{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7c11379f7520>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7c11379f75b0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7c11379f7640>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7c11379f76d0>", "_build": "<function ActorCriticPolicy._build at 0x7c11379f7760>", "forward": "<function ActorCriticPolicy.forward at 0x7c11379f77f0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7c11379f7880>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7c11379f7910>", "_predict": "<function ActorCriticPolicy._predict at 0x7c11379f79a0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7c11379f7a30>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7c11379f7ac0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7c11379f7b50>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7c11379e3040>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1692642916229086175, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAAovsz6B+CU/U8r3vQPZg760Acc9sak4vQAAAAAAAAAAM733vH+oYD7oqf082lWGvou+7Tq4ASa9AAAAAAAAAABmMJK8wWdRPmuIi7wZzW++iFuzPCKDUT0AAAAAAAAAALPYaL2bXYy8inMXvl8sQb6V71U9Ji4SPwAAgD8AAIA/AmKWvu5ohT920bC9MqGfvsDGir4OA588AAAAAAAAAACWC4K+ZUV8PxAj3r61nkO+WJuOvlXu270AAAAAAAAAABA5jL4v6cU+BW98Pm/Pi75KhZi8ekrKPAAAAAAAAAAAJt+7PU/UJ7yC1wu92jyIPcyOkb3AZk48AACAPwAAAAAzU0E+OdblPvV3Tb465CW+45HEuiM+xL0AAAAAAAAAABrhB75BK5E9GvARPBY5ab5N93e9MtFLvQAAAAAAAAAAs7laPfJVaz9TPhQ8FKxGvsiTYbywth48AAAAAAAAAAAAEwC9FOCounbkNzkTV1M05JuMOvZMU7gAAIA/AACAP/PD3736VbA/6To+vlLKpr7PSh++HezXvQAAAAAAAAAAze8+PVRom7wlT1q9bdAJvYu0DT7LM9s9AACAPwAAgD8m4sw94RSdur4yIDq5Jem1dylkO86iNrkAAIA/AACAPw14Sr6P5A8/mK4SPsK2Vr799g+9akr7OgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQFEH4SpR4yKMAWyUTegDjAF0lEdAlLRx/d69kHV9lChoBkdAcdDUmUnogWgHTTsBaAhHQJS1vxFy7wt1fZQoaAZHQGz8ON5t3wFoB01TAWgIR0CUtqY51eSkdX2UKGgGR0BxR1pfx+a0aAdNNwFoCEdAlLdztoi9qXV9lChoBkdAcjBD0lJHy2gHTTMBaAhHQJS3j82rGR51fZQoaAZHQHFOcEA5q/NoB001AWgIR0CUt+dWyTpxdX2UKGgGR0BH2+tr9EThaAdNEwFoCEdAlLfwaWHDaXV9lChoBkdAcow+Jxeb/mgHTTgBaAhHQJS4MVoHs1N1fZQoaAZHQHCQLK/20zFoB00kAWgIR0CUuKDyvs7ddX2UKGgGR0ByEFOoHcDbaAdNIgFoCEdAlLkkcfeUIXV9lChoBkdAbqFMpw0fo2gHTR0BaAhHQJS5LKlpGnZ1fZQoaAZHQHJvKH9FWn1oB01FAWgIR0CUuqqJuVHGdX2UKGgGR0BtNLY/Vy3kaAdNJAFoCEdAlLuA1Nxlx3V9lChoBkdAcjG8ox59mmgHTRkBaAhHQJS8NHXmNip1fZQoaAZHQHFFkL2HtWxoB01OAWgIR0CUvOxEv0yydX2UKGgGR0BwGNr433pOaAdNPwFoCEdAlL6kF8ohIXV9lChoBkdAcYfzPa+N+GgHTR4BaAhHQJS/eLNwBHV1fZQoaAZHQHDr6HTI/7loB01WAWgIR0CUwD8x9G7SdX2UKGgGR0BrLxV+7UXpaAdNNAFoCEdAlMFg2Q4jr3V9lChoBkdAcRDdAPd2xWgHTScBaAhHQJTB0WAPNFB1fZQoaAZHQHAtU8NhE0BoB00vAWgIR0CUwgdTHbRGdX2UKGgGR0BsociQkonbaAdNRwFoCEdAlMN1hG6PKnV9lChoBkdAbzVaIN3GGWgHTToBaAhHQJTFc+C9RJp1fZQoaAZHQHFv6FRHf/FoB01OAWgIR0CUxYEL6UJOdX2UKGgGR0BstPVLBbfQaAdNbwFoCEdAlMYlq8DjinV9lChoBkdAceY8q4H5amgHTS0BaAhHQJTG34O+ZgJ1fZQoaAZHQGv0h5ooNNJoB01jAWgIR0CUxuckMTewdX2UKGgGR0ByCyY5T6zmaAdNlAFoCEdAlMcg75mAb3V9lChoBkdAcC1yvs7dSGgHTWwBaAhHQJTKBG/etS11fZQoaAZHQG2S9JSR8txoB01DAWgIR0CUyhTJyQxOdX2UKGgGR0Bwteb4Ju2raAdNXwFoCEdAlMpaAOJ+D3V9lChoBkdAcAmfCyhSL2gHTS4BaAhHQJTK7jfek591fZQoaAZHQG+daePJaJRoB00nAWgIR0CUy179ycTbdX2UKGgGR0BrQW3lS0jUaAdNOQFoCEdAlMyUGNaQm3V9lChoBkdAcEWxgAp8W2gHTTYBaAhHQJTNZJpWV/t1fZQoaAZHQHG59+PRzBBoB00zAWgIR0CUzaradtl7dX2UKGgGR0BxZSaz/p+uaAdNWgFoCEdAlM9tuHerMnV9lChoBkdAcY8avzOHFmgHTT4BaAhHQJTQBWKdhAp1fZQoaAZHQG97QFcIJJJoB00nAWgIR0CU0FuxrzoVdX2UKGgGR0Bw5r7aZhKEaAdNQAFoCEdAlNG2SdOIqXV9lChoBkdAcGlqOLiuMmgHTScBaAhHQJTSYOI68xt1fZQoaAZHQHFH1QhwEQpoB00rAWgIR0CU0vR4yGi6dX2UKGgGR0BscJ9NN8E3aAdNcQFoCEdAlNUcibDuSnV9lChoBkdAcbzaTwDvE2gHTWEBaAhHQJTVY0waisZ1fZQoaAZHQG+5g/s3Q2NoB00qAWgIR0CU1v5tFa0QdX2UKGgGR0Bt32l2vB8AaAdNPwFoCEdAlNgmReTmn3V9lChoBkdAbR6n752yLWgHTVEBaAhHQJTZjRNRFZx1fZQoaAZHQG1UC3XqZ+hoB01SAWgIR0CU2ne1a4c4dX2UKGgGR0BtP0C3gDRuaAdNSAFoCEdAlNqsFY+0PnV9lChoBkdAcFJo6jnFHmgHTSMBaAhHQJTarKPn0TV1fZQoaAZHQHAXkDU3GXJoB00+AWgIR0CU8Dv0AcT8dX2UKGgGR0BsmA2S+xnnaAdNWAFoCEdAlPGI7muDBnV9lChoBkdAcEm9zfaYeGgHTS0BaAhHQJTxk8HObAl1fZQoaAZHQCoKCDmKZUloB00NAWgIR0CU8eRSP2f1dX2UKGgGR0BwGzR9gF5faAdNRQFoCEdAlPK2mUGFBnV9lChoBkdAcBgOzIFNcmgHTU8BaAhHQJTzSpsGgSR1fZQoaAZHQDAwzabnX/ZoB0v/aAhHQJTzwXgtOEd1fZQoaAZHQG9s36ZYxL1oB01IAWgIR0CU9HZ9NN8FdX2UKGgGR0Bv+6sySFGoaAdNZgFoCEdAlPYF9F4LTnV9lChoBkdAcGaOYplSTGgHTUUBaAhHQJT2jMwDeTF1fZQoaAZHQHGTZi7TUiJoB00eAWgIR0CU9yan752ydX2UKGgGR0Bx9mCNCJGfaAdNUAFoCEdAlPgoDTz/ZXV9lChoBkdAcGjnxri2lWgHTRsBaAhHQJT4u2BreqJ1fZQoaAZHQGs2orWiDdxoB01EAWgIR0CU+jwxnFo+dX2UKGgGR0BuZzNpudf+aAdNVwFoCEdAlPrJbD/EO3V9lChoBkdAcULs3yZrpWgHTU8BaAhHQJT8lsLv1Dl1fZQoaAZHQHHvrWmP5pJoB02iAWgIR0CU/Q287IT5dX2UKGgGR0BxrdSQ5myxaAdNRAFoCEdAlP2H3+MqBnV9lChoBkdAcX0UgB91EGgHTT4BaAhHQJT/T9WIXTF1fZQoaAZHQG2i9W6shgVoB01WAWgIR0CU/6nkDIRzdX2UKGgGR0Bvtp9XtBv8aAdNgAFoCEdAlQADgdfb9XV9lChoBkdAcn57PppvgmgHTXYBaAhHQJT//4tYjjd1fZQoaAZHQHB2BcVxjrloB00VAWgIR0CVAJVn27FsdX2UKGgGR0BxVxv/BFd+aAdNRAFoCEdAlQC/luFYdXV9lChoBkdAb10OTaCcw2gHTXABaAhHQJUBh3LV4HJ1fZQoaAZHQHHGnuy/sVtoB003AWgIR0CVAqnJT2nLdX2UKGgGR0ByMjf642CNaAdNYQFoCEdAlQN/jS5RTHV9lChoBkdAcYNwFTvRZ2gHTTABaAhHQJUD5C5VfeF1fZQoaAZHQG8aResxO+JoB00XAWgIR0CVBG6J66atdX2UKGgGR0Bwzm+nIhhZaAdNVAFoCEdAlQSHfdhy83V9lChoBkdAGWe7cwg1WWgHTQEBaAhHQJUGYeDFqBV1fZQoaAZHQHCPNfkWAPNoB01XAWgIR0CVBwTP0I1MdX2UKGgGR0BxnTL/0dzXaAdNMgFoCEdAlQdVgpjMFHV9lChoBkdAbpo5T6zmfWgHTUwBaAhHQJUIwOz6ab51fZQoaAZHQGs/euvECNloB00pAWgIR0CVCZa3I+4cdX2UKGgGR0BuAcNc4YJmaAdNJgFoCEdAlQrGXTmW+3V9lChoBkdAbynKq4pc5mgHTUIBaAhHQJULNrpJPIp1fZQoaAZHQHCqtvfj0cxoB01OAWgIR0CVC7lum78OdX2UKGgGR0Bxn+xNZeRgaAdNXQFoCEdAlQv5aJQ+EHV9lChoBkdAcNEvKU3XI2gHTVgBaAhHQJUM7fIjnmt1fZQoaAZHQHJHySV4X41oB01CAWgIR0CVDQePq9oOdX2UKGgGR0Bwpe2c8TzvaAdNNAFoCEdAlQ3Lmp2lmHV9lChoBkdAbsGtp22Xs2gHTUcBaAhHQJUQHuE25x11fZQoaAZHQGwT6oddVvNoB01BAWgIR0CVEG0U47zTdX2UKGgGR0BuJQ95hSccaAdNNgFoCEdAlRCwrMC9y3V9lChoBkdAcQ88rqdH2GgHTTUBaAhHQJUQ0BaLXMB1fZQoaAZHQHCbWLYPGyZoB00eAWgIR0CVE87dznzQdX2UKGgGR0BuQU+A3DNyaAdNRgFoCEdAlRSKjJuEVXV9lChoBkdAbVFMY/FBIGgHTUQBaAhHQJUVTLr5ZbJ1fZQoaAZHQHCkiUxEfDFoB00aAWgIR0CVFYiJO32FdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}} |