ayut commited on
Commit
7759b72
1 Parent(s): 3f5a244

baseline PPO agent for LunarLander-v2

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 276.98 +/- 17.93
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f7fce7135e0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f7fce713670>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f7fce713700>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f7fce713790>", "_build": "<function ActorCriticPolicy._build at 0x7f7fce713820>", "forward": "<function ActorCriticPolicy.forward at 0x7f7fce7138b0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f7fce713940>", "_predict": "<function ActorCriticPolicy._predict at 0x7f7fce7139d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f7fce713a60>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f7fce713af0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f7fce713b80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f7fce709e40>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1670493645458117024, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAACoYj19rp4/gKtrPVdnpL6FATE+mn4wPgAAAAAAAAAAzcC2vEE+gT2dPJW9D/V6vg2TNL0N7wO9AAAAAAAAAABaNLy9KlzUPmvRqD1GDHi+lK/CPBZZ3z0AAAAAAAAAAKZal732dCu6NhExtd7epC+AaQ66vbpUNAAAgD8AAIA/Gj8ivcsvxD0Bp8Q8MFR6vt+2Vb1CZIG9AAAAAAAAAACg+Bw+JCyqP1L79j5MCJK+2VebPj7swj4AAAAAAAAAAGbQA7w9NB27OgW0uUBJsDv1T108MyGovAAAgD8AAIA/trpovvP6Az8We+E+D/Z6vvrt9L0KIIg+AAAAAAAAAABmlj07EZSOPVLJR71kW4C+4VPbvLIWobwAAAAAAAAAAI33IT4zUxU/xygtvoV3t77TIUw9JN8TvQAAAAAAAAAAza/RvK4ZprreCCE1VVo6MLZbEro63Ga0AACAPwAAgD/NwgW+kqKkPocutT1fVCG+meE+PeONvj0AAAAAAAAAALMYZD0ALYo+a/eIvEl3Tb7KOKS7s+LvPAAAAAAAAAAAmufAvB3EAz4ya7S8ld98vim6I73yM5G8AAAAAAAAAACaGXq79kxxum0LN7SCk0Svslazuj39sDMAAIA/AACAP5MqI76T1U8/rgc6PSRVnr5SoQ++1lxlPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVeRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI+Ddorz5gUMCUhpRSlIwBbJRLe4wBdJRHQJKk/+AEt/Z1fZQoaAZoCWgPQwj4cMlxJ6hyQJSGlFKUaBVNIwFoFkdAkqYs/dIoVnV9lChoBmgJaA9DCH6K48DrH3NAlIaUUpRoFU0pAWgWR0CSpoj+rELqdX2UKGgGaAloD0MIAtnr3V+HckCUhpRSlGgVTTYBaBZHQJKm5Hf/FR51fZQoaAZoCWgPQwjjVGthlmpxQJSGlFKUaBVNYQFoFkdAkqfcpkPMCHV9lChoBmgJaA9DCLwkzoooUnFAlIaUUpRoFU28A2gWR0CSqOp+tr9EdX2UKGgGaAloD0MIcR3jigtsckCUhpRSlGgVTS8BaBZHQJKo6kbgjyF1fZQoaAZoCWgPQwifHXBd8RxwQJSGlFKUaBVNOgFoFkdAkqkm0eEIxHV9lChoBmgJaA9DCOgtHt5z1G9AlIaUUpRoFU0oAWgWR0CSqzFDOTq0dX2UKGgGaAloD0MICmZMwdrXckCUhpRSlGgVTaoBaBZHQJKrVSpBHCp1fZQoaAZoCWgPQwh/9bhvNbduQJSGlFKUaBVNSgFoFkdAkqvR5xBE8nV9lChoBmgJaA9DCNdMvtkmgXJAlIaUUpRoFU22AWgWR0CSrNQbdadMdX2UKGgGaAloD0MIMhzPZ4ACcUCUhpRSlGgVTSgBaBZHQJKs3ps41gp1fZQoaAZoCWgPQwg51O/CFvpwQJSGlFKUaBVNWQFoFkdAkq0x/NJOFnV9lChoBmgJaA9DCHYYk/4e4nBAlIaUUpRoFU0kAWgWR0CSrnDCP6sRdX2UKGgGaAloD0MIe9tMhbjfcECUhpRSlGgVTSoBaBZHQJKumy/sVtZ1fZQoaAZoCWgPQwgOvjCZ6m1zQJSGlFKUaBVNewFoFkdAkq6ojKPn0XV9lChoBmgJaA9DCH506srn6m9AlIaUUpRoFU0gAWgWR0CSr7nJkoWpdX2UKGgGaAloD0MI0csollsxcECUhpRSlGgVTRkBaBZHQJKv3fWMCLd1fZQoaAZoCWgPQwgDX9Gtl0lxQJSGlFKUaBVNawFoFkdAkrHJz90ihXV9lChoBmgJaA9DCPImv0Un8HFAlIaUUpRoFU0nAWgWR0CSslr3TNMXdX2UKGgGaAloD0MIsyjsomibbkCUhpRSlGgVTUYBaBZHQJKzcJfICEJ1fZQoaAZoCWgPQwgT7pV5awRwQJSGlFKUaBVNkwFoFkdAkrUjK1XvIHV9lChoBmgJaA9DCIfB/BXyFnFAlIaUUpRoFU0oAWgWR0CStZjcmBvrdX2UKGgGaAloD0MIsrlqnmNHc0CUhpRSlGgVTUEBaBZHQJK1zUONHYp1fZQoaAZoCWgPQwj7ITZYeCdyQJSGlFKUaBVNHgFoFkdAkrZGCqZMMHV9lChoBmgJaA9DCObmG9G9lXJAlIaUUpRoFU0pAWgWR0CStvyMkyDadX2UKGgGaAloD0MI2nIuxdU2cECUhpRSlGgVTaUBaBZHQJK3BfhMrVh1fZQoaAZoCWgPQwjAXIsW4FFwQJSGlFKUaBVNPQFoFkdAkrdHh4t6HHV9lChoBmgJaA9DCFInoInwzHBAlIaUUpRoFU2KAWgWR0CSuC4VRDTjdX2UKGgGaAloD0MI8fRKWUZccUCUhpRSlGgVTQUBaBZHQJK4iEIw/Ph1fZQoaAZoCWgPQwi8WYP3FUNyQJSGlFKUaBVNNgFoFkdAkrjBekYXPHV9lChoBmgJaA9DCN5y9WMTCXFAlIaUUpRoFU08AWgWR0CSuOV+I/JOdX2UKGgGaAloD0MIz9cslw0UcUCUhpRSlGgVTR0BaBZHQJK5DiJfpll1fZQoaAZoCWgPQwgQIEPHDuZvQJSGlFKUaBVNTQFoFkdAkrkoJ3PiUHV9lChoBmgJaA9DCNvf2R79THNAlIaUUpRoFU0aAWgWR0CSur7F85S4dX2UKGgGaAloD0MIhUNv8fDvcUCUhpRSlGgVTSEBaBZHQJK70wfyPMl1fZQoaAZoCWgPQwhcABqlSxBzQJSGlFKUaBVL9WgWR0CSvHEwFkhBdX2UKGgGaAloD0MI/+vctBmSb0CUhpRSlGgVTS0BaBZHQJK9ovduYQd1fZQoaAZoCWgPQwi9NEWAU1FzQJSGlFKUaBVNjwFoFkdAkr3COR1YAHV9lChoBmgJaA9DCB5Td2WXqHJAlIaUUpRoFUv+aBZHQJK98UYbbUR1fZQoaAZoCWgPQwgh6dMquqFwQJSGlFKUaBVL/2gWR0CSv0VC5VfedX2UKGgGaAloD0MIVz7L82DRcUCUhpRSlGgVTUkBaBZHQJK/pHLA57x1fZQoaAZoCWgPQwiDE9GvraJuQJSGlFKUaBVNPAFoFkdAkr/3DWK/EnV9lChoBmgJaA9DCDLp76Vw3HBAlIaUUpRoFU0mAWgWR0CSwQVSn+AFdX2UKGgGaAloD0MIPgYrTvWLckCUhpRSlGgVTYYBaBZHQJLBEIv8IiV1fZQoaAZoCWgPQwhlijkI+gNwQJSGlFKUaBVNFAFoFkdAksE1h1DBuXV9lChoBmgJaA9DCOrpI/CHDmxAlIaUUpRoFU0bAWgWR0CSwUYkVvdedX2UKGgGaAloD0MInN1aJgP+cUCUhpRSlGgVTTIBaBZHQJLBkVJtix51fZQoaAZoCWgPQwiB6h9EsgdvQJSGlFKUaBVNcQFoFkdAksHg+IMz/XV9lChoBmgJaA9DCI1HqYQn2HBAlIaUUpRoFU1JAWgWR0CSwjyVObiIdX2UKGgGaAloD0MIveDTnDyfbkCUhpRSlGgVTTIBaBZHQJLWvcKw6hh1fZQoaAZoCWgPQwgeiCzShC5wQJSGlFKUaBVNCwFoFkdAktdNEG7jDXV9lChoBmgJaA9DCLkcr0B0n29AlIaUUpRoFU0jAWgWR0CS2VnWrfcfdX2UKGgGaAloD0MIgez17o/VcECUhpRSlGgVTTMBaBZHQJLaYbADaGp1fZQoaAZoCWgPQwhgr7DgfnZuQJSGlFKUaBVNAwFoFkdAktqA0j1PFnV9lChoBmgJaA9DCH9rJ0qCQnBAlIaUUpRoFU1HAWgWR0CS2ugGKQ7tdX2UKGgGaAloD0MIjfD2IESdcUCUhpRSlGgVTQABaBZHQJLbyqxTsIF1fZQoaAZoCWgPQwiwOJz51YhuQJSGlFKUaBVNIAFoFkdAktvbXlKbrnV9lChoBmgJaA9DCNsV+mDZk3FAlIaUUpRoFU0BAWgWR0CS3Be+Eh7mdX2UKGgGaAloD0MIQE0tW+tJcUCUhpRSlGgVTQ0BaBZHQJLcPC9AX2x1fZQoaAZoCWgPQwiI2GDhpFVtQJSGlFKUaBVNswFoFkdAktxnVkMCtHV9lChoBmgJaA9DCHMqGQCq/XFAlIaUUpRoFUv2aBZHQJLceoS+QEJ1fZQoaAZoCWgPQwiGAraD0eBwQJSGlFKUaBVNFwFoFkdAktykQf6oEXV9lChoBmgJaA9DCALzkCnfDXFAlIaUUpRoFU1dAWgWR0CS3PJ9iMHbdX2UKGgGaAloD0MId50N+WeObUCUhpRSlGgVTVkBaBZHQJLelPuXu3N1fZQoaAZoCWgPQwik/KTaJ3JsQJSGlFKUaBVNAQFoFkdAkt6bDAJswnV9lChoBmgJaA9DCIsyG2TSmXFAlIaUUpRoFU0+AWgWR0CS4OkRjBl+dX2UKGgGaAloD0MIER0CRwJAckCUhpRSlGgVS/loFkdAkuGbxEv0y3V9lChoBmgJaA9DCIoipG4n0nFAlIaUUpRoFU0RAWgWR0CS4tv8ZUDMdX2UKGgGaAloD0MIARQjSyb/cUCUhpRSlGgVTSwBaBZHQJLjYvRJEpl1fZQoaAZoCWgPQwgHXcKhN19vQJSGlFKUaBVNJQFoFkdAkuS2/ag263V9lChoBmgJaA9DCKPO3ENC+m1AlIaUUpRoFU0PAWgWR0CS5QZMtbs4dX2UKGgGaAloD0MIWRe30QDIbkCUhpRSlGgVTYUBaBZHQJLl8SsbNr11fZQoaAZoCWgPQwgNHNDSVVlwQJSGlFKUaBVNRwFoFkdAkuZu7Dl5nnV9lChoBmgJaA9DCJvmHaeoDnFAlIaUUpRoFU1WAWgWR0CS5re2uxKQdX2UKGgGaAloD0MIK/aX3dMbcUCUhpRSlGgVTUUBaBZHQJLm1pKzzEt1fZQoaAZoCWgPQwgEPdS2IfRwQJSGlFKUaBVNWQFoFkdAkucxT0g8sHV9lChoBmgJaA9DCPp6vma5bm5AlIaUUpRoFU1KAWgWR0CS55DAJswddX2UKGgGaAloD0MIaQHaVjN6bkCUhpRSlGgVTTcBaBZHQJLo8Rvm5lR1fZQoaAZoCWgPQwg4EJIFTKJvQJSGlFKUaBVNNgFoFkdAkujxqXWvsHV9lChoBmgJaA9DCCKnr+drWm9AlIaUUpRoFUv6aBZHQJLpeZ5Rjz91fZQoaAZoCWgPQwjqtG6DGilyQJSGlFKUaBVNuwFoFkdAkuoP95yEMHV9lChoBmgJaA9DCF2pZ0Ho6nBAlIaUUpRoFU0aAWgWR0CS6t9hqj8DdX2UKGgGaAloD0MIoMA7+bQ7cUCUhpRSlGgVTRwBaBZHQJLsSpOvdM11fZQoaAZoCWgPQwhselBQSupwQJSGlFKUaBVNQwFoFkdAku0oMjNY83V9lChoBmgJaA9DCBtHrMWna25AlIaUUpRoFUv+aBZHQJLtYqy4Wk91fZQoaAZoCWgPQwhYkGYs2vBxQJSGlFKUaBVNAgFoFkdAku6/2Cdz4nV9lChoBmgJaA9DCMsPXOWJFXBAlIaUUpRoFU1UAWgWR0CS70lsxfv4dX2UKGgGaAloD0MIXW3F/nImcECUhpRSlGgVTSoBaBZHQJLvtBsyi251fZQoaAZoCWgPQwj+8V61ssZwQJSGlFKUaBVNXAFoFkdAku/L+5vtMXV9lChoBmgJaA9DCCb752lAhHNAlIaUUpRoFU0XAWgWR0CS7+QOnVG1dX2UKGgGaAloD0MIGCKnr2d/b0CUhpRSlGgVTQUBaBZHQJLwwNCqp991fZQoaAZoCWgPQwhtHofBvLpyQJSGlFKUaBVNEgFoFkdAkvEidz4k/3V9lChoBmgJaA9DCD6Skh4GoXJAlIaUUpRoFU16AWgWR0CS8bJk5IYndX2UKGgGaAloD0MIVHB4QYTRckCUhpRSlGgVTQwBaBZHQJLyK4tpVS51fZQoaAZoCWgPQwiTqu0m+GdxQJSGlFKUaBVNLgFoFkdAkvKDJ+2E03V9lChoBmgJaA9DCBU8hVwpGmpAlIaUUpRoFU2tAWgWR0CS8062OQyRdX2UKGgGaAloD0MItiv0wTIeUECUhpRSlGgVTegDaBZHQJLz1MCcPOJ1fZQoaAZoCWgPQwiXNhyWRstwQJSGlFKUaBVNQQFoFkdAkvSAYxcmjXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.15", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2-baseline.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1a0377d93049e30ac627c9529532e299fbdbee36b0d4b9c6325a427332629ccd
3
+ size 147210
ppo-LunarLander-v2-baseline/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.2
ppo-LunarLander-v2-baseline/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f7fce7135e0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f7fce713670>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f7fce713700>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f7fce713790>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f7fce713820>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f7fce7138b0>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f7fce713940>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f7fce7139d0>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f7fce713a60>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f7fce713af0>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f7fce713b80>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f7fce709e40>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 1015808,
46
+ "_total_timesteps": 1000000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1670493645458117024,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAACoYj19rp4/gKtrPVdnpL6FATE+mn4wPgAAAAAAAAAAzcC2vEE+gT2dPJW9D/V6vg2TNL0N7wO9AAAAAAAAAABaNLy9KlzUPmvRqD1GDHi+lK/CPBZZ3z0AAAAAAAAAAKZal732dCu6NhExtd7epC+AaQ66vbpUNAAAgD8AAIA/Gj8ivcsvxD0Bp8Q8MFR6vt+2Vb1CZIG9AAAAAAAAAACg+Bw+JCyqP1L79j5MCJK+2VebPj7swj4AAAAAAAAAAGbQA7w9NB27OgW0uUBJsDv1T108MyGovAAAgD8AAIA/trpovvP6Az8We+E+D/Z6vvrt9L0KIIg+AAAAAAAAAABmlj07EZSOPVLJR71kW4C+4VPbvLIWobwAAAAAAAAAAI33IT4zUxU/xygtvoV3t77TIUw9JN8TvQAAAAAAAAAAza/RvK4ZprreCCE1VVo6MLZbEro63Ga0AACAPwAAgD/NwgW+kqKkPocutT1fVCG+meE+PeONvj0AAAAAAAAAALMYZD0ALYo+a/eIvEl3Tb7KOKS7s+LvPAAAAAAAAAAAmufAvB3EAz4ya7S8ld98vim6I73yM5G8AAAAAAAAAACaGXq79kxxum0LN7SCk0Svslazuj39sDMAAIA/AACAP5MqI76T1U8/rgc6PSRVnr5SoQ++1lxlPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.015808000000000044,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVeRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI+Ddorz5gUMCUhpRSlIwBbJRLe4wBdJRHQJKk/+AEt/Z1fZQoaAZoCWgPQwj4cMlxJ6hyQJSGlFKUaBVNIwFoFkdAkqYs/dIoVnV9lChoBmgJaA9DCH6K48DrH3NAlIaUUpRoFU0pAWgWR0CSpoj+rELqdX2UKGgGaAloD0MIAtnr3V+HckCUhpRSlGgVTTYBaBZHQJKm5Hf/FR51fZQoaAZoCWgPQwjjVGthlmpxQJSGlFKUaBVNYQFoFkdAkqfcpkPMCHV9lChoBmgJaA9DCLwkzoooUnFAlIaUUpRoFU28A2gWR0CSqOp+tr9EdX2UKGgGaAloD0MIcR3jigtsckCUhpRSlGgVTS8BaBZHQJKo6kbgjyF1fZQoaAZoCWgPQwifHXBd8RxwQJSGlFKUaBVNOgFoFkdAkqkm0eEIxHV9lChoBmgJaA9DCOgtHt5z1G9AlIaUUpRoFU0oAWgWR0CSqzFDOTq0dX2UKGgGaAloD0MICmZMwdrXckCUhpRSlGgVTaoBaBZHQJKrVSpBHCp1fZQoaAZoCWgPQwh/9bhvNbduQJSGlFKUaBVNSgFoFkdAkqvR5xBE8nV9lChoBmgJaA9DCNdMvtkmgXJAlIaUUpRoFU22AWgWR0CSrNQbdadMdX2UKGgGaAloD0MIMhzPZ4ACcUCUhpRSlGgVTSgBaBZHQJKs3ps41gp1fZQoaAZoCWgPQwg51O/CFvpwQJSGlFKUaBVNWQFoFkdAkq0x/NJOFnV9lChoBmgJaA9DCHYYk/4e4nBAlIaUUpRoFU0kAWgWR0CSrnDCP6sRdX2UKGgGaAloD0MIe9tMhbjfcECUhpRSlGgVTSoBaBZHQJKumy/sVtZ1fZQoaAZoCWgPQwgOvjCZ6m1zQJSGlFKUaBVNewFoFkdAkq6ojKPn0XV9lChoBmgJaA9DCH506srn6m9AlIaUUpRoFU0gAWgWR0CSr7nJkoWpdX2UKGgGaAloD0MI0csollsxcECUhpRSlGgVTRkBaBZHQJKv3fWMCLd1fZQoaAZoCWgPQwgDX9Gtl0lxQJSGlFKUaBVNawFoFkdAkrHJz90ihXV9lChoBmgJaA9DCPImv0Un8HFAlIaUUpRoFU0nAWgWR0CSslr3TNMXdX2UKGgGaAloD0MIsyjsomibbkCUhpRSlGgVTUYBaBZHQJKzcJfICEJ1fZQoaAZoCWgPQwgT7pV5awRwQJSGlFKUaBVNkwFoFkdAkrUjK1XvIHV9lChoBmgJaA9DCIfB/BXyFnFAlIaUUpRoFU0oAWgWR0CStZjcmBvrdX2UKGgGaAloD0MIsrlqnmNHc0CUhpRSlGgVTUEBaBZHQJK1zUONHYp1fZQoaAZoCWgPQwj7ITZYeCdyQJSGlFKUaBVNHgFoFkdAkrZGCqZMMHV9lChoBmgJaA9DCObmG9G9lXJAlIaUUpRoFU0pAWgWR0CStvyMkyDadX2UKGgGaAloD0MI2nIuxdU2cECUhpRSlGgVTaUBaBZHQJK3BfhMrVh1fZQoaAZoCWgPQwjAXIsW4FFwQJSGlFKUaBVNPQFoFkdAkrdHh4t6HHV9lChoBmgJaA9DCFInoInwzHBAlIaUUpRoFU2KAWgWR0CSuC4VRDTjdX2UKGgGaAloD0MI8fRKWUZccUCUhpRSlGgVTQUBaBZHQJK4iEIw/Ph1fZQoaAZoCWgPQwi8WYP3FUNyQJSGlFKUaBVNNgFoFkdAkrjBekYXPHV9lChoBmgJaA9DCN5y9WMTCXFAlIaUUpRoFU08AWgWR0CSuOV+I/JOdX2UKGgGaAloD0MIz9cslw0UcUCUhpRSlGgVTR0BaBZHQJK5DiJfpll1fZQoaAZoCWgPQwgQIEPHDuZvQJSGlFKUaBVNTQFoFkdAkrkoJ3PiUHV9lChoBmgJaA9DCNvf2R79THNAlIaUUpRoFU0aAWgWR0CSur7F85S4dX2UKGgGaAloD0MIhUNv8fDvcUCUhpRSlGgVTSEBaBZHQJK70wfyPMl1fZQoaAZoCWgPQwhcABqlSxBzQJSGlFKUaBVL9WgWR0CSvHEwFkhBdX2UKGgGaAloD0MI/+vctBmSb0CUhpRSlGgVTS0BaBZHQJK9ovduYQd1fZQoaAZoCWgPQwi9NEWAU1FzQJSGlFKUaBVNjwFoFkdAkr3COR1YAHV9lChoBmgJaA9DCB5Td2WXqHJAlIaUUpRoFUv+aBZHQJK98UYbbUR1fZQoaAZoCWgPQwgh6dMquqFwQJSGlFKUaBVL/2gWR0CSv0VC5VfedX2UKGgGaAloD0MIVz7L82DRcUCUhpRSlGgVTUkBaBZHQJK/pHLA57x1fZQoaAZoCWgPQwiDE9GvraJuQJSGlFKUaBVNPAFoFkdAkr/3DWK/EnV9lChoBmgJaA9DCDLp76Vw3HBAlIaUUpRoFU0mAWgWR0CSwQVSn+AFdX2UKGgGaAloD0MIPgYrTvWLckCUhpRSlGgVTYYBaBZHQJLBEIv8IiV1fZQoaAZoCWgPQwhlijkI+gNwQJSGlFKUaBVNFAFoFkdAksE1h1DBuXV9lChoBmgJaA9DCOrpI/CHDmxAlIaUUpRoFU0bAWgWR0CSwUYkVvdedX2UKGgGaAloD0MInN1aJgP+cUCUhpRSlGgVTTIBaBZHQJLBkVJtix51fZQoaAZoCWgPQwiB6h9EsgdvQJSGlFKUaBVNcQFoFkdAksHg+IMz/XV9lChoBmgJaA9DCI1HqYQn2HBAlIaUUpRoFU1JAWgWR0CSwjyVObiIdX2UKGgGaAloD0MIveDTnDyfbkCUhpRSlGgVTTIBaBZHQJLWvcKw6hh1fZQoaAZoCWgPQwgeiCzShC5wQJSGlFKUaBVNCwFoFkdAktdNEG7jDXV9lChoBmgJaA9DCLkcr0B0n29AlIaUUpRoFU0jAWgWR0CS2VnWrfcfdX2UKGgGaAloD0MIgez17o/VcECUhpRSlGgVTTMBaBZHQJLaYbADaGp1fZQoaAZoCWgPQwhgr7DgfnZuQJSGlFKUaBVNAwFoFkdAktqA0j1PFnV9lChoBmgJaA9DCH9rJ0qCQnBAlIaUUpRoFU1HAWgWR0CS2ugGKQ7tdX2UKGgGaAloD0MIjfD2IESdcUCUhpRSlGgVTQABaBZHQJLbyqxTsIF1fZQoaAZoCWgPQwiwOJz51YhuQJSGlFKUaBVNIAFoFkdAktvbXlKbrnV9lChoBmgJaA9DCNsV+mDZk3FAlIaUUpRoFU0BAWgWR0CS3Be+Eh7mdX2UKGgGaAloD0MIQE0tW+tJcUCUhpRSlGgVTQ0BaBZHQJLcPC9AX2x1fZQoaAZoCWgPQwiI2GDhpFVtQJSGlFKUaBVNswFoFkdAktxnVkMCtHV9lChoBmgJaA9DCHMqGQCq/XFAlIaUUpRoFUv2aBZHQJLceoS+QEJ1fZQoaAZoCWgPQwiGAraD0eBwQJSGlFKUaBVNFwFoFkdAktykQf6oEXV9lChoBmgJaA9DCALzkCnfDXFAlIaUUpRoFU1dAWgWR0CS3PJ9iMHbdX2UKGgGaAloD0MId50N+WeObUCUhpRSlGgVTVkBaBZHQJLelPuXu3N1fZQoaAZoCWgPQwik/KTaJ3JsQJSGlFKUaBVNAQFoFkdAkt6bDAJswnV9lChoBmgJaA9DCIsyG2TSmXFAlIaUUpRoFU0+AWgWR0CS4OkRjBl+dX2UKGgGaAloD0MIER0CRwJAckCUhpRSlGgVS/loFkdAkuGbxEv0y3V9lChoBmgJaA9DCIoipG4n0nFAlIaUUpRoFU0RAWgWR0CS4tv8ZUDMdX2UKGgGaAloD0MIARQjSyb/cUCUhpRSlGgVTSwBaBZHQJLjYvRJEpl1fZQoaAZoCWgPQwgHXcKhN19vQJSGlFKUaBVNJQFoFkdAkuS2/ag263V9lChoBmgJaA9DCKPO3ENC+m1AlIaUUpRoFU0PAWgWR0CS5QZMtbs4dX2UKGgGaAloD0MIWRe30QDIbkCUhpRSlGgVTYUBaBZHQJLl8SsbNr11fZQoaAZoCWgPQwgNHNDSVVlwQJSGlFKUaBVNRwFoFkdAkuZu7Dl5nnV9lChoBmgJaA9DCJvmHaeoDnFAlIaUUpRoFU1WAWgWR0CS5re2uxKQdX2UKGgGaAloD0MIK/aX3dMbcUCUhpRSlGgVTUUBaBZHQJLm1pKzzEt1fZQoaAZoCWgPQwgEPdS2IfRwQJSGlFKUaBVNWQFoFkdAkucxT0g8sHV9lChoBmgJaA9DCPp6vma5bm5AlIaUUpRoFU1KAWgWR0CS55DAJswddX2UKGgGaAloD0MIaQHaVjN6bkCUhpRSlGgVTTcBaBZHQJLo8Rvm5lR1fZQoaAZoCWgPQwg4EJIFTKJvQJSGlFKUaBVNNgFoFkdAkujxqXWvsHV9lChoBmgJaA9DCCKnr+drWm9AlIaUUpRoFUv6aBZHQJLpeZ5Rjz91fZQoaAZoCWgPQwjqtG6DGilyQJSGlFKUaBVNuwFoFkdAkuoP95yEMHV9lChoBmgJaA9DCF2pZ0Ho6nBAlIaUUpRoFU0aAWgWR0CS6t9hqj8DdX2UKGgGaAloD0MIoMA7+bQ7cUCUhpRSlGgVTRwBaBZHQJLsSpOvdM11fZQoaAZoCWgPQwhselBQSupwQJSGlFKUaBVNQwFoFkdAku0oMjNY83V9lChoBmgJaA9DCBtHrMWna25AlIaUUpRoFUv+aBZHQJLtYqy4Wk91fZQoaAZoCWgPQwhYkGYs2vBxQJSGlFKUaBVNAgFoFkdAku6/2Cdz4nV9lChoBmgJaA9DCMsPXOWJFXBAlIaUUpRoFU1UAWgWR0CS70lsxfv4dX2UKGgGaAloD0MIXW3F/nImcECUhpRSlGgVTSoBaBZHQJLvtBsyi251fZQoaAZoCWgPQwj+8V61ssZwQJSGlFKUaBVNXAFoFkdAku/L+5vtMXV9lChoBmgJaA9DCCb752lAhHNAlIaUUpRoFU0XAWgWR0CS7+QOnVG1dX2UKGgGaAloD0MIGCKnr2d/b0CUhpRSlGgVTQUBaBZHQJLwwNCqp991fZQoaAZoCWgPQwhtHofBvLpyQJSGlFKUaBVNEgFoFkdAkvEidz4k/3V9lChoBmgJaA9DCD6Skh4GoXJAlIaUUpRoFU16AWgWR0CS8bJk5IYndX2UKGgGaAloD0MIVHB4QYTRckCUhpRSlGgVTQwBaBZHQJLyK4tpVS51fZQoaAZoCWgPQwiTqu0m+GdxQJSGlFKUaBVNLgFoFkdAkvKDJ+2E03V9lChoBmgJaA9DCBU8hVwpGmpAlIaUUpRoFU2tAWgWR0CS8062OQyRdX2UKGgGaAloD0MItiv0wTIeUECUhpRSlGgVTegDaBZHQJLz1MCcPOJ1fZQoaAZoCWgPQwiXNhyWRstwQJSGlFKUaBVNQQFoFkdAkvSAYxcmjXVlLg=="
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 248,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
ppo-LunarLander-v2-baseline/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:79193819b97f5370716fd55dd6c72195d0abea56a9884b92ee61db57336bf6b6
3
+ size 87929
ppo-LunarLander-v2-baseline/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e0437bd77ba02509c6deb1c84aebcc6912f4e09b481b2beb70c9223d873e9319
3
+ size 43201
ppo-LunarLander-v2-baseline/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2-baseline/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022
2
+ Python: 3.8.15
3
+ Stable-Baselines3: 1.6.2
4
+ PyTorch: 1.13.0+cu116
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
Binary file (205 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 276.97978187514633, "std_reward": 17.928928225755957, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-08T10:25:55.904724"}