value: 50.844
2415
+ - type: mrr_at_100
2416
+ value: 51.664
2417
+ - type: mrr_at_1000
2418
+ value: 51.664
2419
+ - type: mrr_at_3
2420
+ value: 46.259
2421
+ - type: mrr_at_5
2422
+ value: 49.116
2423
+ - type: ndcg_at_1
2424
+ value: 37.755
2425
+ - type: ndcg_at_10
2426
+ value: 23.477
2427
+ - type: ndcg_at_100
2428
+ value: 36.268
2429
+ - type: ndcg_at_1000
2430
+ value: 47.946
2431
+ - type: ndcg_at_3
2432
+ value: 25.832
2433
+ - type: ndcg_at_5
2434
+ value: 24.235
2435
+ - type: precision_at_1
2436
+ value: 40.816
2437
+ - type: precision_at_10
2438
+ value: 20.204
2439
+ - type: precision_at_100
2440
+ value: 7.611999999999999
2441
+ - type: precision_at_1000
2442
+ value: 1.543
2443
+ - type: precision_at_3
2444
+ value: 25.169999999999998
2445
+ - type: precision_at_5
2446
+ value: 23.265
2447
+ - type: recall_at_1
2448
+ value: 3.066
2449
+ - type: recall_at_10
2450
+ value: 14.985999999999999
2451
+ - type: recall_at_100
2452
+ value: 47.902
2453
+ - type: recall_at_1000
2454
+ value: 83.56400000000001
2455
+ - type: recall_at_3
2456
+ value: 5.755
2457
+ - type: recall_at_5
2458
+ value: 8.741999999999999
2459
+ - task:
2460
+ type: Classification
2461
+ dataset:
2462
+ type: mteb/toxic_conversations_50k
2463
+ name: MTEB ToxicConversationsClassification
2464
+ config: default
2465
+ split: test
2466
+ revision: edfaf9da55d3dd50d43143d90c1ac476895ae6de
2467
+ metrics:
2468
+ - type: accuracy
2469
+ value: 69.437
2470
+ - type: ap
2471
+ value: 12.844066827082706
2472
+ - type: f1
2473
+ value: 52.74974809872495
2474
+ - task:
2475
+ type: Classification
2476
+ dataset:
2477
+ type: mteb/tweet_sentiment_extraction
2478
+ name: MTEB TweetSentimentExtractionClassification
2479
+ config: default
2480
+ split: test
2481
+ revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
2482
+ metrics:
2483
+ - type: accuracy
2484
+ value: 61.26768534238823
2485
+ - type: f1
2486
+ value: 61.65100187399282
2487
+ - task:
2488
+ type: Clustering
2489
+ dataset:
2490
+ type: mteb/twentynewsgroups-clustering
2491
+ name: MTEB TwentyNewsgroupsClustering
2492
+ config: default
2493
+ split: test
2494
+ revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
2495
+ metrics:
2496
+ - type: v_measure
2497
+ value: 49.860968711078804
2498
+ - task:
2499
+ type: PairClassification
2500
+ dataset:
2501
+ type: mteb/twittersemeval2015-pairclassification
2502
+ name: MTEB TwitterSemEval2015
2503
+ config: default
2504
+ split: test
2505
+ revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
2506
+ metrics:
2507
+ - type: cos_sim_accuracy
2508
+ value: 85.7423854085951
2509
+ - type: cos_sim_ap
2510
+ value: 73.47560303339571
2511
+ - type: cos_sim_f1
2512
+ value: 67.372778183589
2513
+ - type: cos_sim_precision
2514
+ value: 62.54520795660036
2515
+ - type: cos_sim_recall
2516
+ value: 73.00791556728232
2517
+ - type: dot_accuracy
2518
+ value: 85.36091077069798
2519
+ - type: dot_ap
2520
+ value: 72.42521572307255
2521
+ - type: dot_f1
2522
+ value: 66.90576304724215
2523
+ - type: dot_precision
2524
+ value: 62.96554934823091
2525
+ - type: dot_recall
2526
+ value: 71.37203166226914
2527
+ - type: euclidean_accuracy
2528
+ value: 85.76026703224653
2529
+ - type: euclidean_ap
2530
+ value: 73.44852563860128
2531
+ - type: euclidean_f1
2532
+ value: 67.3
2533
+ - type: euclidean_precision
2534
+ value: 63.94299287410926
2535
+ - type: euclidean_recall
2536
+ value: 71.02902374670185
2537
+ - type: manhattan_accuracy
2538
+ value: 85.7423854085951
2539
+ - type: manhattan_ap
2540
+ value: 73.2635034755551
2541
+ - type: manhattan_f1
2542
+ value: 67.3180263800684
2543
+ - type: manhattan_precision
2544
+ value: 62.66484765802638
2545
+ - type: manhattan_recall
2546
+ value: 72.71767810026385
2547
+ - type: max_accuracy
2548
+ value: 85.76026703224653
2549
+ - type: max_ap
2550
+ value: 73.47560303339571
2551
+ - type: max_f1
2552
+ value: 67.372778183589
2553
+ - task:
2554
+ type: PairClassification
2555
+ dataset:
2556
+ type: mteb/twitterurlcorpus-pairclassification
2557
+ name: MTEB TwitterURLCorpus
2558
+ config: default
2559
+ split: test
2560
+ revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
2561
+ metrics:
2562
+ - type: cos_sim_accuracy
2563
+ value: 88.67543757519307
2564
+ - type: cos_sim_ap
2565
+ value: 85.35516518531304
2566
+ - type: cos_sim_f1
2567
+ value: 77.58197635511934
2568
+ - type: cos_sim_precision
2569
+ value: 75.01078360891445
2570
+ - type: cos_sim_recall
2571
+ value: 80.33569448721897
2572
+ - type: dot_accuracy
2573
+ value: 87.61400240617844
2574
+ - type: dot_ap
2575
+ value: 83.0774968268665
2576
+ - type: dot_f1
2577
+ value: 75.68229012162561
2578
+ - type: dot_precision
2579
+ value: 72.99713876967095
2580
+ - type: dot_recall
2581
+ value: 78.57252848783493
2582
+ - type: euclidean_accuracy
2583
+ value: 88.73753250281368
2584
+ - type: euclidean_ap
2585
+ value: 85.48043564821317
2586
+ - type: euclidean_f1
2587
+ value: 77.75975862719216
2588
+ - type: euclidean_precision
2589
+ value: 76.21054187920456
2590
+ - type: euclidean_recall
2591
+ value: 79.37326763166
2592
+ - type: manhattan_accuracy
2593
+ value: 88.75111576823068
2594
+ - type: manhattan_ap
2595
+ value: 85.44993439423668
2596
+ - type: manhattan_f1
2597
+ value: 77.6861329994845
2598
+ - type: manhattan_precision
2599
+ value: 74.44601270289344
2600
+ - type: manhattan_recall
2601
+ value: 81.22112719433323
2602
+ - type: max_accuracy
2603
+ value: 88.75111576823068
2604
+ - type: max_ap
2605
+ value: 85.48043564821317
2606
+ - type: max_f1
2607
+ value: 77.75975862719216
2608
+ ---
2609
+ <h1 align="center">NoInstruct small Embedding v0</h1>
2610
+
2611
+ *NoInstruct Embedding: Asymmetric Pooling is All You Need*
2612
+
2613
+ This model has improved retrieval performance compared to the [avsolatorio/GIST-small-Embedding-v0](https://huggingface.co/avsolatorio/GIST-small-Embedding-v0) model.
2614
+
2615
+ One of the things that the `GIST` family of models fell short on is the performance on retrieval tasks. We propose a method that produces improved retrieval performance while maintaining independence on crafting arbitrary instructions, a trending paradigm in embedding models for retrieval tasks, when encoding a query.
2616
+
2617
+ Technical details of the model will be published shortly.
2618
+
2619
+ # Usage
2620
+
2621
+ ```Python
2622
+ from typing import Union
2623
+ import torch
2624
+ import torch.nn.functional as F
2625
+ from transformers import AutoModel, AutoTokenizer
2626
+
2627
+ model = AutoModel.from_pretrained("avsolatorio/NoInstruct-small-Embedding-v0")
2628
+ tokenizer = AutoTokenizer.from_pretrained("avsolatorio/NoInstruct-small-Embedding-v0")
2629
+
2630
+
2631
+ def get_embedding(text: Union[str, list[str]], mode: str = "sentence"):
2632
+ model.eval()
2633
+
2634
+ assert mode in ("query", "sentence"), f"mode={mode} was passed but only `query` and `sentence` are the supported modes."
2635
+
2636
+ if isinstance(text, str):
2637
+ text = [text]
2638
+
2639
+ inp = tokenizer(text, return_tensors="pt", padding=True, truncation=True)
2640
+
2641
+ with torch.no_grad():
2642
+ output = model(**inp)
2643
+
2644
+ # The model is optimized to use the mean pooling for queries,
2645
+ # while the sentence / document embedding uses the [CLS] representation.
2646
+
2647
+ if mode == "query":
2648
+ vectors = output.last_hidden_state * inp["attention_mask"].unsqueeze(2)
2649
+ vectors = vectors.sum(dim=1) / inp["attention_mask"].sum(dim=-1).view(-1, 1)
2650
+ else:
2651
+ vectors = output.last_hidden_state[:, 0, :]
2652
+
2653
+ return vectors
2654
+
2655
+
2656
+ texts = [
2657
+ "Illustration of the REaLTabFormer model. The left block shows the non-relational tabular data model using GPT-2 with a causal LM head. In contrast, the right block shows how a relational dataset's child table is modeled using a sequence-to-sequence (Seq2Seq) model. The Seq2Seq model uses the observations in the parent table to condition the generation of the observations in the child table. The trained GPT-2 model on the parent table, with weights frozen, is also used as the encoder in the Seq2Seq model.",
2658
+ "Predicting human mobility holds significant practical value, with applications ranging from enhancing disaster risk planning to simulating epidemic spread. In this paper, we present the GeoFormer, a decoder-only transformer model adapted from the GPT architecture to forecast human mobility.",
2659
+ "As the economies of Southeast Asia continue adopting digital technologies, policy makers increasingly ask how to prepare the workforce for emerging labor demands. However, little is known about the skills that workers need to adapt to these changes"
2660
+ ]
2661
+
2662
+ # Compute embeddings
2663
+ embeddings = get_embedding(texts, mode="sentence")
2664
+
2665
+ # Compute cosine-similarity for each pair of sentences
2666
+ scores = F.cosine_similarity(embeddings.unsqueeze(1), embeddings.unsqueeze(0), dim=-1)
2667
+ print(scores.cpu().numpy())
2668
+
2669
+ # Test the retrieval performance.
2670
+ query = get_embedding("Which sentence talks about concept on jobs?", mode="query")
2671
+
2672
+ scores = F.cosine_similarity(query, embeddings, dim=-1)
2673
+ print(scores.cpu().numpy())
2674
+ ```
2675
+
2676
+ Support for the Sentence Transformers library will follow soon.
commit-info.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"repo_id": "avsolatorio/01-600-11-1-3-2-0-0-cls-qli_0-normed-384-512_ASYM_BAAI_bge-small-en-v1.5-20240424083154-latest", "commit_message": "{\"loss\": 0.4601, \"grad_norm\": 5.519935131072998, \"learning_rate\": 2.6289851550653513e-06, \"epoch\": 2.97, \"step\": 169000}"}
config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "avsolatorio/NoInstruct-small-Embedding-v0",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 384,
11
+ "id2label": {
12
+ "0": "LABEL_0"
13
+ },
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 1536,
16
+ "label2id": {
17
+ "LABEL_0": 0
18
+ },
19
+ "layer_norm_eps": 1e-12,
20
+ "max_position_embeddings": 512,
21
+ "model_type": "bert",
22
+ "num_attention_heads": 12,
23
+ "num_hidden_layers": 12,
24
+ "output_hidden_states": true,
25
+ "pad_token_id": 0,
26
+ "position_embedding_type": "absolute",
27
+ "torch_dtype": "float32",
28
+ "transformers_version": "4.39.3",
29
+ "type_vocab_size": 2,
30
+ "use_cache": true,
31
+ "vocab_size": 30522
32
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "2.2.2",
4
+ "transformers": "4.28.1",
5
+ "pytorch": "1.13.0+cu117"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null
9
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:831a0c15cd73d37ef70185fd446b873d8018ed6b6a108cbedb8efb8f42d6997e
3
+ size 133462128
modules.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Pooling",
18
+ "type": "sentence_transformers.models.Pooling"
19
+ },
20
+ {
21
+ "idx": 3,
22
+ "name": "3",
23
+ "path": "3_Normalize",
24
+ "type": "sentence_transformers.models.Normalize"
25
+ }
26
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": true
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "model_max_length": 512,
50
+ "never_split": null,
51
+ "pad_token": "[PAD]",
52
+ "sep_token": "[SEP]",
53
+ "strip_accents": null,
54
+ "tokenize_chinese_chars": true,
55
+ "tokenizer_class": "BertTokenizer",
56
+ "unk_token": "[UNK]"
57
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff