Uploading PPO model for Lunar Lander
Browse files- README.md +37 -0
- config.json +1 -0
- lunar_model.zip +3 -0
- lunar_model/_stable_baselines3_version +1 -0
- lunar_model/data +95 -0
- lunar_model/policy.optimizer.pth +3 -0
- lunar_model/policy.pth +3 -0
- lunar_model/pytorch_variables.pth +3 -0
- lunar_model/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 262.10 +/- 44.87
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fa6aded8790>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fa6aded8820>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fa6aded88b0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fa6aded8940>", "_build": "<function ActorCriticPolicy._build at 0x7fa6aded89d0>", "forward": "<function ActorCriticPolicy.forward at 0x7fa6aded8a60>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fa6aded8af0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fa6aded8b80>", "_predict": "<function ActorCriticPolicy._predict at 0x7fa6aded8c10>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fa6aded8ca0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fa6aded8d30>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fa6aded8dc0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fa6aded1990>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673760122461740107, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAABDyD3Bn6A/pBiVPk4JGr8gKio+/1NEPQAAAAAAAAAAWibZvf4aqj3CKw4+FK9QvtZ+mzz4/3A8AAAAAAAAAAB2AGy+SyZEP1cUIb4xxi2/ibNuvoCIpL0AAAAAAAAAAGBaHL4FK4K79u94s705lbL1x+o8ao8VNAAAgD8AAIA/zVwNu+EEubpckgo40+TQMjMXCbrEuh23AACAPwAAgD+6mlC+DvUBP2/kML0r8eG+24oAvkNbZj0AAAAAAAAAAJrbBr6cNkM9Hl3+PU51Fb5ibYE91hIaPAAAAAAAAAAAYBQyPghnhLzsKp87D5wUuhCE4b2KYu66AACAPwAAgD8zX1m8EI/APrRqKDtNJeS+JhVrPOjLlz0AAAAAAAAAAM2mLbxFau4+SnjbO39LH79yLsI8BJkTPQAAAAAAAAAAE7w0Pojfo7w8Two8B0meuo+9F772TXy7AACAPwAAgD/6qua+uvE9P9yQFr2UJu++WRB1vrYIBz4AAAAAAAAAAIAlKb4UYvc7O9mvPX6luLvzH4W98Q2rPAAAgD8AAIA/5oSVvS1bsT8gJQG/lL+BvrQNIb0zxOa9AAAAAAAAAABNjFQ+KNCRvKJIOzqRi224wID/vbj6ZrkAAIA/AACAP8b+Pr5e8E8/IpVmvtBqDb+EdXy+vTf0vQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVMBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIPkLNkKodb0CUhpRSlIwBbJRLyowBdJRHQJYxFmyxA0N1fZQoaAZoCWgPQwjWqfI9I4lxQJSGlFKUaBVLuGgWR0CWMe3/Pw/gdX2UKGgGaAloD0MILgCN0qVncECUhpRSlGgVS8hoFkdAljI+UyHmBHV9lChoBmgJaA9DCHsVGR0Q2W1AlIaUUpRoFUu7aBZHQJYyiFTNt651fZQoaAZoCWgPQwiWW1oNCTRwQJSGlFKUaBVLpWgWR0CWMpH/95yEdX2UKGgGaAloD0MIZK2h1F7fcUCUhpRSlGgVS6RoFkdAljR+6d1+zHV9lChoBmgJaA9DCF4robukUW9AlIaUUpRoFUvKaBZHQJY061QZXMh1fZQoaAZoCWgPQwhTPC6qhVNyQJSGlFKUaBVL+WgWR0CWNTSNwR5DdX2UKGgGaAloD0MItMwiFBsUcECUhpRSlGgVTREBaBZHQJY1YQFs54p1fZQoaAZoCWgPQwhslzYclk1fQJSGlFKUaBVN6ANoFkdAljXJSaVlgHV9lChoBmgJaA9DCOW36GTpT3FAlIaUUpRoFUvSaBZHQJY2HzErGzd1fZQoaAZoCWgPQwgb2ZWWUQdxQJSGlFKUaBVNQQFoFkdAljZeqzZ6EHV9lChoBmgJaA9DCAA49ux5oHFAlIaUUpRoFUupaBZHQJY2w32mHgx1fZQoaAZoCWgPQwjvrUhMEC1yQJSGlFKUaBVLwWgWR0CWNw7YkE9udX2UKGgGaAloD0MIJJpAEUttcUCUhpRSlGgVTc4CaBZHQJY3NJBgNPR1fZQoaAZoCWgPQwiqDONu0NlyQJSGlFKUaBVL7mgWR0CWN05OrQw9dX2UKGgGaAloD0MI7wBPWvgtcUCUhpRSlGgVTS4BaBZHQJY4QbOu7pV1fZQoaAZoCWgPQwhslzYcViBxQJSGlFKUaBVL8GgWR0CWONIbwSamdX2UKGgGaAloD0MIBd80fXaXcUCUhpRSlGgVS/VoFkdAljjovN/vv3V9lChoBmgJaA9DCPJbdLIU7XFAlIaUUpRoFUvQaBZHQJY5zRsuWbB1fZQoaAZoCWgPQwif5A6biI5wQJSGlFKUaBVLzGgWR0CWOl3j+717dX2UKGgGaAloD0MIjKAxkygtckCUhpRSlGgVS9doFkdAljpmHHmzSnV9lChoBmgJaA9DCC4EOSjhVnFAlIaUUpRoFUvlaBZHQJY7h7AtWdV1fZQoaAZoCWgPQwgmyAiocFhwQJSGlFKUaBVL02gWR0CWO64u9OARdX2UKGgGaAloD0MIx7lNuNdDcECUhpRSlGgVS+hoFkdAljwMLKFIu3V9lChoBmgJaA9DCI6xE15CHHFAlIaUUpRoFUvOaBZHQJY8aArhBJJ1fZQoaAZoCWgPQwjmWx/W26dxQJSGlFKUaBVL5WgWR0CWPLkauOjqdX2UKGgGaAloD0MIqpm1FJBIckCUhpRSlGgVS6ZoFkdAlj1E+xGDtnV9lChoBmgJaA9DCO2fpwHDj3JAlIaUUpRoFU03AWgWR0CWPXPhQ3xXdX2UKGgGaAloD0MI6/6xEB1ncUCUhpRSlGgVS9RoFkdAlj6Q8W9DhXV9lChoBmgJaA9DCCLgEKqUDnFAlIaUUpRoFU0kAWgWR0CWPuxdIGyHdX2UKGgGaAloD0MImbwBZv6WckCUhpRSlGgVTQEBaBZHQJY/DwRXfZV1fZQoaAZoCWgPQwgpWU5CaaVzQJSGlFKUaBVNOAFoFkdAlj9XYYixFHV9lChoBmgJaA9DCH0JFRxerHBAlIaUUpRoFUvQaBZHQJY/cL+glGB1fZQoaAZoCWgPQwjNqzqrxXFwQJSGlFKUaBVLx2gWR0CWP7bmEGqxdX2UKGgGaAloD0MIECVa8ni9cUCUhpRSlGgVS99oFkdAlkBdQ9A5aXV9lChoBmgJaA9DCIY6rHDLLXFAlIaUUpRoFUvCaBZHQJZA0nVoYel1fZQoaAZoCWgPQwg+zjRhO5BxQJSGlFKUaBVLrWgWR0CWQOcpb2UTdX2UKGgGaAloD0MIL26jAbw+cECUhpRSlGgVS8doFkdAlkFGK2rn1XV9lChoBmgJaA9DCOfgmdAk0HFAlIaUUpRoFUu8aBZHQJZCUy2x6fJ1fZQoaAZoCWgPQwgxz0pasZRwQJSGlFKUaBVLyGgWR0CWQn0tRNypdX2UKGgGaAloD0MIWOVC5Z8Gc0CUhpRSlGgVS/VoFkdAlkMiqABkqnV9lChoBmgJaA9DCKMh41Hq4nFAlIaUUpRoFUuyaBZHQJZDPlmvnr91fZQoaAZoCWgPQwgKgzKNZsdwQJSGlFKUaBVLumgWR0CWRG3/Pw/gdX2UKGgGaAloD0MIajF4mLYGc0CUhpRSlGgVS71oFkdAlkTkdmxt53V9lChoBmgJaA9DCATltn1Pw3BAlIaUUpRoFUvNaBZHQJZE6wD/2kB1fZQoaAZoCWgPQwgPfAxWnMdjQJSGlFKUaBVN6ANoFkdAlkW4OlO45XV9lChoBmgJaA9DCI1F09kJu3BAlIaUUpRoFUuvaBZHQJZFwzpHI6t1fZQoaAZoCWgPQwgmV7H4jTJzQJSGlFKUaBVLyWgWR0CWRpGZ/kNndX2UKGgGaAloD0MIMc7fhEK1cUCUhpRSlGgVS95oFkdAlkeWZuyeI3V9lChoBmgJaA9DCI0o7Q2+x3BAlIaUUpRoFUvNaBZHQJZIfuogmqp1fZQoaAZoCWgPQwgm4NdIUttwQJSGlFKUaBVL1WgWR0CWSI+XqqwRdX2UKGgGaAloD0MIIOup1ZcAcUCUhpRSlGgVS8BoFkdAlkjsj7hvSHV9lChoBmgJaA9DCGSvd3989HJAlIaUUpRoFUvPaBZHQJZJPjU/fO51fZQoaAZoCWgPQwjGh9nLttFvQJSGlFKUaBVLv2gWR0CWSpnjyWiUdX2UKGgGaAloD0MIFqdaC/MZckCUhpRSlGgVS8FoFkdAlkqxYmsvI3V9lChoBmgJaA9DCAOy17s/jmFAlIaUUpRoFU3oA2gWR0CWS/J6po9LdX2UKGgGaAloD0MIGqiMf98PcUCUhpRSlGgVS81oFkdAlkv8yFfzBnV9lChoBmgJaA9DCMu+K4I/6XFAlIaUUpRoFUvBaBZHQJZMgAXEZR91fZQoaAZoCWgPQwjTFtf4zBBvQJSGlFKUaBVLz2gWR0CWTgiMYMvzdX2UKGgGaAloD0MIZohjXdz6b0CUhpRSlGgVS7loFkdAlk5Atvn8sXV9lChoBmgJaA9DCDlGskcoDm9AlIaUUpRoFUuzaBZHQJZO2mtQsPJ1fZQoaAZoCWgPQwjQDyOEx71uQJSGlFKUaBVLzmgWR0CWTvjin5zpdX2UKGgGaAloD0MIhIB8CZV0cECUhpRSlGgVS9NoFkdAlk9/9YOlPHV9lChoBmgJaA9DCO6TowDRq3FAlIaUUpRoFU0mAmgWR0CWULjt5UtJdX2UKGgGaAloD0MIE7afjHHkb0CUhpRSlGgVS7hoFkdAllHEF4cFQnV9lChoBmgJaA9DCBObj2sD23JAlIaUUpRoFUvkaBZHQJZRy9K28Zl1fZQoaAZoCWgPQwgYldQJaH5yQJSGlFKUaBVLvGgWR0CWUd1a4c3mdX2UKGgGaAloD0MIm8jMBa5JcECUhpRSlGgVS7ZoFkdAllI/rv9cbHV9lChoBmgJaA9DCHbfMTx2DnJAlIaUUpRoFU00AWgWR0CWVHoVmBe5dX2UKGgGaAloD0MICHb8FwgOcECUhpRSlGgVTeABaBZHQJZUr9uP3i91fZQoaAZoCWgPQwgFFVW/koJwQJSGlFKUaBVL1GgWR0CWVNL/0dzXdX2UKGgGaAloD0MI6EzaVB2icUCUhpRSlGgVS9RoFkdAllURJEpiJHV9lChoBmgJaA9DCAH6ff/mknBAlIaUUpRoFUvFaBZHQJZVMajvd/J1fZQoaAZoCWgPQwietkYEIyZyQJSGlFKUaBVL2mgWR0CWVemD15B1dX2UKGgGaAloD0MIwhiRKLS4b0CUhpRSlGgVS8doFkdAllgql+EytXV9lChoBmgJaA9DCF67tOHw8nFAlIaUUpRoFUvuaBZHQJZYTLTx5LR1fZQoaAZoCWgPQwgOMsnImYZyQJSGlFKUaBVL7WgWR0CWWVqZc9nsdX2UKGgGaAloD0MILVqAttW8YkCUhpRSlGgVTegDaBZHQJZZWmixmkF1fZQoaAZoCWgPQwg3iUFgZbdxQJSGlFKUaBVL6WgWR0CWWakpZwGXdX2UKGgGaAloD0MIE7h1N48WckCUhpRSlGgVTUgBaBZHQJZZ6+K0lZ51fZQoaAZoCWgPQwi8BRIUP+JwQJSGlFKUaBVLtWgWR0CWWmpBX0XhdX2UKGgGaAloD0MIKxcq/9p5bkCUhpRSlGgVS7loFkdAllrQVXV9W3V9lChoBmgJaA9DCMZtNIB3KXFAlIaUUpRoFU0nAWgWR0CWWvTCtRvWdX2UKGgGaAloD0MI7fSDukgncUCUhpRSlGgVS9loFkdAllsYZl4C63V9lChoBmgJaA9DCLLXuz/eEHBAlIaUUpRoFUvEaBZHQJZbw8r7O3V1fZQoaAZoCWgPQwj/k797R9txQJSGlFKUaBVL6WgWR0CWW/plBhQWdX2UKGgGaAloD0MI9RH4w88eY0CUhpRSlGgVTegDaBZHQJZcvmOlwcZ1fZQoaAZoCWgPQwgXt9EA3pNkQJSGlFKUaBVN6ANoFkdAllzf0/W1+nV9lChoBmgJaA9DCLgf8MBATnBAlIaUUpRoFUvDaBZHQJZdmIN3GGV1fZQoaAZoCWgPQwhEwCFUKbpuQJSGlFKUaBVLq2gWR0CWXeYcebNKdX2UKGgGaAloD0MIg2vu6P9BbkCUhpRSlGgVS+NoFkdAll6DQ3PzF3V9lChoBmgJaA9DCJ1kq8vp03BAlIaUUpRoFUujaBZHQJZfWOT7l7t1fZQoaAZoCWgPQwhPXfksj6JxQJSGlFKUaBVL22gWR0CWX7HcUM5PdX2UKGgGaAloD0MIXByVm6gPcECUhpRSlGgVS+poFkdAll/ZpFkQPXV9lChoBmgJaA9DCEKz697KyHBAlIaUUpRoFUv0aBZHQJZf2f8Muvl1fZQoaAZoCWgPQwiM17yq8/twQJSGlFKUaBVL1mgWR0CWYAdYnv2HdX2UKGgGaAloD0MIcxJKX0jycECUhpRSlGgVS7BoFkdAlmCBRqGlAXV9lChoBmgJaA9DCCCYo8cv+nBAlIaUUpRoFUviaBZHQJZgzch1Tzd1fZQoaAZoCWgPQwiimpKsgxByQJSGlFKUaBVLtGgWR0CWYUprDZUUdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
lunar_model.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:009593569b3f39462144232f29d6ef6644bc5489458d7fe012cf57afdd2b75e5
|
3 |
+
size 147315
|
lunar_model/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
lunar_model/data
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fa6aded8790>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fa6aded8820>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fa6aded88b0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fa6aded8940>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fa6aded89d0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fa6aded8a60>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7fa6aded8af0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fa6aded8b80>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fa6aded8c10>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fa6aded8ca0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fa6aded8d30>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fa6aded8dc0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7fa6aded1990>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"observation_space": {
|
25 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
26 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
27 |
+
"dtype": "float32",
|
28 |
+
"_shape": [
|
29 |
+
8
|
30 |
+
],
|
31 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
32 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
33 |
+
"bounded_below": "[False False False False False False False False]",
|
34 |
+
"bounded_above": "[False False False False False False False False]",
|
35 |
+
"_np_random": null
|
36 |
+
},
|
37 |
+
"action_space": {
|
38 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
39 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
40 |
+
"n": 4,
|
41 |
+
"_shape": [],
|
42 |
+
"dtype": "int64",
|
43 |
+
"_np_random": null
|
44 |
+
},
|
45 |
+
"n_envs": 16,
|
46 |
+
"num_timesteps": 1015808,
|
47 |
+
"_total_timesteps": 1000000,
|
48 |
+
"_num_timesteps_at_start": 0,
|
49 |
+
"seed": null,
|
50 |
+
"action_noise": null,
|
51 |
+
"start_time": 1673760122461740107,
|
52 |
+
"learning_rate": 0.0003,
|
53 |
+
"tensorboard_log": null,
|
54 |
+
"lr_schedule": {
|
55 |
+
":type:": "<class 'function'>",
|
56 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
57 |
+
},
|
58 |
+
"_last_obs": {
|
59 |
+
":type:": "<class 'numpy.ndarray'>",
|
60 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAABDyD3Bn6A/pBiVPk4JGr8gKio+/1NEPQAAAAAAAAAAWibZvf4aqj3CKw4+FK9QvtZ+mzz4/3A8AAAAAAAAAAB2AGy+SyZEP1cUIb4xxi2/ibNuvoCIpL0AAAAAAAAAAGBaHL4FK4K79u94s705lbL1x+o8ao8VNAAAgD8AAIA/zVwNu+EEubpckgo40+TQMjMXCbrEuh23AACAPwAAgD+6mlC+DvUBP2/kML0r8eG+24oAvkNbZj0AAAAAAAAAAJrbBr6cNkM9Hl3+PU51Fb5ibYE91hIaPAAAAAAAAAAAYBQyPghnhLzsKp87D5wUuhCE4b2KYu66AACAPwAAgD8zX1m8EI/APrRqKDtNJeS+JhVrPOjLlz0AAAAAAAAAAM2mLbxFau4+SnjbO39LH79yLsI8BJkTPQAAAAAAAAAAE7w0Pojfo7w8Two8B0meuo+9F772TXy7AACAPwAAgD/6qua+uvE9P9yQFr2UJu++WRB1vrYIBz4AAAAAAAAAAIAlKb4UYvc7O9mvPX6luLvzH4W98Q2rPAAAgD8AAIA/5oSVvS1bsT8gJQG/lL+BvrQNIb0zxOa9AAAAAAAAAABNjFQ+KNCRvKJIOzqRi224wID/vbj6ZrkAAIA/AACAP8b+Pr5e8E8/IpVmvtBqDb+EdXy+vTf0vQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
61 |
+
},
|
62 |
+
"_last_episode_starts": {
|
63 |
+
":type:": "<class 'numpy.ndarray'>",
|
64 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
65 |
+
},
|
66 |
+
"_last_original_obs": null,
|
67 |
+
"_episode_num": 0,
|
68 |
+
"use_sde": false,
|
69 |
+
"sde_sample_freq": -1,
|
70 |
+
"_current_progress_remaining": -0.015808000000000044,
|
71 |
+
"ep_info_buffer": {
|
72 |
+
":type:": "<class 'collections.deque'>",
|
73 |
+
":serialized:": "gAWVMBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIPkLNkKodb0CUhpRSlIwBbJRLyowBdJRHQJYxFmyxA0N1fZQoaAZoCWgPQwjWqfI9I4lxQJSGlFKUaBVLuGgWR0CWMe3/Pw/gdX2UKGgGaAloD0MILgCN0qVncECUhpRSlGgVS8hoFkdAljI+UyHmBHV9lChoBmgJaA9DCHsVGR0Q2W1AlIaUUpRoFUu7aBZHQJYyiFTNt651fZQoaAZoCWgPQwiWW1oNCTRwQJSGlFKUaBVLpWgWR0CWMpH/95yEdX2UKGgGaAloD0MIZK2h1F7fcUCUhpRSlGgVS6RoFkdAljR+6d1+zHV9lChoBmgJaA9DCF4robukUW9AlIaUUpRoFUvKaBZHQJY061QZXMh1fZQoaAZoCWgPQwhTPC6qhVNyQJSGlFKUaBVL+WgWR0CWNTSNwR5DdX2UKGgGaAloD0MItMwiFBsUcECUhpRSlGgVTREBaBZHQJY1YQFs54p1fZQoaAZoCWgPQwhslzYclk1fQJSGlFKUaBVN6ANoFkdAljXJSaVlgHV9lChoBmgJaA9DCOW36GTpT3FAlIaUUpRoFUvSaBZHQJY2HzErGzd1fZQoaAZoCWgPQwgb2ZWWUQdxQJSGlFKUaBVNQQFoFkdAljZeqzZ6EHV9lChoBmgJaA9DCAA49ux5oHFAlIaUUpRoFUupaBZHQJY2w32mHgx1fZQoaAZoCWgPQwjvrUhMEC1yQJSGlFKUaBVLwWgWR0CWNw7YkE9udX2UKGgGaAloD0MIJJpAEUttcUCUhpRSlGgVTc4CaBZHQJY3NJBgNPR1fZQoaAZoCWgPQwiqDONu0NlyQJSGlFKUaBVL7mgWR0CWN05OrQw9dX2UKGgGaAloD0MI7wBPWvgtcUCUhpRSlGgVTS4BaBZHQJY4QbOu7pV1fZQoaAZoCWgPQwhslzYcViBxQJSGlFKUaBVL8GgWR0CWONIbwSamdX2UKGgGaAloD0MIBd80fXaXcUCUhpRSlGgVS/VoFkdAljjovN/vv3V9lChoBmgJaA9DCPJbdLIU7XFAlIaUUpRoFUvQaBZHQJY5zRsuWbB1fZQoaAZoCWgPQwif5A6biI5wQJSGlFKUaBVLzGgWR0CWOl3j+717dX2UKGgGaAloD0MIjKAxkygtckCUhpRSlGgVS9doFkdAljpmHHmzSnV9lChoBmgJaA9DCC4EOSjhVnFAlIaUUpRoFUvlaBZHQJY7h7AtWdV1fZQoaAZoCWgPQwgmyAiocFhwQJSGlFKUaBVL02gWR0CWO64u9OARdX2UKGgGaAloD0MIx7lNuNdDcECUhpRSlGgVS+hoFkdAljwMLKFIu3V9lChoBmgJaA9DCI6xE15CHHFAlIaUUpRoFUvOaBZHQJY8aArhBJJ1fZQoaAZoCWgPQwjmWx/W26dxQJSGlFKUaBVL5WgWR0CWPLkauOjqdX2UKGgGaAloD0MIqpm1FJBIckCUhpRSlGgVS6ZoFkdAlj1E+xGDtnV9lChoBmgJaA9DCO2fpwHDj3JAlIaUUpRoFU03AWgWR0CWPXPhQ3xXdX2UKGgGaAloD0MI6/6xEB1ncUCUhpRSlGgVS9RoFkdAlj6Q8W9DhXV9lChoBmgJaA9DCCLgEKqUDnFAlIaUUpRoFU0kAWgWR0CWPuxdIGyHdX2UKGgGaAloD0MImbwBZv6WckCUhpRSlGgVTQEBaBZHQJY/DwRXfZV1fZQoaAZoCWgPQwgpWU5CaaVzQJSGlFKUaBVNOAFoFkdAlj9XYYixFHV9lChoBmgJaA9DCH0JFRxerHBAlIaUUpRoFUvQaBZHQJY/cL+glGB1fZQoaAZoCWgPQwjNqzqrxXFwQJSGlFKUaBVLx2gWR0CWP7bmEGqxdX2UKGgGaAloD0MIECVa8ni9cUCUhpRSlGgVS99oFkdAlkBdQ9A5aXV9lChoBmgJaA9DCIY6rHDLLXFAlIaUUpRoFUvCaBZHQJZA0nVoYel1fZQoaAZoCWgPQwg+zjRhO5BxQJSGlFKUaBVLrWgWR0CWQOcpb2UTdX2UKGgGaAloD0MIL26jAbw+cECUhpRSlGgVS8doFkdAlkFGK2rn1XV9lChoBmgJaA9DCOfgmdAk0HFAlIaUUpRoFUu8aBZHQJZCUy2x6fJ1fZQoaAZoCWgPQwgxz0pasZRwQJSGlFKUaBVLyGgWR0CWQn0tRNypdX2UKGgGaAloD0MIWOVC5Z8Gc0CUhpRSlGgVS/VoFkdAlkMiqABkqnV9lChoBmgJaA9DCKMh41Hq4nFAlIaUUpRoFUuyaBZHQJZDPlmvnr91fZQoaAZoCWgPQwgKgzKNZsdwQJSGlFKUaBVLumgWR0CWRG3/Pw/gdX2UKGgGaAloD0MIajF4mLYGc0CUhpRSlGgVS71oFkdAlkTkdmxt53V9lChoBmgJaA9DCATltn1Pw3BAlIaUUpRoFUvNaBZHQJZE6wD/2kB1fZQoaAZoCWgPQwgPfAxWnMdjQJSGlFKUaBVN6ANoFkdAlkW4OlO45XV9lChoBmgJaA9DCI1F09kJu3BAlIaUUpRoFUuvaBZHQJZFwzpHI6t1fZQoaAZoCWgPQwgmV7H4jTJzQJSGlFKUaBVLyWgWR0CWRpGZ/kNndX2UKGgGaAloD0MIMc7fhEK1cUCUhpRSlGgVS95oFkdAlkeWZuyeI3V9lChoBmgJaA9DCI0o7Q2+x3BAlIaUUpRoFUvNaBZHQJZIfuogmqp1fZQoaAZoCWgPQwgm4NdIUttwQJSGlFKUaBVL1WgWR0CWSI+XqqwRdX2UKGgGaAloD0MIIOup1ZcAcUCUhpRSlGgVS8BoFkdAlkjsj7hvSHV9lChoBmgJaA9DCGSvd3989HJAlIaUUpRoFUvPaBZHQJZJPjU/fO51fZQoaAZoCWgPQwjGh9nLttFvQJSGlFKUaBVLv2gWR0CWSpnjyWiUdX2UKGgGaAloD0MIFqdaC/MZckCUhpRSlGgVS8FoFkdAlkqxYmsvI3V9lChoBmgJaA9DCAOy17s/jmFAlIaUUpRoFU3oA2gWR0CWS/J6po9LdX2UKGgGaAloD0MIGqiMf98PcUCUhpRSlGgVS81oFkdAlkv8yFfzBnV9lChoBmgJaA9DCMu+K4I/6XFAlIaUUpRoFUvBaBZHQJZMgAXEZR91fZQoaAZoCWgPQwjTFtf4zBBvQJSGlFKUaBVLz2gWR0CWTgiMYMvzdX2UKGgGaAloD0MIZohjXdz6b0CUhpRSlGgVS7loFkdAlk5Atvn8sXV9lChoBmgJaA9DCDlGskcoDm9AlIaUUpRoFUuzaBZHQJZO2mtQsPJ1fZQoaAZoCWgPQwjQDyOEx71uQJSGlFKUaBVLzmgWR0CWTvjin5zpdX2UKGgGaAloD0MIhIB8CZV0cECUhpRSlGgVS9NoFkdAlk9/9YOlPHV9lChoBmgJaA9DCO6TowDRq3FAlIaUUpRoFU0mAmgWR0CWULjt5UtJdX2UKGgGaAloD0MIE7afjHHkb0CUhpRSlGgVS7hoFkdAllHEF4cFQnV9lChoBmgJaA9DCBObj2sD23JAlIaUUpRoFUvkaBZHQJZRy9K28Zl1fZQoaAZoCWgPQwgYldQJaH5yQJSGlFKUaBVLvGgWR0CWUd1a4c3mdX2UKGgGaAloD0MIm8jMBa5JcECUhpRSlGgVS7ZoFkdAllI/rv9cbHV9lChoBmgJaA9DCHbfMTx2DnJAlIaUUpRoFU00AWgWR0CWVHoVmBe5dX2UKGgGaAloD0MICHb8FwgOcECUhpRSlGgVTeABaBZHQJZUr9uP3i91fZQoaAZoCWgPQwgFFVW/koJwQJSGlFKUaBVL1GgWR0CWVNL/0dzXdX2UKGgGaAloD0MI6EzaVB2icUCUhpRSlGgVS9RoFkdAllURJEpiJHV9lChoBmgJaA9DCAH6ff/mknBAlIaUUpRoFUvFaBZHQJZVMajvd/J1fZQoaAZoCWgPQwietkYEIyZyQJSGlFKUaBVL2mgWR0CWVemD15B1dX2UKGgGaAloD0MIwhiRKLS4b0CUhpRSlGgVS8doFkdAllgql+EytXV9lChoBmgJaA9DCF67tOHw8nFAlIaUUpRoFUvuaBZHQJZYTLTx5LR1fZQoaAZoCWgPQwgOMsnImYZyQJSGlFKUaBVL7WgWR0CWWVqZc9nsdX2UKGgGaAloD0MILVqAttW8YkCUhpRSlGgVTegDaBZHQJZZWmixmkF1fZQoaAZoCWgPQwg3iUFgZbdxQJSGlFKUaBVL6WgWR0CWWakpZwGXdX2UKGgGaAloD0MIE7h1N48WckCUhpRSlGgVTUgBaBZHQJZZ6+K0lZ51fZQoaAZoCWgPQwi8BRIUP+JwQJSGlFKUaBVLtWgWR0CWWmpBX0XhdX2UKGgGaAloD0MIKxcq/9p5bkCUhpRSlGgVS7loFkdAllrQVXV9W3V9lChoBmgJaA9DCMZtNIB3KXFAlIaUUpRoFU0nAWgWR0CWWvTCtRvWdX2UKGgGaAloD0MI7fSDukgncUCUhpRSlGgVS9loFkdAllsYZl4C63V9lChoBmgJaA9DCLLXuz/eEHBAlIaUUpRoFUvEaBZHQJZbw8r7O3V1fZQoaAZoCWgPQwj/k797R9txQJSGlFKUaBVL6WgWR0CWW/plBhQWdX2UKGgGaAloD0MI9RH4w88eY0CUhpRSlGgVTegDaBZHQJZcvmOlwcZ1fZQoaAZoCWgPQwgXt9EA3pNkQJSGlFKUaBVN6ANoFkdAllzf0/W1+nV9lChoBmgJaA9DCLgf8MBATnBAlIaUUpRoFUvDaBZHQJZdmIN3GGV1fZQoaAZoCWgPQwhEwCFUKbpuQJSGlFKUaBVLq2gWR0CWXeYcebNKdX2UKGgGaAloD0MIg2vu6P9BbkCUhpRSlGgVS+NoFkdAll6DQ3PzF3V9lChoBmgJaA9DCJ1kq8vp03BAlIaUUpRoFUujaBZHQJZfWOT7l7t1fZQoaAZoCWgPQwhPXfksj6JxQJSGlFKUaBVL22gWR0CWX7HcUM5PdX2UKGgGaAloD0MIXByVm6gPcECUhpRSlGgVS+poFkdAll/ZpFkQPXV9lChoBmgJaA9DCEKz697KyHBAlIaUUpRoFUv0aBZHQJZf2f8Muvl1fZQoaAZoCWgPQwiM17yq8/twQJSGlFKUaBVL1mgWR0CWYAdYnv2HdX2UKGgGaAloD0MIcxJKX0jycECUhpRSlGgVS7BoFkdAlmCBRqGlAXV9lChoBmgJaA9DCCCYo8cv+nBAlIaUUpRoFUviaBZHQJZgzch1Tzd1fZQoaAZoCWgPQwiimpKsgxByQJSGlFKUaBVLtGgWR0CWYUprDZUUdWUu"
|
74 |
+
},
|
75 |
+
"ep_success_buffer": {
|
76 |
+
":type:": "<class 'collections.deque'>",
|
77 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
78 |
+
},
|
79 |
+
"_n_updates": 310,
|
80 |
+
"n_steps": 2048,
|
81 |
+
"gamma": 0.99,
|
82 |
+
"gae_lambda": 0.95,
|
83 |
+
"ent_coef": 0.0,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 10,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null
|
95 |
+
}
|
lunar_model/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c11b277488bb35d6c20fdb3fa6d0e0e3f565a3fe043d406b41cbd53c4f9673f8
|
3 |
+
size 87929
|
lunar_model/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:16aff1efef6212dc050c92c2e794b6751c2771d47e3dc41f4c079658fbd597cc
|
3 |
+
size 43393
|
lunar_model/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
lunar_model/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.16
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.0+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.21.6
|
7 |
+
- Gym: 0.21.0
|
replay.mp4
ADDED
Binary file (168 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 262.09928663597486, "std_reward": 44.867496195874836, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-15T05:55:11.486518"}
|