Update README.md
Browse files
README.md
CHANGED
@@ -5,4 +5,30 @@ language:
|
|
5 |
- en
|
6 |
library_name: transformers
|
7 |
pipeline_tag: question-answering
|
8 |
-
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
- en
|
6 |
library_name: transformers
|
7 |
pipeline_tag: question-answering
|
8 |
+
---
|
9 |
+
|
10 |
+
# Mobile-Bert fine-tuned on Squad V2 dataset
|
11 |
+
|
12 |
+
This is based on mobile bert architecture suitable for handy devices or device with low resources.
|
13 |
+
|
14 |
+
## usage
|
15 |
+
|
16 |
+
using transformers library first load model and Tokenizer
|
17 |
+
```
|
18 |
+
from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline
|
19 |
+
|
20 |
+
model_name = "aware-ai/mobilebert-squadv2"
|
21 |
+
|
22 |
+
model = AutoModelForQuestionAnswering.from_pretrained(model_name)
|
23 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
24 |
+
```
|
25 |
+
use question answering pipeline
|
26 |
+
|
27 |
+
```
|
28 |
+
qa_engine = pipeline('question-answering', model=model, tokenizer=tokenizer)
|
29 |
+
QA_input = {
|
30 |
+
'question': 'your question?',
|
31 |
+
'context': '. your context ................ '
|
32 |
+
}
|
33 |
+
res = qa_engine (QA_input)
|
34 |
+
```
|