File size: 2,345 Bytes
1337c10 25998b3 1337c10 25998b3 1337c10 a14f964 1337c10 25998b3 1337c10 25998b3 1337c10 25998b3 1337c10 ec7618e 1337c10 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 |
---
language: id
license: mit
tags:
- generated_from_trainer
datasets:
- indonlu
metrics:
- accuracy
widget:
- text: Saya mengapresiasi usaha anda
base_model: cahya/bert-base-indonesian-1.5G
model-index:
- name: bert-base-indonesian-1.5G-finetuned-sentiment-analysis-smsa
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: indonlu
type: indonlu
args: smsa
metrics:
- type: accuracy
value: 0.9373015873015873
name: Accuracy
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-base-indonesian-1.5G-finetuned-sentiment-analysis-smsa
This model is a fine-tuned version of [cahya/bert-base-indonesian-1.5G](https://huggingface.co/cahya/bert-base-indonesian-1.5G) on the indonlu dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3390
- Accuracy: 0.9373
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.2864 | 1.0 | 688 | 0.2154 | 0.9286 |
| 0.1648 | 2.0 | 1376 | 0.2238 | 0.9357 |
| 0.0759 | 3.0 | 2064 | 0.3351 | 0.9365 |
| 0.044 | 4.0 | 2752 | 0.3390 | 0.9373 |
| 0.0308 | 5.0 | 3440 | 0.4346 | 0.9365 |
| 0.0113 | 6.0 | 4128 | 0.4708 | 0.9365 |
| 0.006 | 7.0 | 4816 | 0.5533 | 0.9325 |
| 0.0047 | 8.0 | 5504 | 0.5888 | 0.9310 |
| 0.0001 | 9.0 | 6192 | 0.5961 | 0.9333 |
| 0.0 | 10.0 | 6880 | 0.5992 | 0.9357 |
### Framework versions
- Transformers 4.14.1
- Pytorch 1.10.0+cu111
- Datasets 1.16.1
- Tokenizers 0.10.3
|