File size: 2,726 Bytes
5a56d3f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23f7015
 
 
 
 
 
 
5a56d3f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
da6d21d
5a56d3f
 
 
 
 
 
 
 
 
 
 
 
 
23f7015
 
 
 
 
 
 
 
 
 
5a56d3f
 
 
 
da6d21d
 
5a56d3f
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
---
base_model: microsoft/unispeech-sat-base
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
- recall
- precision
model-index:
- name: unispeech-sat-base-finetuned-common_voice
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# unispeech-sat-base-finetuned-common_voice

This model is a fine-tuned version of [microsoft/unispeech-sat-base](https://huggingface.co/microsoft/unispeech-sat-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0641
- Accuracy: 0.9875
- F1: 0.9875
- Recall: 0.9875
- Precision: 0.9878
- Mcc: 0.9844
- Auc: 0.9999

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1     | Recall | Precision | Mcc    | Auc    |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:------:|:---------:|:------:|:------:|
| 0.2181        | 1.0   | 200  | 0.0440          | 0.9925   | 0.9925 | 0.9925 | 0.9926    | 0.9906 | 0.9981 |
| 0.0083        | 2.0   | 400  | 0.0609          | 0.9875   | 0.9875 | 0.9875 | 0.9880    | 0.9845 | 0.9987 |
| 0.0035        | 3.0   | 600  | 0.0888          | 0.98     | 0.9799 | 0.9800 | 0.9806    | 0.9752 | 0.9991 |
| 0.2407        | 4.0   | 800  | 0.1593          | 0.9725   | 0.9726 | 0.9725 | 0.9740    | 0.9660 | 0.9997 |
| 0.0859        | 5.0   | 1000 | 0.1234          | 0.9775   | 0.9777 | 0.9775 | 0.9790    | 0.9722 | 0.9999 |
| 0.2073        | 6.0   | 1200 | 0.0851          | 0.9825   | 0.9826 | 0.9825 | 0.9832    | 0.9783 | 0.9999 |
| 0.0036        | 7.0   | 1400 | 0.0550          | 0.9925   | 0.9925 | 0.9925 | 0.9927    | 0.9907 | 0.9999 |
| 0.0036        | 8.0   | 1600 | 0.0600          | 0.9925   | 0.9925 | 0.9925 | 0.9927    | 0.9907 | 1.0000 |
| 0.0013        | 9.0   | 1800 | 0.0645          | 0.99     | 0.9900 | 0.99   | 0.9903    | 0.9876 | 1.0000 |
| 0.0048        | 10.0  | 2000 | 0.0641          | 0.9875   | 0.9875 | 0.9875 | 0.9878    | 0.9844 | 0.9999 |


### Framework versions

- Transformers 4.41.0
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1