File size: 1,505 Bytes
a4c53de 292e896 a4c53de 292e896 a4c53de |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 |
---
license: apache-2.0
base_model:
- Snowflake/snowflake-arctic-embed-l
---
***This model is a neuron compiled version of https://huggingface.co/Snowflake/snowflake-arctic-embed-l ***
It was compiled on version 2.20 of the Neuron SDK. You may need to run the compilation process again.
See https://huggingface.co/docs/optimum-neuron/en/inference_tutorials/sentence_transformers for more details
For information on how to run on SageMaker: https://huggingface.co/docs/optimum-neuron/en/inference_tutorials/sentence_transformers
To run:
```
from optimum.neuron import NeuronModelForSentenceTransformers
from transformers import AutoTokenizer
model_id = "jburtoft/snowflake-arctic-embed-l"
# Use the line below if you have to compile the model yourself
#model_id = "snowflake-arctic-embed-l-inf2"
model = NeuronModelForSentenceTransformers.from_pretrained(model_id)
tokenizer = AutoTokenizer.from_pretrained(model_id)
# Run inference
prompt = "I like to eat apples"
encoded_input = tokenizer(prompt, return_tensors='pt')
outputs = model(**encoded_input)
token_embeddings = outputs.token_embeddings
sentence_embedding = outputs.sentence_embedding:
print(f"token embeddings: {token_embeddings.shape}") # torch.Size([1, 7, 1024])
print(f"sentence_embedding: {sentence_embedding.shape}") # torch.Size([1, 1024])
```
To compile :
```
optimum-cli export neuron -m Snowflake/snowflake-arctic-embed-l --sequence_length 512 --batch_size 1 --task feature-extraction snowflake-arctic-embed-l-inf2
```
|