ayadav7 commited on
Commit
e6be246
1 Parent(s): 55e3327

Uploading PPO model for Lunar Lander

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 262.10 +/- 44.87
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fa6aded8790>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fa6aded8820>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fa6aded88b0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fa6aded8940>", "_build": "<function ActorCriticPolicy._build at 0x7fa6aded89d0>", "forward": "<function ActorCriticPolicy.forward at 0x7fa6aded8a60>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fa6aded8af0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fa6aded8b80>", "_predict": "<function ActorCriticPolicy._predict at 0x7fa6aded8c10>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fa6aded8ca0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fa6aded8d30>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fa6aded8dc0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fa6aded1990>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673760122461740107, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAABDyD3Bn6A/pBiVPk4JGr8gKio+/1NEPQAAAAAAAAAAWibZvf4aqj3CKw4+FK9QvtZ+mzz4/3A8AAAAAAAAAAB2AGy+SyZEP1cUIb4xxi2/ibNuvoCIpL0AAAAAAAAAAGBaHL4FK4K79u94s705lbL1x+o8ao8VNAAAgD8AAIA/zVwNu+EEubpckgo40+TQMjMXCbrEuh23AACAPwAAgD+6mlC+DvUBP2/kML0r8eG+24oAvkNbZj0AAAAAAAAAAJrbBr6cNkM9Hl3+PU51Fb5ibYE91hIaPAAAAAAAAAAAYBQyPghnhLzsKp87D5wUuhCE4b2KYu66AACAPwAAgD8zX1m8EI/APrRqKDtNJeS+JhVrPOjLlz0AAAAAAAAAAM2mLbxFau4+SnjbO39LH79yLsI8BJkTPQAAAAAAAAAAE7w0Pojfo7w8Two8B0meuo+9F772TXy7AACAPwAAgD/6qua+uvE9P9yQFr2UJu++WRB1vrYIBz4AAAAAAAAAAIAlKb4UYvc7O9mvPX6luLvzH4W98Q2rPAAAgD8AAIA/5oSVvS1bsT8gJQG/lL+BvrQNIb0zxOa9AAAAAAAAAABNjFQ+KNCRvKJIOzqRi224wID/vbj6ZrkAAIA/AACAP8b+Pr5e8E8/IpVmvtBqDb+EdXy+vTf0vQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVMBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIPkLNkKodb0CUhpRSlIwBbJRLyowBdJRHQJYxFmyxA0N1fZQoaAZoCWgPQwjWqfI9I4lxQJSGlFKUaBVLuGgWR0CWMe3/Pw/gdX2UKGgGaAloD0MILgCN0qVncECUhpRSlGgVS8hoFkdAljI+UyHmBHV9lChoBmgJaA9DCHsVGR0Q2W1AlIaUUpRoFUu7aBZHQJYyiFTNt651fZQoaAZoCWgPQwiWW1oNCTRwQJSGlFKUaBVLpWgWR0CWMpH/95yEdX2UKGgGaAloD0MIZK2h1F7fcUCUhpRSlGgVS6RoFkdAljR+6d1+zHV9lChoBmgJaA9DCF4robukUW9AlIaUUpRoFUvKaBZHQJY061QZXMh1fZQoaAZoCWgPQwhTPC6qhVNyQJSGlFKUaBVL+WgWR0CWNTSNwR5DdX2UKGgGaAloD0MItMwiFBsUcECUhpRSlGgVTREBaBZHQJY1YQFs54p1fZQoaAZoCWgPQwhslzYclk1fQJSGlFKUaBVN6ANoFkdAljXJSaVlgHV9lChoBmgJaA9DCOW36GTpT3FAlIaUUpRoFUvSaBZHQJY2HzErGzd1fZQoaAZoCWgPQwgb2ZWWUQdxQJSGlFKUaBVNQQFoFkdAljZeqzZ6EHV9lChoBmgJaA9DCAA49ux5oHFAlIaUUpRoFUupaBZHQJY2w32mHgx1fZQoaAZoCWgPQwjvrUhMEC1yQJSGlFKUaBVLwWgWR0CWNw7YkE9udX2UKGgGaAloD0MIJJpAEUttcUCUhpRSlGgVTc4CaBZHQJY3NJBgNPR1fZQoaAZoCWgPQwiqDONu0NlyQJSGlFKUaBVL7mgWR0CWN05OrQw9dX2UKGgGaAloD0MI7wBPWvgtcUCUhpRSlGgVTS4BaBZHQJY4QbOu7pV1fZQoaAZoCWgPQwhslzYcViBxQJSGlFKUaBVL8GgWR0CWONIbwSamdX2UKGgGaAloD0MIBd80fXaXcUCUhpRSlGgVS/VoFkdAljjovN/vv3V9lChoBmgJaA9DCPJbdLIU7XFAlIaUUpRoFUvQaBZHQJY5zRsuWbB1fZQoaAZoCWgPQwif5A6biI5wQJSGlFKUaBVLzGgWR0CWOl3j+717dX2UKGgGaAloD0MIjKAxkygtckCUhpRSlGgVS9doFkdAljpmHHmzSnV9lChoBmgJaA9DCC4EOSjhVnFAlIaUUpRoFUvlaBZHQJY7h7AtWdV1fZQoaAZoCWgPQwgmyAiocFhwQJSGlFKUaBVL02gWR0CWO64u9OARdX2UKGgGaAloD0MIx7lNuNdDcECUhpRSlGgVS+hoFkdAljwMLKFIu3V9lChoBmgJaA9DCI6xE15CHHFAlIaUUpRoFUvOaBZHQJY8aArhBJJ1fZQoaAZoCWgPQwjmWx/W26dxQJSGlFKUaBVL5WgWR0CWPLkauOjqdX2UKGgGaAloD0MIqpm1FJBIckCUhpRSlGgVS6ZoFkdAlj1E+xGDtnV9lChoBmgJaA9DCO2fpwHDj3JAlIaUUpRoFU03AWgWR0CWPXPhQ3xXdX2UKGgGaAloD0MI6/6xEB1ncUCUhpRSlGgVS9RoFkdAlj6Q8W9DhXV9lChoBmgJaA9DCCLgEKqUDnFAlIaUUpRoFU0kAWgWR0CWPuxdIGyHdX2UKGgGaAloD0MImbwBZv6WckCUhpRSlGgVTQEBaBZHQJY/DwRXfZV1fZQoaAZoCWgPQwgpWU5CaaVzQJSGlFKUaBVNOAFoFkdAlj9XYYixFHV9lChoBmgJaA9DCH0JFRxerHBAlIaUUpRoFUvQaBZHQJY/cL+glGB1fZQoaAZoCWgPQwjNqzqrxXFwQJSGlFKUaBVLx2gWR0CWP7bmEGqxdX2UKGgGaAloD0MIECVa8ni9cUCUhpRSlGgVS99oFkdAlkBdQ9A5aXV9lChoBmgJaA9DCIY6rHDLLXFAlIaUUpRoFUvCaBZHQJZA0nVoYel1fZQoaAZoCWgPQwg+zjRhO5BxQJSGlFKUaBVLrWgWR0CWQOcpb2UTdX2UKGgGaAloD0MIL26jAbw+cECUhpRSlGgVS8doFkdAlkFGK2rn1XV9lChoBmgJaA9DCOfgmdAk0HFAlIaUUpRoFUu8aBZHQJZCUy2x6fJ1fZQoaAZoCWgPQwgxz0pasZRwQJSGlFKUaBVLyGgWR0CWQn0tRNypdX2UKGgGaAloD0MIWOVC5Z8Gc0CUhpRSlGgVS/VoFkdAlkMiqABkqnV9lChoBmgJaA9DCKMh41Hq4nFAlIaUUpRoFUuyaBZHQJZDPlmvnr91fZQoaAZoCWgPQwgKgzKNZsdwQJSGlFKUaBVLumgWR0CWRG3/Pw/gdX2UKGgGaAloD0MIajF4mLYGc0CUhpRSlGgVS71oFkdAlkTkdmxt53V9lChoBmgJaA9DCATltn1Pw3BAlIaUUpRoFUvNaBZHQJZE6wD/2kB1fZQoaAZoCWgPQwgPfAxWnMdjQJSGlFKUaBVN6ANoFkdAlkW4OlO45XV9lChoBmgJaA9DCI1F09kJu3BAlIaUUpRoFUuvaBZHQJZFwzpHI6t1fZQoaAZoCWgPQwgmV7H4jTJzQJSGlFKUaBVLyWgWR0CWRpGZ/kNndX2UKGgGaAloD0MIMc7fhEK1cUCUhpRSlGgVS95oFkdAlkeWZuyeI3V9lChoBmgJaA9DCI0o7Q2+x3BAlIaUUpRoFUvNaBZHQJZIfuogmqp1fZQoaAZoCWgPQwgm4NdIUttwQJSGlFKUaBVL1WgWR0CWSI+XqqwRdX2UKGgGaAloD0MIIOup1ZcAcUCUhpRSlGgVS8BoFkdAlkjsj7hvSHV9lChoBmgJaA9DCGSvd3989HJAlIaUUpRoFUvPaBZHQJZJPjU/fO51fZQoaAZoCWgPQwjGh9nLttFvQJSGlFKUaBVLv2gWR0CWSpnjyWiUdX2UKGgGaAloD0MIFqdaC/MZckCUhpRSlGgVS8FoFkdAlkqxYmsvI3V9lChoBmgJaA9DCAOy17s/jmFAlIaUUpRoFU3oA2gWR0CWS/J6po9LdX2UKGgGaAloD0MIGqiMf98PcUCUhpRSlGgVS81oFkdAlkv8yFfzBnV9lChoBmgJaA9DCMu+K4I/6XFAlIaUUpRoFUvBaBZHQJZMgAXEZR91fZQoaAZoCWgPQwjTFtf4zBBvQJSGlFKUaBVLz2gWR0CWTgiMYMvzdX2UKGgGaAloD0MIZohjXdz6b0CUhpRSlGgVS7loFkdAlk5Atvn8sXV9lChoBmgJaA9DCDlGskcoDm9AlIaUUpRoFUuzaBZHQJZO2mtQsPJ1fZQoaAZoCWgPQwjQDyOEx71uQJSGlFKUaBVLzmgWR0CWTvjin5zpdX2UKGgGaAloD0MIhIB8CZV0cECUhpRSlGgVS9NoFkdAlk9/9YOlPHV9lChoBmgJaA9DCO6TowDRq3FAlIaUUpRoFU0mAmgWR0CWULjt5UtJdX2UKGgGaAloD0MIE7afjHHkb0CUhpRSlGgVS7hoFkdAllHEF4cFQnV9lChoBmgJaA9DCBObj2sD23JAlIaUUpRoFUvkaBZHQJZRy9K28Zl1fZQoaAZoCWgPQwgYldQJaH5yQJSGlFKUaBVLvGgWR0CWUd1a4c3mdX2UKGgGaAloD0MIm8jMBa5JcECUhpRSlGgVS7ZoFkdAllI/rv9cbHV9lChoBmgJaA9DCHbfMTx2DnJAlIaUUpRoFU00AWgWR0CWVHoVmBe5dX2UKGgGaAloD0MICHb8FwgOcECUhpRSlGgVTeABaBZHQJZUr9uP3i91fZQoaAZoCWgPQwgFFVW/koJwQJSGlFKUaBVL1GgWR0CWVNL/0dzXdX2UKGgGaAloD0MI6EzaVB2icUCUhpRSlGgVS9RoFkdAllURJEpiJHV9lChoBmgJaA9DCAH6ff/mknBAlIaUUpRoFUvFaBZHQJZVMajvd/J1fZQoaAZoCWgPQwietkYEIyZyQJSGlFKUaBVL2mgWR0CWVemD15B1dX2UKGgGaAloD0MIwhiRKLS4b0CUhpRSlGgVS8doFkdAllgql+EytXV9lChoBmgJaA9DCF67tOHw8nFAlIaUUpRoFUvuaBZHQJZYTLTx5LR1fZQoaAZoCWgPQwgOMsnImYZyQJSGlFKUaBVL7WgWR0CWWVqZc9nsdX2UKGgGaAloD0MILVqAttW8YkCUhpRSlGgVTegDaBZHQJZZWmixmkF1fZQoaAZoCWgPQwg3iUFgZbdxQJSGlFKUaBVL6WgWR0CWWakpZwGXdX2UKGgGaAloD0MIE7h1N48WckCUhpRSlGgVTUgBaBZHQJZZ6+K0lZ51fZQoaAZoCWgPQwi8BRIUP+JwQJSGlFKUaBVLtWgWR0CWWmpBX0XhdX2UKGgGaAloD0MIKxcq/9p5bkCUhpRSlGgVS7loFkdAllrQVXV9W3V9lChoBmgJaA9DCMZtNIB3KXFAlIaUUpRoFU0nAWgWR0CWWvTCtRvWdX2UKGgGaAloD0MI7fSDukgncUCUhpRSlGgVS9loFkdAllsYZl4C63V9lChoBmgJaA9DCLLXuz/eEHBAlIaUUpRoFUvEaBZHQJZbw8r7O3V1fZQoaAZoCWgPQwj/k797R9txQJSGlFKUaBVL6WgWR0CWW/plBhQWdX2UKGgGaAloD0MI9RH4w88eY0CUhpRSlGgVTegDaBZHQJZcvmOlwcZ1fZQoaAZoCWgPQwgXt9EA3pNkQJSGlFKUaBVN6ANoFkdAllzf0/W1+nV9lChoBmgJaA9DCLgf8MBATnBAlIaUUpRoFUvDaBZHQJZdmIN3GGV1fZQoaAZoCWgPQwhEwCFUKbpuQJSGlFKUaBVLq2gWR0CWXeYcebNKdX2UKGgGaAloD0MIg2vu6P9BbkCUhpRSlGgVS+NoFkdAll6DQ3PzF3V9lChoBmgJaA9DCJ1kq8vp03BAlIaUUpRoFUujaBZHQJZfWOT7l7t1fZQoaAZoCWgPQwhPXfksj6JxQJSGlFKUaBVL22gWR0CWX7HcUM5PdX2UKGgGaAloD0MIXByVm6gPcECUhpRSlGgVS+poFkdAll/ZpFkQPXV9lChoBmgJaA9DCEKz697KyHBAlIaUUpRoFUv0aBZHQJZf2f8Muvl1fZQoaAZoCWgPQwiM17yq8/twQJSGlFKUaBVL1mgWR0CWYAdYnv2HdX2UKGgGaAloD0MIcxJKX0jycECUhpRSlGgVS7BoFkdAlmCBRqGlAXV9lChoBmgJaA9DCCCYo8cv+nBAlIaUUpRoFUviaBZHQJZgzch1Tzd1fZQoaAZoCWgPQwiimpKsgxByQJSGlFKUaBVLtGgWR0CWYUprDZUUdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
lunar_model.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:009593569b3f39462144232f29d6ef6644bc5489458d7fe012cf57afdd2b75e5
3
+ size 147315
lunar_model/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
lunar_model/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fa6aded8790>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fa6aded8820>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fa6aded88b0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fa6aded8940>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fa6aded89d0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fa6aded8a60>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fa6aded8af0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fa6aded8b80>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fa6aded8c10>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fa6aded8ca0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fa6aded8d30>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fa6aded8dc0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7fa6aded1990>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
27
+ "dtype": "float32",
28
+ "_shape": [
29
+ 8
30
+ ],
31
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
32
+ "high": "[inf inf inf inf inf inf inf inf]",
33
+ "bounded_below": "[False False False False False False False False]",
34
+ "bounded_above": "[False False False False False False False False]",
35
+ "_np_random": null
36
+ },
37
+ "action_space": {
38
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
39
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
40
+ "n": 4,
41
+ "_shape": [],
42
+ "dtype": "int64",
43
+ "_np_random": null
44
+ },
45
+ "n_envs": 16,
46
+ "num_timesteps": 1015808,
47
+ "_total_timesteps": 1000000,
48
+ "_num_timesteps_at_start": 0,
49
+ "seed": null,
50
+ "action_noise": null,
51
+ "start_time": 1673760122461740107,
52
+ "learning_rate": 0.0003,
53
+ "tensorboard_log": null,
54
+ "lr_schedule": {
55
+ ":type:": "<class 'function'>",
56
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
57
+ },
58
+ "_last_obs": {
59
+ ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAABDyD3Bn6A/pBiVPk4JGr8gKio+/1NEPQAAAAAAAAAAWibZvf4aqj3CKw4+FK9QvtZ+mzz4/3A8AAAAAAAAAAB2AGy+SyZEP1cUIb4xxi2/ibNuvoCIpL0AAAAAAAAAAGBaHL4FK4K79u94s705lbL1x+o8ao8VNAAAgD8AAIA/zVwNu+EEubpckgo40+TQMjMXCbrEuh23AACAPwAAgD+6mlC+DvUBP2/kML0r8eG+24oAvkNbZj0AAAAAAAAAAJrbBr6cNkM9Hl3+PU51Fb5ibYE91hIaPAAAAAAAAAAAYBQyPghnhLzsKp87D5wUuhCE4b2KYu66AACAPwAAgD8zX1m8EI/APrRqKDtNJeS+JhVrPOjLlz0AAAAAAAAAAM2mLbxFau4+SnjbO39LH79yLsI8BJkTPQAAAAAAAAAAE7w0Pojfo7w8Two8B0meuo+9F772TXy7AACAPwAAgD/6qua+uvE9P9yQFr2UJu++WRB1vrYIBz4AAAAAAAAAAIAlKb4UYvc7O9mvPX6luLvzH4W98Q2rPAAAgD8AAIA/5oSVvS1bsT8gJQG/lL+BvrQNIb0zxOa9AAAAAAAAAABNjFQ+KNCRvKJIOzqRi224wID/vbj6ZrkAAIA/AACAP8b+Pr5e8E8/IpVmvtBqDb+EdXy+vTf0vQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
61
+ },
62
+ "_last_episode_starts": {
63
+ ":type:": "<class 'numpy.ndarray'>",
64
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
65
+ },
66
+ "_last_original_obs": null,
67
+ "_episode_num": 0,
68
+ "use_sde": false,
69
+ "sde_sample_freq": -1,
70
+ "_current_progress_remaining": -0.015808000000000044,
71
+ "ep_info_buffer": {
72
+ ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVMBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIPkLNkKodb0CUhpRSlIwBbJRLyowBdJRHQJYxFmyxA0N1fZQoaAZoCWgPQwjWqfI9I4lxQJSGlFKUaBVLuGgWR0CWMe3/Pw/gdX2UKGgGaAloD0MILgCN0qVncECUhpRSlGgVS8hoFkdAljI+UyHmBHV9lChoBmgJaA9DCHsVGR0Q2W1AlIaUUpRoFUu7aBZHQJYyiFTNt651fZQoaAZoCWgPQwiWW1oNCTRwQJSGlFKUaBVLpWgWR0CWMpH/95yEdX2UKGgGaAloD0MIZK2h1F7fcUCUhpRSlGgVS6RoFkdAljR+6d1+zHV9lChoBmgJaA9DCF4robukUW9AlIaUUpRoFUvKaBZHQJY061QZXMh1fZQoaAZoCWgPQwhTPC6qhVNyQJSGlFKUaBVL+WgWR0CWNTSNwR5DdX2UKGgGaAloD0MItMwiFBsUcECUhpRSlGgVTREBaBZHQJY1YQFs54p1fZQoaAZoCWgPQwhslzYclk1fQJSGlFKUaBVN6ANoFkdAljXJSaVlgHV9lChoBmgJaA9DCOW36GTpT3FAlIaUUpRoFUvSaBZHQJY2HzErGzd1fZQoaAZoCWgPQwgb2ZWWUQdxQJSGlFKUaBVNQQFoFkdAljZeqzZ6EHV9lChoBmgJaA9DCAA49ux5oHFAlIaUUpRoFUupaBZHQJY2w32mHgx1fZQoaAZoCWgPQwjvrUhMEC1yQJSGlFKUaBVLwWgWR0CWNw7YkE9udX2UKGgGaAloD0MIJJpAEUttcUCUhpRSlGgVTc4CaBZHQJY3NJBgNPR1fZQoaAZoCWgPQwiqDONu0NlyQJSGlFKUaBVL7mgWR0CWN05OrQw9dX2UKGgGaAloD0MI7wBPWvgtcUCUhpRSlGgVTS4BaBZHQJY4QbOu7pV1fZQoaAZoCWgPQwhslzYcViBxQJSGlFKUaBVL8GgWR0CWONIbwSamdX2UKGgGaAloD0MIBd80fXaXcUCUhpRSlGgVS/VoFkdAljjovN/vv3V9lChoBmgJaA9DCPJbdLIU7XFAlIaUUpRoFUvQaBZHQJY5zRsuWbB1fZQoaAZoCWgPQwif5A6biI5wQJSGlFKUaBVLzGgWR0CWOl3j+717dX2UKGgGaAloD0MIjKAxkygtckCUhpRSlGgVS9doFkdAljpmHHmzSnV9lChoBmgJaA9DCC4EOSjhVnFAlIaUUpRoFUvlaBZHQJY7h7AtWdV1fZQoaAZoCWgPQwgmyAiocFhwQJSGlFKUaBVL02gWR0CWO64u9OARdX2UKGgGaAloD0MIx7lNuNdDcECUhpRSlGgVS+hoFkdAljwMLKFIu3V9lChoBmgJaA9DCI6xE15CHHFAlIaUUpRoFUvOaBZHQJY8aArhBJJ1fZQoaAZoCWgPQwjmWx/W26dxQJSGlFKUaBVL5WgWR0CWPLkauOjqdX2UKGgGaAloD0MIqpm1FJBIckCUhpRSlGgVS6ZoFkdAlj1E+xGDtnV9lChoBmgJaA9DCO2fpwHDj3JAlIaUUpRoFU03AWgWR0CWPXPhQ3xXdX2UKGgGaAloD0MI6/6xEB1ncUCUhpRSlGgVS9RoFkdAlj6Q8W9DhXV9lChoBmgJaA9DCCLgEKqUDnFAlIaUUpRoFU0kAWgWR0CWPuxdIGyHdX2UKGgGaAloD0MImbwBZv6WckCUhpRSlGgVTQEBaBZHQJY/DwRXfZV1fZQoaAZoCWgPQwgpWU5CaaVzQJSGlFKUaBVNOAFoFkdAlj9XYYixFHV9lChoBmgJaA9DCH0JFRxerHBAlIaUUpRoFUvQaBZHQJY/cL+glGB1fZQoaAZoCWgPQwjNqzqrxXFwQJSGlFKUaBVLx2gWR0CWP7bmEGqxdX2UKGgGaAloD0MIECVa8ni9cUCUhpRSlGgVS99oFkdAlkBdQ9A5aXV9lChoBmgJaA9DCIY6rHDLLXFAlIaUUpRoFUvCaBZHQJZA0nVoYel1fZQoaAZoCWgPQwg+zjRhO5BxQJSGlFKUaBVLrWgWR0CWQOcpb2UTdX2UKGgGaAloD0MIL26jAbw+cECUhpRSlGgVS8doFkdAlkFGK2rn1XV9lChoBmgJaA9DCOfgmdAk0HFAlIaUUpRoFUu8aBZHQJZCUy2x6fJ1fZQoaAZoCWgPQwgxz0pasZRwQJSGlFKUaBVLyGgWR0CWQn0tRNypdX2UKGgGaAloD0MIWOVC5Z8Gc0CUhpRSlGgVS/VoFkdAlkMiqABkqnV9lChoBmgJaA9DCKMh41Hq4nFAlIaUUpRoFUuyaBZHQJZDPlmvnr91fZQoaAZoCWgPQwgKgzKNZsdwQJSGlFKUaBVLumgWR0CWRG3/Pw/gdX2UKGgGaAloD0MIajF4mLYGc0CUhpRSlGgVS71oFkdAlkTkdmxt53V9lChoBmgJaA9DCATltn1Pw3BAlIaUUpRoFUvNaBZHQJZE6wD/2kB1fZQoaAZoCWgPQwgPfAxWnMdjQJSGlFKUaBVN6ANoFkdAlkW4OlO45XV9lChoBmgJaA9DCI1F09kJu3BAlIaUUpRoFUuvaBZHQJZFwzpHI6t1fZQoaAZoCWgPQwgmV7H4jTJzQJSGlFKUaBVLyWgWR0CWRpGZ/kNndX2UKGgGaAloD0MIMc7fhEK1cUCUhpRSlGgVS95oFkdAlkeWZuyeI3V9lChoBmgJaA9DCI0o7Q2+x3BAlIaUUpRoFUvNaBZHQJZIfuogmqp1fZQoaAZoCWgPQwgm4NdIUttwQJSGlFKUaBVL1WgWR0CWSI+XqqwRdX2UKGgGaAloD0MIIOup1ZcAcUCUhpRSlGgVS8BoFkdAlkjsj7hvSHV9lChoBmgJaA9DCGSvd3989HJAlIaUUpRoFUvPaBZHQJZJPjU/fO51fZQoaAZoCWgPQwjGh9nLttFvQJSGlFKUaBVLv2gWR0CWSpnjyWiUdX2UKGgGaAloD0MIFqdaC/MZckCUhpRSlGgVS8FoFkdAlkqxYmsvI3V9lChoBmgJaA9DCAOy17s/jmFAlIaUUpRoFU3oA2gWR0CWS/J6po9LdX2UKGgGaAloD0MIGqiMf98PcUCUhpRSlGgVS81oFkdAlkv8yFfzBnV9lChoBmgJaA9DCMu+K4I/6XFAlIaUUpRoFUvBaBZHQJZMgAXEZR91fZQoaAZoCWgPQwjTFtf4zBBvQJSGlFKUaBVLz2gWR0CWTgiMYMvzdX2UKGgGaAloD0MIZohjXdz6b0CUhpRSlGgVS7loFkdAlk5Atvn8sXV9lChoBmgJaA9DCDlGskcoDm9AlIaUUpRoFUuzaBZHQJZO2mtQsPJ1fZQoaAZoCWgPQwjQDyOEx71uQJSGlFKUaBVLzmgWR0CWTvjin5zpdX2UKGgGaAloD0MIhIB8CZV0cECUhpRSlGgVS9NoFkdAlk9/9YOlPHV9lChoBmgJaA9DCO6TowDRq3FAlIaUUpRoFU0mAmgWR0CWULjt5UtJdX2UKGgGaAloD0MIE7afjHHkb0CUhpRSlGgVS7hoFkdAllHEF4cFQnV9lChoBmgJaA9DCBObj2sD23JAlIaUUpRoFUvkaBZHQJZRy9K28Zl1fZQoaAZoCWgPQwgYldQJaH5yQJSGlFKUaBVLvGgWR0CWUd1a4c3mdX2UKGgGaAloD0MIm8jMBa5JcECUhpRSlGgVS7ZoFkdAllI/rv9cbHV9lChoBmgJaA9DCHbfMTx2DnJAlIaUUpRoFU00AWgWR0CWVHoVmBe5dX2UKGgGaAloD0MICHb8FwgOcECUhpRSlGgVTeABaBZHQJZUr9uP3i91fZQoaAZoCWgPQwgFFVW/koJwQJSGlFKUaBVL1GgWR0CWVNL/0dzXdX2UKGgGaAloD0MI6EzaVB2icUCUhpRSlGgVS9RoFkdAllURJEpiJHV9lChoBmgJaA9DCAH6ff/mknBAlIaUUpRoFUvFaBZHQJZVMajvd/J1fZQoaAZoCWgPQwietkYEIyZyQJSGlFKUaBVL2mgWR0CWVemD15B1dX2UKGgGaAloD0MIwhiRKLS4b0CUhpRSlGgVS8doFkdAllgql+EytXV9lChoBmgJaA9DCF67tOHw8nFAlIaUUpRoFUvuaBZHQJZYTLTx5LR1fZQoaAZoCWgPQwgOMsnImYZyQJSGlFKUaBVL7WgWR0CWWVqZc9nsdX2UKGgGaAloD0MILVqAttW8YkCUhpRSlGgVTegDaBZHQJZZWmixmkF1fZQoaAZoCWgPQwg3iUFgZbdxQJSGlFKUaBVL6WgWR0CWWakpZwGXdX2UKGgGaAloD0MIE7h1N48WckCUhpRSlGgVTUgBaBZHQJZZ6+K0lZ51fZQoaAZoCWgPQwi8BRIUP+JwQJSGlFKUaBVLtWgWR0CWWmpBX0XhdX2UKGgGaAloD0MIKxcq/9p5bkCUhpRSlGgVS7loFkdAllrQVXV9W3V9lChoBmgJaA9DCMZtNIB3KXFAlIaUUpRoFU0nAWgWR0CWWvTCtRvWdX2UKGgGaAloD0MI7fSDukgncUCUhpRSlGgVS9loFkdAllsYZl4C63V9lChoBmgJaA9DCLLXuz/eEHBAlIaUUpRoFUvEaBZHQJZbw8r7O3V1fZQoaAZoCWgPQwj/k797R9txQJSGlFKUaBVL6WgWR0CWW/plBhQWdX2UKGgGaAloD0MI9RH4w88eY0CUhpRSlGgVTegDaBZHQJZcvmOlwcZ1fZQoaAZoCWgPQwgXt9EA3pNkQJSGlFKUaBVN6ANoFkdAllzf0/W1+nV9lChoBmgJaA9DCLgf8MBATnBAlIaUUpRoFUvDaBZHQJZdmIN3GGV1fZQoaAZoCWgPQwhEwCFUKbpuQJSGlFKUaBVLq2gWR0CWXeYcebNKdX2UKGgGaAloD0MIg2vu6P9BbkCUhpRSlGgVS+NoFkdAll6DQ3PzF3V9lChoBmgJaA9DCJ1kq8vp03BAlIaUUpRoFUujaBZHQJZfWOT7l7t1fZQoaAZoCWgPQwhPXfksj6JxQJSGlFKUaBVL22gWR0CWX7HcUM5PdX2UKGgGaAloD0MIXByVm6gPcECUhpRSlGgVS+poFkdAll/ZpFkQPXV9lChoBmgJaA9DCEKz697KyHBAlIaUUpRoFUv0aBZHQJZf2f8Muvl1fZQoaAZoCWgPQwiM17yq8/twQJSGlFKUaBVL1mgWR0CWYAdYnv2HdX2UKGgGaAloD0MIcxJKX0jycECUhpRSlGgVS7BoFkdAlmCBRqGlAXV9lChoBmgJaA9DCCCYo8cv+nBAlIaUUpRoFUviaBZHQJZgzch1Tzd1fZQoaAZoCWgPQwiimpKsgxByQJSGlFKUaBVLtGgWR0CWYUprDZUUdWUu"
74
+ },
75
+ "ep_success_buffer": {
76
+ ":type:": "<class 'collections.deque'>",
77
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
78
+ },
79
+ "_n_updates": 310,
80
+ "n_steps": 2048,
81
+ "gamma": 0.99,
82
+ "gae_lambda": 0.95,
83
+ "ent_coef": 0.0,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 10,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null
95
+ }
lunar_model/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c11b277488bb35d6c20fdb3fa6d0e0e3f565a3fe043d406b41cbd53c4f9673f8
3
+ size 87929
lunar_model/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:16aff1efef6212dc050c92c2e794b6751c2771d47e3dc41f4c079658fbd597cc
3
+ size 43393
lunar_model/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
lunar_model/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.0+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
replay.mp4 ADDED
Binary file (168 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 262.09928663597486, "std_reward": 44.867496195874836, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-15T05:55:11.486518"}