AYMAN DAMOUN
commited on
Commit
·
989c71e
1
Parent(s):
248cffa
Upload PPO LunarLander-v2 trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +96 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +8 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 268.35 +/- 22.02
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f850bf5e950>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f850bf5e9e0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f850bf5ea70>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f850bf5eb00>", "_build": "<function ActorCriticPolicy._build at 0x7f850bf5eb90>", "forward": "<function ActorCriticPolicy.forward at 0x7f850bf5ec20>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f850bf5ecb0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f850bf5ed40>", "_predict": "<function ActorCriticPolicy._predict at 0x7f850bf5edd0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f850bf5ee60>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f850bf5eef0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f850bf5ef80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f850c3ad4c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1702758369816936594, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": null, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVMwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHBoy2H+IdmMAWyUTS8BjAF0lEdAfwJqVhTfi3V9lChoBkdAcecjH4oJA2gHTQkBaAhHQH8DeiN83Mp1fZQoaAZHQHFfNaQmu1ZoB00MAWgIR0B/BE4aP0ZndX2UKGgGR0BvMIFPi1iOaAdNQAFoCEdAfwVSJj2Ba3V9lChoBkdAcVEvegte2WgHTQQBaAhHQH8FqhcqvvB1fZQoaAZHQHGuE1VHWjJoB00dAWgIR0B/BoGqxTsIdX2UKGgGR0Bx6HSncclxaAdNAwFoCEdAfwdc580DU3V9lChoBkdAcdtzGPxQSGgHTVMBaAhHQH8ITP8hs691fZQoaAZHQHF4FW4mTkhoB00YAWgIR0B/CJxp+MIedX2UKGgGR0Bw+/QmeDnOaAdNPwFoCEdAfwuF2V3Ux3V9lChoBkdAcWtXcQAdXGgHTQUBaAhHQH8L6BAfMfR1fZQoaAZHQHDQ4JVsDW9oB00LAWgIR0B/Db+glF+edX2UKGgGR0BxpAPMB6rvaAdL/GgIR0B/DuIFeOXFdX2UKGgGR0By1Y5q/M4caAdNNgFoCEdAfw7zoUzsQnV9lChoBkdAbbRolD4QBmgHS/VoCEdAfw9A3kxREXV9lChoBkdAcDZpAlfJFWgHS+FoCEdAfxCiONo8IXV9lChoBkdAccre0ojOcGgHTSsBaAhHQH8S3jENvwV1fZQoaAZHQHDc4NEw35xoB00vAWgIR0B/E+B8QZn+dX2UKGgGR0BynC4J/oaDaAdNgQFoCEdAfxP81XNkfHV9lChoBkdAcpMSn+AEuGgHTTQBaAhHQH8VRtP557h1fZQoaAZHQHEyt5t3wCtoB00sAWgIR0B/FaGh24d7dX2UKGgGR0BxZmo0hvBKaAdNDQFoCEdAfxXIBzV+Z3V9lChoBkdAcJxvEjxCpmgHTRABaAhHQH8WMiB5HEx1fZQoaAZHQHJKmCEpRXRoB01DAWgIR0B/F3K8tf5UdX2UKGgGR0AugTYdyT6jaAdLyWgIR0B/F9O8CgbqdX2UKGgGR0BxlqiYb83uaAdL92gIR0B/GDZYgaFVdX2UKGgGR0BxdFrGipNsaAdNFwFoCEdAfxlJokAxSHV9lChoBkdAcgqEMLF4s2gHS/NoCEdAfxy7rLQokXV9lChoBkdAcbFPIn0CimgHTRgBaAhHQH8c3O8kD6p1fZQoaAZHQHBou2mYSg5oB00kAWgIR0B/HXVawD/3dX2UKGgGR0BwzXLq2SdOaAdNMwFoCEdAfx6aWX1J2HV9lChoBkdAbWCDgZTAFmgHTQkBaAhHQH8gJVjqfOF1fZQoaAZHQHHm/OdGy5ZoB0v8aAhHQH8ghG+bmU51fZQoaAZHQHAB2OAAhjhoB0v+aAhHQH8h9ELH+611fZQoaAZHQHKcmYBvJiloB00AAWgIR0B/IpiYsunNdX2UKGgGR0Bw+95D7ZWaaAdNNQFoCEdAfyNcNH6MznV9lChoBkdAcQgUn5SFXmgHS/9oCEdAfyReBg/kenV9lChoBkdAcaM8wYcebWgHTSsBaAhHQH8koXGff411fZQoaAZHQHEewGB4D9xoB00wAWgIR0B/JXp2U0N0dX2UKGgGR0Bx4AH3UQTVaAdNDgFoCEdAfyXj8DSw4nV9lChoBkdAbhfKNAC4jWgHTT0BaAhHQH8nz544ZMt1fZQoaAZHQHC4Cvkili1oB00oAWgIR0B/KFlJ6IFedX2UKGgGR0BV+PLTx5LRaAdN6ANoCEdAfyh+4b0e2nV9lChoBkdAcIVFuNxVAGgHTTkBaAhHQH9NIFqzqr11fZQoaAZHQHJC4jKPn0VoB00ZAWgIR0B/TTIp6QeWdX2UKGgGR0BxlsWO6unuaAdNEAFoCEdAf07b6xgRb3V9lChoBkdAclZyKvV3EGgHTQYBaAhHQH9P+aBqbjN1fZQoaAZHQHBBZ4KQaJhoB01yAWgIR0B/UHrD63y7dX2UKGgGR0Bw6F0uDjBEaAdNNQFoCEdAf1C2phnanXV9lChoBkdAcSCWGyon8mgHS+1oCEdAf1FBZZB9kXV9lChoBkdAcctC+De0omgHTQoBaAhHQH9RtVmz0H11fZQoaAZHQG/EAPmPo3doB02VAWgIR0B/UvssxwhodX2UKGgGR0BxS78VHnU2aAdNDgFoCEdAf1MyEL6UJXV9lChoBkdAcKrk/KQq7WgHTQQBaAhHQH9T6l54W1t1fZQoaAZHQHCZS2H+IdloB00WAWgIR0B/VE8lolD4dX2UKGgGR0Bvpuz8gpz+aAdNGAFoCEdAf1eiWE9MbnV9lChoBkdAcitzBhx5s2gHTSIBaAhHQH9X/6j32251fZQoaAZHQHASnTZxrBVoB000AWgIR0B/WFTn7pFDdX2UKGgGR0BR0Kp97WupaAdLyGgIR0B/WTakAPupdX2UKGgGR0BuarEzfrKOaAdNtQFoCEdAf1lxGDtgKHV9lChoBkdAcSbUkv9LpWgHS/doCEdAf1n5/9YOlXV9lChoBkdASaODYh+vyWgHS91oCEdAf1vsunMt9XV9lChoBkdActNOYYzi0mgHS+toCEdAf1vsSkCV8nV9lChoBkdAb5OvduYQa2gHTQMBaAhHQH9cq0hNdqt1fZQoaAZHQHA3XAmAskJoB004AWgIR0B/XP6Eal1sdX2UKGgGR0BzKow35vcaaAdNTgFoCEdAf2DdYW+GoXV9lChoBkdAcDASTyJ9A2gHTSMBaAhHQH9hJ9JBgNR1fZQoaAZHQHBLHI6r/85oB00UAWgIR0B/Yat8uzyCdX2UKGgGR0BxzzhS9/SZaAdNUgFoCEdAf2IUjcEeQ3V9lChoBkdAceU0xM36ymgHTT0BaAhHQH9iPsiSq2l1fZQoaAZHQHHVyXt0FKVoB01FAWgIR0B/Y5FTefqYdX2UKGgGR0By0rIeYD1XaAdNKAFoCEdAf2XMwDeTFHV9lChoBkdAcO0zD4xk/mgHTScBaAhHQH9mIISlFc91fZQoaAZHQHETQfuCwr1oB00ZAWgIR0B/ZrvPTodNdX2UKGgGR0Bu3RQ1rIo3aAdNNQFoCEdAf2cuejEehnV9lChoBkdAclbl8w5/9mgHTSMBaAhHQH9ncmWt2cJ1fZQoaAZHQHAU/Vy3kPtoB00gAWgIR0B/Z+FlCkXUdX2UKGgGR0Bx7I2cawUyaAdL+2gIR0B/aR9XtBv8dX2UKGgGR0BuEzsfJV81aAdNEwFoCEdAf2kuxrzoU3V9lChoBkdAcu9LNwBHTmgHTR4BaAhHQH9qTP0I1Lt1fZQoaAZHQHLiYegctGxoB006AWgIR0B/atwn6VMVdX2UKGgGR0Bw6fPt2LYPaAdL4GgIR0B/bCBvrGBGdX2UKGgGR0BxPAtyxRl6aAdNCgFoCEdAf21c0tRNy3V9lChoBkdAb1C+NcW0q2gHTREBaAhHQH9t8SXdCVt1fZQoaAZHQHAye/gzguRoB00lAWgIR0B/b/7xd6cBdX2UKGgGR0BxZ0gOjIq9aAdNEQFoCEdAf3BwiJO32HV9lChoBkdAcKhFjNIK+mgHTQQBaAhHQH9yJCBwuNB1fZQoaAZHQHMW4HkcS5BoB0v4aAhHQH9zYDTz/ZN1fZQoaAZHQHMHE/KQq7RoB00UAWgIR0B/c3FMqSX/dX2UKGgGR0BwBKwr1/UfaAdNDQFoCEdAf3O5uZThpHV9lChoBkdAb8narWAf+2gHTSQBaAhHQH91huTA31l1fZQoaAZHQHC6s+mm+CdoB00OAWgIR0B/dvMjeKsNdX2UKGgGR0BtqwClrM1TaAdNQAFoCEdAf3gdP+GXX3V9lChoBkdAcnRWgvlEJGgHTREBaAhHQH94pQk5ZKZ1fZQoaAZHQHBuzIBBAwBoB00RAWgIR0B/eUVgx8D0dX2UKGgGR0BydoxxkupTaAdNGwFoCEdAf3stygf2b3V9lChoBkdAcElExIre7GgHTWUBaAhHQH97fqoqCpZ1fZQoaAZHQHAQ4RmK64FoB00MAWgIR0B/e8Sg5BC2dX2UKGgGR0Bw0hBiTdLyaAdNBgJoCEdAf3wYZEUj9nV9lChoBkdAcXp1bqyGBWgHTRwBaAhHQH986YJE6T51ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV/QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgLjAJpOJSJiIeUUpQoSwNoD05OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwAIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVS9ob21lL2dlZWtheW1hbi8ubG9jYWwvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjFUvaG9tZS9nZWVrYXltYW4vLmxvY2FsL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwAIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVS9ob21lL2dlZWtheW1hbi8ubG9jYWwvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjFUvaG9tZS9nZWVrYXltYW4vLmxvY2FsL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "system_info": {"OS": "Linux-6.2.0-37-generic-x86_64-with-glibc2.35 # 38~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Thu Nov 2 18:01:13 UTC 2", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.2+cu121", "GPU Enabled": "True", "Numpy": "1.26.2", "Cloudpickle": "3.0.0", "Gymnasium": "0.28.1"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c918aefcd9e7c28b8731379c840cb399da68c3d6e51862d75968b766cdd96d2c
|
3 |
+
size 147297
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f850bf5e950>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f850bf5e9e0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f850bf5ea70>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f850bf5eb00>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f850bf5eb90>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f850bf5ec20>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f850bf5ecb0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f850bf5ed40>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f850bf5edd0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f850bf5ee60>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f850bf5eef0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f850bf5ef80>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f850c3ad4c0>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1015808,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1702758369816936594,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": null,
|
33 |
+
"_last_episode_starts": {
|
34 |
+
":type:": "<class 'numpy.ndarray'>",
|
35 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
36 |
+
},
|
37 |
+
"_last_original_obs": null,
|
38 |
+
"_episode_num": 0,
|
39 |
+
"use_sde": false,
|
40 |
+
"sde_sample_freq": -1,
|
41 |
+
"_current_progress_remaining": -0.015808000000000044,
|
42 |
+
"_stats_window_size": 100,
|
43 |
+
"ep_info_buffer": {
|
44 |
+
":type:": "<class 'collections.deque'>",
|
45 |
+
":serialized:": "gAWVMwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHBoy2H+IdmMAWyUTS8BjAF0lEdAfwJqVhTfi3V9lChoBkdAcecjH4oJA2gHTQkBaAhHQH8DeiN83Mp1fZQoaAZHQHFfNaQmu1ZoB00MAWgIR0B/BE4aP0ZndX2UKGgGR0BvMIFPi1iOaAdNQAFoCEdAfwVSJj2Ba3V9lChoBkdAcVEvegte2WgHTQQBaAhHQH8FqhcqvvB1fZQoaAZHQHGuE1VHWjJoB00dAWgIR0B/BoGqxTsIdX2UKGgGR0Bx6HSncclxaAdNAwFoCEdAfwdc580DU3V9lChoBkdAcdtzGPxQSGgHTVMBaAhHQH8ITP8hs691fZQoaAZHQHF4FW4mTkhoB00YAWgIR0B/CJxp+MIedX2UKGgGR0Bw+/QmeDnOaAdNPwFoCEdAfwuF2V3Ux3V9lChoBkdAcWtXcQAdXGgHTQUBaAhHQH8L6BAfMfR1fZQoaAZHQHDQ4JVsDW9oB00LAWgIR0B/Db+glF+edX2UKGgGR0BxpAPMB6rvaAdL/GgIR0B/DuIFeOXFdX2UKGgGR0By1Y5q/M4caAdNNgFoCEdAfw7zoUzsQnV9lChoBkdAbbRolD4QBmgHS/VoCEdAfw9A3kxREXV9lChoBkdAcDZpAlfJFWgHS+FoCEdAfxCiONo8IXV9lChoBkdAccre0ojOcGgHTSsBaAhHQH8S3jENvwV1fZQoaAZHQHDc4NEw35xoB00vAWgIR0B/E+B8QZn+dX2UKGgGR0BynC4J/oaDaAdNgQFoCEdAfxP81XNkfHV9lChoBkdAcpMSn+AEuGgHTTQBaAhHQH8VRtP557h1fZQoaAZHQHEyt5t3wCtoB00sAWgIR0B/FaGh24d7dX2UKGgGR0BxZmo0hvBKaAdNDQFoCEdAfxXIBzV+Z3V9lChoBkdAcJxvEjxCpmgHTRABaAhHQH8WMiB5HEx1fZQoaAZHQHJKmCEpRXRoB01DAWgIR0B/F3K8tf5UdX2UKGgGR0AugTYdyT6jaAdLyWgIR0B/F9O8CgbqdX2UKGgGR0BxlqiYb83uaAdL92gIR0B/GDZYgaFVdX2UKGgGR0BxdFrGipNsaAdNFwFoCEdAfxlJokAxSHV9lChoBkdAcgqEMLF4s2gHS/NoCEdAfxy7rLQokXV9lChoBkdAcbFPIn0CimgHTRgBaAhHQH8c3O8kD6p1fZQoaAZHQHBou2mYSg5oB00kAWgIR0B/HXVawD/3dX2UKGgGR0BwzXLq2SdOaAdNMwFoCEdAfx6aWX1J2HV9lChoBkdAbWCDgZTAFmgHTQkBaAhHQH8gJVjqfOF1fZQoaAZHQHHm/OdGy5ZoB0v8aAhHQH8ghG+bmU51fZQoaAZHQHAB2OAAhjhoB0v+aAhHQH8h9ELH+611fZQoaAZHQHKcmYBvJiloB00AAWgIR0B/IpiYsunNdX2UKGgGR0Bw+95D7ZWaaAdNNQFoCEdAfyNcNH6MznV9lChoBkdAcQgUn5SFXmgHS/9oCEdAfyReBg/kenV9lChoBkdAcaM8wYcebWgHTSsBaAhHQH8koXGff411fZQoaAZHQHEewGB4D9xoB00wAWgIR0B/JXp2U0N0dX2UKGgGR0Bx4AH3UQTVaAdNDgFoCEdAfyXj8DSw4nV9lChoBkdAbhfKNAC4jWgHTT0BaAhHQH8nz544ZMt1fZQoaAZHQHC4Cvkili1oB00oAWgIR0B/KFlJ6IFedX2UKGgGR0BV+PLTx5LRaAdN6ANoCEdAfyh+4b0e2nV9lChoBkdAcIVFuNxVAGgHTTkBaAhHQH9NIFqzqr11fZQoaAZHQHJC4jKPn0VoB00ZAWgIR0B/TTIp6QeWdX2UKGgGR0BxlsWO6unuaAdNEAFoCEdAf07b6xgRb3V9lChoBkdAclZyKvV3EGgHTQYBaAhHQH9P+aBqbjN1fZQoaAZHQHBBZ4KQaJhoB01yAWgIR0B/UHrD63y7dX2UKGgGR0Bw6F0uDjBEaAdNNQFoCEdAf1C2phnanXV9lChoBkdAcSCWGyon8mgHS+1oCEdAf1FBZZB9kXV9lChoBkdAcctC+De0omgHTQoBaAhHQH9RtVmz0H11fZQoaAZHQG/EAPmPo3doB02VAWgIR0B/UvssxwhodX2UKGgGR0BxS78VHnU2aAdNDgFoCEdAf1MyEL6UJXV9lChoBkdAcKrk/KQq7WgHTQQBaAhHQH9T6l54W1t1fZQoaAZHQHCZS2H+IdloB00WAWgIR0B/VE8lolD4dX2UKGgGR0Bvpuz8gpz+aAdNGAFoCEdAf1eiWE9MbnV9lChoBkdAcitzBhx5s2gHTSIBaAhHQH9X/6j32251fZQoaAZHQHASnTZxrBVoB000AWgIR0B/WFTn7pFDdX2UKGgGR0BR0Kp97WupaAdLyGgIR0B/WTakAPupdX2UKGgGR0BuarEzfrKOaAdNtQFoCEdAf1lxGDtgKHV9lChoBkdAcSbUkv9LpWgHS/doCEdAf1n5/9YOlXV9lChoBkdASaODYh+vyWgHS91oCEdAf1vsunMt9XV9lChoBkdActNOYYzi0mgHS+toCEdAf1vsSkCV8nV9lChoBkdAb5OvduYQa2gHTQMBaAhHQH9cq0hNdqt1fZQoaAZHQHA3XAmAskJoB004AWgIR0B/XP6Eal1sdX2UKGgGR0BzKow35vcaaAdNTgFoCEdAf2DdYW+GoXV9lChoBkdAcDASTyJ9A2gHTSMBaAhHQH9hJ9JBgNR1fZQoaAZHQHBLHI6r/85oB00UAWgIR0B/Yat8uzyCdX2UKGgGR0BxzzhS9/SZaAdNUgFoCEdAf2IUjcEeQ3V9lChoBkdAceU0xM36ymgHTT0BaAhHQH9iPsiSq2l1fZQoaAZHQHHVyXt0FKVoB01FAWgIR0B/Y5FTefqYdX2UKGgGR0By0rIeYD1XaAdNKAFoCEdAf2XMwDeTFHV9lChoBkdAcO0zD4xk/mgHTScBaAhHQH9mIISlFc91fZQoaAZHQHETQfuCwr1oB00ZAWgIR0B/ZrvPTodNdX2UKGgGR0Bu3RQ1rIo3aAdNNQFoCEdAf2cuejEehnV9lChoBkdAclbl8w5/9mgHTSMBaAhHQH9ncmWt2cJ1fZQoaAZHQHAU/Vy3kPtoB00gAWgIR0B/Z+FlCkXUdX2UKGgGR0Bx7I2cawUyaAdL+2gIR0B/aR9XtBv8dX2UKGgGR0BuEzsfJV81aAdNEwFoCEdAf2kuxrzoU3V9lChoBkdAcu9LNwBHTmgHTR4BaAhHQH9qTP0I1Lt1fZQoaAZHQHLiYegctGxoB006AWgIR0B/atwn6VMVdX2UKGgGR0Bw6fPt2LYPaAdL4GgIR0B/bCBvrGBGdX2UKGgGR0BxPAtyxRl6aAdNCgFoCEdAf21c0tRNy3V9lChoBkdAb1C+NcW0q2gHTREBaAhHQH9t8SXdCVt1fZQoaAZHQHAye/gzguRoB00lAWgIR0B/b/7xd6cBdX2UKGgGR0BxZ0gOjIq9aAdNEQFoCEdAf3BwiJO32HV9lChoBkdAcKhFjNIK+mgHTQQBaAhHQH9yJCBwuNB1fZQoaAZHQHMW4HkcS5BoB0v4aAhHQH9zYDTz/ZN1fZQoaAZHQHMHE/KQq7RoB00UAWgIR0B/c3FMqSX/dX2UKGgGR0BwBKwr1/UfaAdNDQFoCEdAf3O5uZThpHV9lChoBkdAb8narWAf+2gHTSQBaAhHQH91huTA31l1fZQoaAZHQHC6s+mm+CdoB00OAWgIR0B/dvMjeKsNdX2UKGgGR0BtqwClrM1TaAdNQAFoCEdAf3gdP+GXX3V9lChoBkdAcnRWgvlEJGgHTREBaAhHQH94pQk5ZKZ1fZQoaAZHQHBuzIBBAwBoB00RAWgIR0B/eUVgx8D0dX2UKGgGR0BydoxxkupTaAdNGwFoCEdAf3stygf2b3V9lChoBkdAcElExIre7GgHTWUBaAhHQH97fqoqCpZ1fZQoaAZHQHAQ4RmK64FoB00MAWgIR0B/e8Sg5BC2dX2UKGgGR0Bw0hBiTdLyaAdNBgJoCEdAf3wYZEUj9nV9lChoBkdAcXp1bqyGBWgHTRwBaAhHQH986YJE6T51ZS4="
|
46 |
+
},
|
47 |
+
"ep_success_buffer": {
|
48 |
+
":type:": "<class 'collections.deque'>",
|
49 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
50 |
+
},
|
51 |
+
"_n_updates": 248,
|
52 |
+
"observation_space": {
|
53 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
54 |
+
":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
55 |
+
"dtype": "float32",
|
56 |
+
"bounded_below": "[ True True True True True True True True]",
|
57 |
+
"bounded_above": "[ True True True True True True True True]",
|
58 |
+
"_shape": [
|
59 |
+
8
|
60 |
+
],
|
61 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
62 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
63 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
64 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
65 |
+
"_np_random": null
|
66 |
+
},
|
67 |
+
"action_space": {
|
68 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
69 |
+
":serialized:": "gAWV/QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgLjAJpOJSJiIeUUpQoSwNoD05OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
70 |
+
"n": "4",
|
71 |
+
"start": "0",
|
72 |
+
"_shape": [],
|
73 |
+
"dtype": "int64",
|
74 |
+
"_np_random": null
|
75 |
+
},
|
76 |
+
"n_envs": 1,
|
77 |
+
"n_steps": 1024,
|
78 |
+
"gamma": 0.999,
|
79 |
+
"gae_lambda": 0.98,
|
80 |
+
"ent_coef": 0.01,
|
81 |
+
"vf_coef": 0.5,
|
82 |
+
"max_grad_norm": 0.5,
|
83 |
+
"batch_size": 64,
|
84 |
+
"n_epochs": 4,
|
85 |
+
"clip_range": {
|
86 |
+
":type:": "<class 'function'>",
|
87 |
+
":serialized:": "gAWVwAIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVS9ob21lL2dlZWtheW1hbi8ubG9jYWwvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjFUvaG9tZS9nZWVrYXltYW4vLmxvY2FsL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
88 |
+
},
|
89 |
+
"clip_range_vf": null,
|
90 |
+
"normalize_advantage": true,
|
91 |
+
"target_kl": null,
|
92 |
+
"lr_schedule": {
|
93 |
+
":type:": "<class 'function'>",
|
94 |
+
":serialized:": "gAWVwAIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVS9ob21lL2dlZWtheW1hbi8ubG9jYWwvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjFUvaG9tZS9nZWVrYXltYW4vLmxvY2FsL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
95 |
+
}
|
96 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5482e6a65a6add20c0d1264d992343a870c78bec5fe6863f51d5b070929f5966
|
3 |
+
size 88490
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ed27931d73f86f99583a07bc7312d0a7c4f5ceae21a1a74d6582a3a3c9626f1c
|
3 |
+
size 43762
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
|
3 |
+
size 864
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-6.2.0-37-generic-x86_64-with-glibc2.35 # 38~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Thu Nov 2 18:01:13 UTC 2
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.1.2+cu121
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.26.2
|
7 |
+
- Cloudpickle: 3.0.0
|
8 |
+
- Gymnasium: 0.28.1
|
replay.mp4
ADDED
Binary file (153 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 268.3524042706354, "std_reward": 22.01839170889994, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-12-17T02:07:00.391384"}
|