baseline PPO agent for LunarLander-v2
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2-baseline.zip +3 -0
- ppo-LunarLander-v2-baseline/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2-baseline/data +94 -0
- ppo-LunarLander-v2-baseline/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2-baseline/policy.pth +3 -0
- ppo-LunarLander-v2-baseline/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2-baseline/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 276.98 +/- 17.93
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f7fce7135e0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f7fce713670>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f7fce713700>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f7fce713790>", "_build": "<function ActorCriticPolicy._build at 0x7f7fce713820>", "forward": "<function ActorCriticPolicy.forward at 0x7f7fce7138b0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f7fce713940>", "_predict": "<function ActorCriticPolicy._predict at 0x7f7fce7139d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f7fce713a60>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f7fce713af0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f7fce713b80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f7fce709e40>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1670493645458117024, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAACoYj19rp4/gKtrPVdnpL6FATE+mn4wPgAAAAAAAAAAzcC2vEE+gT2dPJW9D/V6vg2TNL0N7wO9AAAAAAAAAABaNLy9KlzUPmvRqD1GDHi+lK/CPBZZ3z0AAAAAAAAAAKZal732dCu6NhExtd7epC+AaQ66vbpUNAAAgD8AAIA/Gj8ivcsvxD0Bp8Q8MFR6vt+2Vb1CZIG9AAAAAAAAAACg+Bw+JCyqP1L79j5MCJK+2VebPj7swj4AAAAAAAAAAGbQA7w9NB27OgW0uUBJsDv1T108MyGovAAAgD8AAIA/trpovvP6Az8We+E+D/Z6vvrt9L0KIIg+AAAAAAAAAABmlj07EZSOPVLJR71kW4C+4VPbvLIWobwAAAAAAAAAAI33IT4zUxU/xygtvoV3t77TIUw9JN8TvQAAAAAAAAAAza/RvK4ZprreCCE1VVo6MLZbEro63Ga0AACAPwAAgD/NwgW+kqKkPocutT1fVCG+meE+PeONvj0AAAAAAAAAALMYZD0ALYo+a/eIvEl3Tb7KOKS7s+LvPAAAAAAAAAAAmufAvB3EAz4ya7S8ld98vim6I73yM5G8AAAAAAAAAACaGXq79kxxum0LN7SCk0Svslazuj39sDMAAIA/AACAP5MqI76T1U8/rgc6PSRVnr5SoQ++1lxlPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVeRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI+Ddorz5gUMCUhpRSlIwBbJRLe4wBdJRHQJKk/+AEt/Z1fZQoaAZoCWgPQwj4cMlxJ6hyQJSGlFKUaBVNIwFoFkdAkqYs/dIoVnV9lChoBmgJaA9DCH6K48DrH3NAlIaUUpRoFU0pAWgWR0CSpoj+rELqdX2UKGgGaAloD0MIAtnr3V+HckCUhpRSlGgVTTYBaBZHQJKm5Hf/FR51fZQoaAZoCWgPQwjjVGthlmpxQJSGlFKUaBVNYQFoFkdAkqfcpkPMCHV9lChoBmgJaA9DCLwkzoooUnFAlIaUUpRoFU28A2gWR0CSqOp+tr9EdX2UKGgGaAloD0MIcR3jigtsckCUhpRSlGgVTS8BaBZHQJKo6kbgjyF1fZQoaAZoCWgPQwifHXBd8RxwQJSGlFKUaBVNOgFoFkdAkqkm0eEIxHV9lChoBmgJaA9DCOgtHt5z1G9AlIaUUpRoFU0oAWgWR0CSqzFDOTq0dX2UKGgGaAloD0MICmZMwdrXckCUhpRSlGgVTaoBaBZHQJKrVSpBHCp1fZQoaAZoCWgPQwh/9bhvNbduQJSGlFKUaBVNSgFoFkdAkqvR5xBE8nV9lChoBmgJaA9DCNdMvtkmgXJAlIaUUpRoFU22AWgWR0CSrNQbdadMdX2UKGgGaAloD0MIMhzPZ4ACcUCUhpRSlGgVTSgBaBZHQJKs3ps41gp1fZQoaAZoCWgPQwg51O/CFvpwQJSGlFKUaBVNWQFoFkdAkq0x/NJOFnV9lChoBmgJaA9DCHYYk/4e4nBAlIaUUpRoFU0kAWgWR0CSrnDCP6sRdX2UKGgGaAloD0MIe9tMhbjfcECUhpRSlGgVTSoBaBZHQJKumy/sVtZ1fZQoaAZoCWgPQwgOvjCZ6m1zQJSGlFKUaBVNewFoFkdAkq6ojKPn0XV9lChoBmgJaA9DCH506srn6m9AlIaUUpRoFU0gAWgWR0CSr7nJkoWpdX2UKGgGaAloD0MI0csollsxcECUhpRSlGgVTRkBaBZHQJKv3fWMCLd1fZQoaAZoCWgPQwgDX9Gtl0lxQJSGlFKUaBVNawFoFkdAkrHJz90ihXV9lChoBmgJaA9DCPImv0Un8HFAlIaUUpRoFU0nAWgWR0CSslr3TNMXdX2UKGgGaAloD0MIsyjsomibbkCUhpRSlGgVTUYBaBZHQJKzcJfICEJ1fZQoaAZoCWgPQwgT7pV5awRwQJSGlFKUaBVNkwFoFkdAkrUjK1XvIHV9lChoBmgJaA9DCIfB/BXyFnFAlIaUUpRoFU0oAWgWR0CStZjcmBvrdX2UKGgGaAloD0MIsrlqnmNHc0CUhpRSlGgVTUEBaBZHQJK1zUONHYp1fZQoaAZoCWgPQwj7ITZYeCdyQJSGlFKUaBVNHgFoFkdAkrZGCqZMMHV9lChoBmgJaA9DCObmG9G9lXJAlIaUUpRoFU0pAWgWR0CStvyMkyDadX2UKGgGaAloD0MI2nIuxdU2cECUhpRSlGgVTaUBaBZHQJK3BfhMrVh1fZQoaAZoCWgPQwjAXIsW4FFwQJSGlFKUaBVNPQFoFkdAkrdHh4t6HHV9lChoBmgJaA9DCFInoInwzHBAlIaUUpRoFU2KAWgWR0CSuC4VRDTjdX2UKGgGaAloD0MI8fRKWUZccUCUhpRSlGgVTQUBaBZHQJK4iEIw/Ph1fZQoaAZoCWgPQwi8WYP3FUNyQJSGlFKUaBVNNgFoFkdAkrjBekYXPHV9lChoBmgJaA9DCN5y9WMTCXFAlIaUUpRoFU08AWgWR0CSuOV+I/JOdX2UKGgGaAloD0MIz9cslw0UcUCUhpRSlGgVTR0BaBZHQJK5DiJfpll1fZQoaAZoCWgPQwgQIEPHDuZvQJSGlFKUaBVNTQFoFkdAkrkoJ3PiUHV9lChoBmgJaA9DCNvf2R79THNAlIaUUpRoFU0aAWgWR0CSur7F85S4dX2UKGgGaAloD0MIhUNv8fDvcUCUhpRSlGgVTSEBaBZHQJK70wfyPMl1fZQoaAZoCWgPQwhcABqlSxBzQJSGlFKUaBVL9WgWR0CSvHEwFkhBdX2UKGgGaAloD0MI/+vctBmSb0CUhpRSlGgVTS0BaBZHQJK9ovduYQd1fZQoaAZoCWgPQwi9NEWAU1FzQJSGlFKUaBVNjwFoFkdAkr3COR1YAHV9lChoBmgJaA9DCB5Td2WXqHJAlIaUUpRoFUv+aBZHQJK98UYbbUR1fZQoaAZoCWgPQwgh6dMquqFwQJSGlFKUaBVL/2gWR0CSv0VC5VfedX2UKGgGaAloD0MIVz7L82DRcUCUhpRSlGgVTUkBaBZHQJK/pHLA57x1fZQoaAZoCWgPQwiDE9GvraJuQJSGlFKUaBVNPAFoFkdAkr/3DWK/EnV9lChoBmgJaA9DCDLp76Vw3HBAlIaUUpRoFU0mAWgWR0CSwQVSn+AFdX2UKGgGaAloD0MIPgYrTvWLckCUhpRSlGgVTYYBaBZHQJLBEIv8IiV1fZQoaAZoCWgPQwhlijkI+gNwQJSGlFKUaBVNFAFoFkdAksE1h1DBuXV9lChoBmgJaA9DCOrpI/CHDmxAlIaUUpRoFU0bAWgWR0CSwUYkVvdedX2UKGgGaAloD0MInN1aJgP+cUCUhpRSlGgVTTIBaBZHQJLBkVJtix51fZQoaAZoCWgPQwiB6h9EsgdvQJSGlFKUaBVNcQFoFkdAksHg+IMz/XV9lChoBmgJaA9DCI1HqYQn2HBAlIaUUpRoFU1JAWgWR0CSwjyVObiIdX2UKGgGaAloD0MIveDTnDyfbkCUhpRSlGgVTTIBaBZHQJLWvcKw6hh1fZQoaAZoCWgPQwgeiCzShC5wQJSGlFKUaBVNCwFoFkdAktdNEG7jDXV9lChoBmgJaA9DCLkcr0B0n29AlIaUUpRoFU0jAWgWR0CS2VnWrfcfdX2UKGgGaAloD0MIgez17o/VcECUhpRSlGgVTTMBaBZHQJLaYbADaGp1fZQoaAZoCWgPQwhgr7DgfnZuQJSGlFKUaBVNAwFoFkdAktqA0j1PFnV9lChoBmgJaA9DCH9rJ0qCQnBAlIaUUpRoFU1HAWgWR0CS2ugGKQ7tdX2UKGgGaAloD0MIjfD2IESdcUCUhpRSlGgVTQABaBZHQJLbyqxTsIF1fZQoaAZoCWgPQwiwOJz51YhuQJSGlFKUaBVNIAFoFkdAktvbXlKbrnV9lChoBmgJaA9DCNsV+mDZk3FAlIaUUpRoFU0BAWgWR0CS3Be+Eh7mdX2UKGgGaAloD0MIQE0tW+tJcUCUhpRSlGgVTQ0BaBZHQJLcPC9AX2x1fZQoaAZoCWgPQwiI2GDhpFVtQJSGlFKUaBVNswFoFkdAktxnVkMCtHV9lChoBmgJaA9DCHMqGQCq/XFAlIaUUpRoFUv2aBZHQJLceoS+QEJ1fZQoaAZoCWgPQwiGAraD0eBwQJSGlFKUaBVNFwFoFkdAktykQf6oEXV9lChoBmgJaA9DCALzkCnfDXFAlIaUUpRoFU1dAWgWR0CS3PJ9iMHbdX2UKGgGaAloD0MId50N+WeObUCUhpRSlGgVTVkBaBZHQJLelPuXu3N1fZQoaAZoCWgPQwik/KTaJ3JsQJSGlFKUaBVNAQFoFkdAkt6bDAJswnV9lChoBmgJaA9DCIsyG2TSmXFAlIaUUpRoFU0+AWgWR0CS4OkRjBl+dX2UKGgGaAloD0MIER0CRwJAckCUhpRSlGgVS/loFkdAkuGbxEv0y3V9lChoBmgJaA9DCIoipG4n0nFAlIaUUpRoFU0RAWgWR0CS4tv8ZUDMdX2UKGgGaAloD0MIARQjSyb/cUCUhpRSlGgVTSwBaBZHQJLjYvRJEpl1fZQoaAZoCWgPQwgHXcKhN19vQJSGlFKUaBVNJQFoFkdAkuS2/ag263V9lChoBmgJaA9DCKPO3ENC+m1AlIaUUpRoFU0PAWgWR0CS5QZMtbs4dX2UKGgGaAloD0MIWRe30QDIbkCUhpRSlGgVTYUBaBZHQJLl8SsbNr11fZQoaAZoCWgPQwgNHNDSVVlwQJSGlFKUaBVNRwFoFkdAkuZu7Dl5nnV9lChoBmgJaA9DCJvmHaeoDnFAlIaUUpRoFU1WAWgWR0CS5re2uxKQdX2UKGgGaAloD0MIK/aX3dMbcUCUhpRSlGgVTUUBaBZHQJLm1pKzzEt1fZQoaAZoCWgPQwgEPdS2IfRwQJSGlFKUaBVNWQFoFkdAkucxT0g8sHV9lChoBmgJaA9DCPp6vma5bm5AlIaUUpRoFU1KAWgWR0CS55DAJswddX2UKGgGaAloD0MIaQHaVjN6bkCUhpRSlGgVTTcBaBZHQJLo8Rvm5lR1fZQoaAZoCWgPQwg4EJIFTKJvQJSGlFKUaBVNNgFoFkdAkujxqXWvsHV9lChoBmgJaA9DCCKnr+drWm9AlIaUUpRoFUv6aBZHQJLpeZ5Rjz91fZQoaAZoCWgPQwjqtG6DGilyQJSGlFKUaBVNuwFoFkdAkuoP95yEMHV9lChoBmgJaA9DCF2pZ0Ho6nBAlIaUUpRoFU0aAWgWR0CS6t9hqj8DdX2UKGgGaAloD0MIoMA7+bQ7cUCUhpRSlGgVTRwBaBZHQJLsSpOvdM11fZQoaAZoCWgPQwhselBQSupwQJSGlFKUaBVNQwFoFkdAku0oMjNY83V9lChoBmgJaA9DCBtHrMWna25AlIaUUpRoFUv+aBZHQJLtYqy4Wk91fZQoaAZoCWgPQwhYkGYs2vBxQJSGlFKUaBVNAgFoFkdAku6/2Cdz4nV9lChoBmgJaA9DCMsPXOWJFXBAlIaUUpRoFU1UAWgWR0CS70lsxfv4dX2UKGgGaAloD0MIXW3F/nImcECUhpRSlGgVTSoBaBZHQJLvtBsyi251fZQoaAZoCWgPQwj+8V61ssZwQJSGlFKUaBVNXAFoFkdAku/L+5vtMXV9lChoBmgJaA9DCCb752lAhHNAlIaUUpRoFU0XAWgWR0CS7+QOnVG1dX2UKGgGaAloD0MIGCKnr2d/b0CUhpRSlGgVTQUBaBZHQJLwwNCqp991fZQoaAZoCWgPQwhtHofBvLpyQJSGlFKUaBVNEgFoFkdAkvEidz4k/3V9lChoBmgJaA9DCD6Skh4GoXJAlIaUUpRoFU16AWgWR0CS8bJk5IYndX2UKGgGaAloD0MIVHB4QYTRckCUhpRSlGgVTQwBaBZHQJLyK4tpVS51fZQoaAZoCWgPQwiTqu0m+GdxQJSGlFKUaBVNLgFoFkdAkvKDJ+2E03V9lChoBmgJaA9DCBU8hVwpGmpAlIaUUpRoFU2tAWgWR0CS8062OQyRdX2UKGgGaAloD0MItiv0wTIeUECUhpRSlGgVTegDaBZHQJLz1MCcPOJ1fZQoaAZoCWgPQwiXNhyWRstwQJSGlFKUaBVNQQFoFkdAkvSAYxcmjXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.15", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2-baseline.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1a0377d93049e30ac627c9529532e299fbdbee36b0d4b9c6325a427332629ccd
|
3 |
+
size 147210
|
ppo-LunarLander-v2-baseline/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.6.2
|
ppo-LunarLander-v2-baseline/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f7fce7135e0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f7fce713670>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f7fce713700>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f7fce713790>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f7fce713820>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f7fce7138b0>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f7fce713940>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f7fce7139d0>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f7fce713a60>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f7fce713af0>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f7fce713b80>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f7fce709e40>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 1015808,
|
46 |
+
"_total_timesteps": 1000000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1670493645458117024,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAACoYj19rp4/gKtrPVdnpL6FATE+mn4wPgAAAAAAAAAAzcC2vEE+gT2dPJW9D/V6vg2TNL0N7wO9AAAAAAAAAABaNLy9KlzUPmvRqD1GDHi+lK/CPBZZ3z0AAAAAAAAAAKZal732dCu6NhExtd7epC+AaQ66vbpUNAAAgD8AAIA/Gj8ivcsvxD0Bp8Q8MFR6vt+2Vb1CZIG9AAAAAAAAAACg+Bw+JCyqP1L79j5MCJK+2VebPj7swj4AAAAAAAAAAGbQA7w9NB27OgW0uUBJsDv1T108MyGovAAAgD8AAIA/trpovvP6Az8We+E+D/Z6vvrt9L0KIIg+AAAAAAAAAABmlj07EZSOPVLJR71kW4C+4VPbvLIWobwAAAAAAAAAAI33IT4zUxU/xygtvoV3t77TIUw9JN8TvQAAAAAAAAAAza/RvK4ZprreCCE1VVo6MLZbEro63Ga0AACAPwAAgD/NwgW+kqKkPocutT1fVCG+meE+PeONvj0AAAAAAAAAALMYZD0ALYo+a/eIvEl3Tb7KOKS7s+LvPAAAAAAAAAAAmufAvB3EAz4ya7S8ld98vim6I73yM5G8AAAAAAAAAACaGXq79kxxum0LN7SCk0Svslazuj39sDMAAIA/AACAP5MqI76T1U8/rgc6PSRVnr5SoQ++1lxlPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVeRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI+Ddorz5gUMCUhpRSlIwBbJRLe4wBdJRHQJKk/+AEt/Z1fZQoaAZoCWgPQwj4cMlxJ6hyQJSGlFKUaBVNIwFoFkdAkqYs/dIoVnV9lChoBmgJaA9DCH6K48DrH3NAlIaUUpRoFU0pAWgWR0CSpoj+rELqdX2UKGgGaAloD0MIAtnr3V+HckCUhpRSlGgVTTYBaBZHQJKm5Hf/FR51fZQoaAZoCWgPQwjjVGthlmpxQJSGlFKUaBVNYQFoFkdAkqfcpkPMCHV9lChoBmgJaA9DCLwkzoooUnFAlIaUUpRoFU28A2gWR0CSqOp+tr9EdX2UKGgGaAloD0MIcR3jigtsckCUhpRSlGgVTS8BaBZHQJKo6kbgjyF1fZQoaAZoCWgPQwifHXBd8RxwQJSGlFKUaBVNOgFoFkdAkqkm0eEIxHV9lChoBmgJaA9DCOgtHt5z1G9AlIaUUpRoFU0oAWgWR0CSqzFDOTq0dX2UKGgGaAloD0MICmZMwdrXckCUhpRSlGgVTaoBaBZHQJKrVSpBHCp1fZQoaAZoCWgPQwh/9bhvNbduQJSGlFKUaBVNSgFoFkdAkqvR5xBE8nV9lChoBmgJaA9DCNdMvtkmgXJAlIaUUpRoFU22AWgWR0CSrNQbdadMdX2UKGgGaAloD0MIMhzPZ4ACcUCUhpRSlGgVTSgBaBZHQJKs3ps41gp1fZQoaAZoCWgPQwg51O/CFvpwQJSGlFKUaBVNWQFoFkdAkq0x/NJOFnV9lChoBmgJaA9DCHYYk/4e4nBAlIaUUpRoFU0kAWgWR0CSrnDCP6sRdX2UKGgGaAloD0MIe9tMhbjfcECUhpRSlGgVTSoBaBZHQJKumy/sVtZ1fZQoaAZoCWgPQwgOvjCZ6m1zQJSGlFKUaBVNewFoFkdAkq6ojKPn0XV9lChoBmgJaA9DCH506srn6m9AlIaUUpRoFU0gAWgWR0CSr7nJkoWpdX2UKGgGaAloD0MI0csollsxcECUhpRSlGgVTRkBaBZHQJKv3fWMCLd1fZQoaAZoCWgPQwgDX9Gtl0lxQJSGlFKUaBVNawFoFkdAkrHJz90ihXV9lChoBmgJaA9DCPImv0Un8HFAlIaUUpRoFU0nAWgWR0CSslr3TNMXdX2UKGgGaAloD0MIsyjsomibbkCUhpRSlGgVTUYBaBZHQJKzcJfICEJ1fZQoaAZoCWgPQwgT7pV5awRwQJSGlFKUaBVNkwFoFkdAkrUjK1XvIHV9lChoBmgJaA9DCIfB/BXyFnFAlIaUUpRoFU0oAWgWR0CStZjcmBvrdX2UKGgGaAloD0MIsrlqnmNHc0CUhpRSlGgVTUEBaBZHQJK1zUONHYp1fZQoaAZoCWgPQwj7ITZYeCdyQJSGlFKUaBVNHgFoFkdAkrZGCqZMMHV9lChoBmgJaA9DCObmG9G9lXJAlIaUUpRoFU0pAWgWR0CStvyMkyDadX2UKGgGaAloD0MI2nIuxdU2cECUhpRSlGgVTaUBaBZHQJK3BfhMrVh1fZQoaAZoCWgPQwjAXIsW4FFwQJSGlFKUaBVNPQFoFkdAkrdHh4t6HHV9lChoBmgJaA9DCFInoInwzHBAlIaUUpRoFU2KAWgWR0CSuC4VRDTjdX2UKGgGaAloD0MI8fRKWUZccUCUhpRSlGgVTQUBaBZHQJK4iEIw/Ph1fZQoaAZoCWgPQwi8WYP3FUNyQJSGlFKUaBVNNgFoFkdAkrjBekYXPHV9lChoBmgJaA9DCN5y9WMTCXFAlIaUUpRoFU08AWgWR0CSuOV+I/JOdX2UKGgGaAloD0MIz9cslw0UcUCUhpRSlGgVTR0BaBZHQJK5DiJfpll1fZQoaAZoCWgPQwgQIEPHDuZvQJSGlFKUaBVNTQFoFkdAkrkoJ3PiUHV9lChoBmgJaA9DCNvf2R79THNAlIaUUpRoFU0aAWgWR0CSur7F85S4dX2UKGgGaAloD0MIhUNv8fDvcUCUhpRSlGgVTSEBaBZHQJK70wfyPMl1fZQoaAZoCWgPQwhcABqlSxBzQJSGlFKUaBVL9WgWR0CSvHEwFkhBdX2UKGgGaAloD0MI/+vctBmSb0CUhpRSlGgVTS0BaBZHQJK9ovduYQd1fZQoaAZoCWgPQwi9NEWAU1FzQJSGlFKUaBVNjwFoFkdAkr3COR1YAHV9lChoBmgJaA9DCB5Td2WXqHJAlIaUUpRoFUv+aBZHQJK98UYbbUR1fZQoaAZoCWgPQwgh6dMquqFwQJSGlFKUaBVL/2gWR0CSv0VC5VfedX2UKGgGaAloD0MIVz7L82DRcUCUhpRSlGgVTUkBaBZHQJK/pHLA57x1fZQoaAZoCWgPQwiDE9GvraJuQJSGlFKUaBVNPAFoFkdAkr/3DWK/EnV9lChoBmgJaA9DCDLp76Vw3HBAlIaUUpRoFU0mAWgWR0CSwQVSn+AFdX2UKGgGaAloD0MIPgYrTvWLckCUhpRSlGgVTYYBaBZHQJLBEIv8IiV1fZQoaAZoCWgPQwhlijkI+gNwQJSGlFKUaBVNFAFoFkdAksE1h1DBuXV9lChoBmgJaA9DCOrpI/CHDmxAlIaUUpRoFU0bAWgWR0CSwUYkVvdedX2UKGgGaAloD0MInN1aJgP+cUCUhpRSlGgVTTIBaBZHQJLBkVJtix51fZQoaAZoCWgPQwiB6h9EsgdvQJSGlFKUaBVNcQFoFkdAksHg+IMz/XV9lChoBmgJaA9DCI1HqYQn2HBAlIaUUpRoFU1JAWgWR0CSwjyVObiIdX2UKGgGaAloD0MIveDTnDyfbkCUhpRSlGgVTTIBaBZHQJLWvcKw6hh1fZQoaAZoCWgPQwgeiCzShC5wQJSGlFKUaBVNCwFoFkdAktdNEG7jDXV9lChoBmgJaA9DCLkcr0B0n29AlIaUUpRoFU0jAWgWR0CS2VnWrfcfdX2UKGgGaAloD0MIgez17o/VcECUhpRSlGgVTTMBaBZHQJLaYbADaGp1fZQoaAZoCWgPQwhgr7DgfnZuQJSGlFKUaBVNAwFoFkdAktqA0j1PFnV9lChoBmgJaA9DCH9rJ0qCQnBAlIaUUpRoFU1HAWgWR0CS2ugGKQ7tdX2UKGgGaAloD0MIjfD2IESdcUCUhpRSlGgVTQABaBZHQJLbyqxTsIF1fZQoaAZoCWgPQwiwOJz51YhuQJSGlFKUaBVNIAFoFkdAktvbXlKbrnV9lChoBmgJaA9DCNsV+mDZk3FAlIaUUpRoFU0BAWgWR0CS3Be+Eh7mdX2UKGgGaAloD0MIQE0tW+tJcUCUhpRSlGgVTQ0BaBZHQJLcPC9AX2x1fZQoaAZoCWgPQwiI2GDhpFVtQJSGlFKUaBVNswFoFkdAktxnVkMCtHV9lChoBmgJaA9DCHMqGQCq/XFAlIaUUpRoFUv2aBZHQJLceoS+QEJ1fZQoaAZoCWgPQwiGAraD0eBwQJSGlFKUaBVNFwFoFkdAktykQf6oEXV9lChoBmgJaA9DCALzkCnfDXFAlIaUUpRoFU1dAWgWR0CS3PJ9iMHbdX2UKGgGaAloD0MId50N+WeObUCUhpRSlGgVTVkBaBZHQJLelPuXu3N1fZQoaAZoCWgPQwik/KTaJ3JsQJSGlFKUaBVNAQFoFkdAkt6bDAJswnV9lChoBmgJaA9DCIsyG2TSmXFAlIaUUpRoFU0+AWgWR0CS4OkRjBl+dX2UKGgGaAloD0MIER0CRwJAckCUhpRSlGgVS/loFkdAkuGbxEv0y3V9lChoBmgJaA9DCIoipG4n0nFAlIaUUpRoFU0RAWgWR0CS4tv8ZUDMdX2UKGgGaAloD0MIARQjSyb/cUCUhpRSlGgVTSwBaBZHQJLjYvRJEpl1fZQoaAZoCWgPQwgHXcKhN19vQJSGlFKUaBVNJQFoFkdAkuS2/ag263V9lChoBmgJaA9DCKPO3ENC+m1AlIaUUpRoFU0PAWgWR0CS5QZMtbs4dX2UKGgGaAloD0MIWRe30QDIbkCUhpRSlGgVTYUBaBZHQJLl8SsbNr11fZQoaAZoCWgPQwgNHNDSVVlwQJSGlFKUaBVNRwFoFkdAkuZu7Dl5nnV9lChoBmgJaA9DCJvmHaeoDnFAlIaUUpRoFU1WAWgWR0CS5re2uxKQdX2UKGgGaAloD0MIK/aX3dMbcUCUhpRSlGgVTUUBaBZHQJLm1pKzzEt1fZQoaAZoCWgPQwgEPdS2IfRwQJSGlFKUaBVNWQFoFkdAkucxT0g8sHV9lChoBmgJaA9DCPp6vma5bm5AlIaUUpRoFU1KAWgWR0CS55DAJswddX2UKGgGaAloD0MIaQHaVjN6bkCUhpRSlGgVTTcBaBZHQJLo8Rvm5lR1fZQoaAZoCWgPQwg4EJIFTKJvQJSGlFKUaBVNNgFoFkdAkujxqXWvsHV9lChoBmgJaA9DCCKnr+drWm9AlIaUUpRoFUv6aBZHQJLpeZ5Rjz91fZQoaAZoCWgPQwjqtG6DGilyQJSGlFKUaBVNuwFoFkdAkuoP95yEMHV9lChoBmgJaA9DCF2pZ0Ho6nBAlIaUUpRoFU0aAWgWR0CS6t9hqj8DdX2UKGgGaAloD0MIoMA7+bQ7cUCUhpRSlGgVTRwBaBZHQJLsSpOvdM11fZQoaAZoCWgPQwhselBQSupwQJSGlFKUaBVNQwFoFkdAku0oMjNY83V9lChoBmgJaA9DCBtHrMWna25AlIaUUpRoFUv+aBZHQJLtYqy4Wk91fZQoaAZoCWgPQwhYkGYs2vBxQJSGlFKUaBVNAgFoFkdAku6/2Cdz4nV9lChoBmgJaA9DCMsPXOWJFXBAlIaUUpRoFU1UAWgWR0CS70lsxfv4dX2UKGgGaAloD0MIXW3F/nImcECUhpRSlGgVTSoBaBZHQJLvtBsyi251fZQoaAZoCWgPQwj+8V61ssZwQJSGlFKUaBVNXAFoFkdAku/L+5vtMXV9lChoBmgJaA9DCCb752lAhHNAlIaUUpRoFU0XAWgWR0CS7+QOnVG1dX2UKGgGaAloD0MIGCKnr2d/b0CUhpRSlGgVTQUBaBZHQJLwwNCqp991fZQoaAZoCWgPQwhtHofBvLpyQJSGlFKUaBVNEgFoFkdAkvEidz4k/3V9lChoBmgJaA9DCD6Skh4GoXJAlIaUUpRoFU16AWgWR0CS8bJk5IYndX2UKGgGaAloD0MIVHB4QYTRckCUhpRSlGgVTQwBaBZHQJLyK4tpVS51fZQoaAZoCWgPQwiTqu0m+GdxQJSGlFKUaBVNLgFoFkdAkvKDJ+2E03V9lChoBmgJaA9DCBU8hVwpGmpAlIaUUpRoFU2tAWgWR0CS8062OQyRdX2UKGgGaAloD0MItiv0wTIeUECUhpRSlGgVTegDaBZHQJLz1MCcPOJ1fZQoaAZoCWgPQwiXNhyWRstwQJSGlFKUaBVNQQFoFkdAkvSAYxcmjXVlLg=="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 248,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v2-baseline/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:79193819b97f5370716fd55dd6c72195d0abea56a9884b92ee61db57336bf6b6
|
3 |
+
size 87929
|
ppo-LunarLander-v2-baseline/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e0437bd77ba02509c6deb1c84aebcc6912f4e09b481b2beb70c9223d873e9319
|
3 |
+
size 43201
|
ppo-LunarLander-v2-baseline/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2-baseline/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022
|
2 |
+
Python: 3.8.15
|
3 |
+
Stable-Baselines3: 1.6.2
|
4 |
+
PyTorch: 1.13.0+cu116
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
Binary file (205 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 276.97978187514633, "std_reward": 17.928928225755957, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-08T10:25:55.904724"}
|