axiong commited on
Commit
265afcd
·
1 Parent(s): 0f8ec26

model card

Browse files
Files changed (1) hide show
  1. README.md +38 -0
README.md CHANGED
@@ -1,3 +1,41 @@
1
  ---
2
  license: openrail
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: openrail
3
  ---
4
+
5
+ # PMC_LLaMA
6
+
7
+ To obtain the foundation model in medical field, we propose [MedLLaMA_13B](https://huggingface.co/chaoyi-wu/MedLLaMA_13B) and PMC_LLaMA_13B.
8
+
9
+ MedLLaMA_13B is initialized from LLaMA-13B and further pretrained with medical corpus. Despite the expert knowledge gained, it lacks instruction-following ability.
10
+ Hereby we construct a instruction-tuning dataset and evaluate the tuned model.
11
+
12
+ As shown in the table, PMC_LLaMA_13B achieves comparable results to ChatGPT on medical QA benchmarks.
13
+
14
+ ![medical_qa](https://pic4.zhimg.com/80/v2-bf43393cd753018e11fdb1c64a1a87df.png)
15
+
16
+
17
+ ## Usage
18
+
19
+ ```python
20
+ import transformers
21
+ import torch
22
+
23
+ tokenizer = transformers.LlamaTokenizer.from_pretrained('axiong/PMC_LLaMA_13B')
24
+ model = transformers.LlamaForCausalLM.from_pretrained('axiong/PMC_LLaMA_13B')
25
+
26
+ sentence = 'Hello, doctor'
27
+ batch = tokenizer(
28
+ sentence,
29
+ return_tensors="pt",
30
+ add_special_tokens=False
31
+ )
32
+ with torch.no_grad():
33
+ generated = model.generate(
34
+ inputs = batch["input_ids"],
35
+ max_length=200,
36
+ do_sample=True,
37
+ top_k=50
38
+ )
39
+ print('model predict: ',tokenizer.decode(generated[0]))
40
+ ```
41
+