Ayyoob commited on
Commit
489f060
·
1 Parent(s): 1e13e9c
checkpoint-6341/generation_config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 1,
4
+ "eos_token_id": 2,
5
+ "pad_token_id": 0,
6
+ "transformers_version": "4.42.3"
7
+ }
checkpoint-6341/latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step6341
checkpoint-6341/model.safetensors.index.json ADDED
@@ -0,0 +1,298 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 5403120640
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00002-of-00002.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00002.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
13
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
14
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
15
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
16
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
17
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
18
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
19
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
20
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
21
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
22
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
23
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
24
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
25
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
26
+ "model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
27
+ "model.layers.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
28
+ "model.layers.10.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
29
+ "model.layers.10.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
30
+ "model.layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
31
+ "model.layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
32
+ "model.layers.10.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
33
+ "model.layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
34
+ "model.layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
35
+ "model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
36
+ "model.layers.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
37
+ "model.layers.11.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
38
+ "model.layers.11.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
39
+ "model.layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
40
+ "model.layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
41
+ "model.layers.11.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
42
+ "model.layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
43
+ "model.layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
44
+ "model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
45
+ "model.layers.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
46
+ "model.layers.12.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
47
+ "model.layers.12.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
48
+ "model.layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
49
+ "model.layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
50
+ "model.layers.12.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
51
+ "model.layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
52
+ "model.layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
53
+ "model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
54
+ "model.layers.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
55
+ "model.layers.13.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
56
+ "model.layers.13.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
57
+ "model.layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
58
+ "model.layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
59
+ "model.layers.13.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
60
+ "model.layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
61
+ "model.layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
62
+ "model.layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors",
63
+ "model.layers.14.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
64
+ "model.layers.14.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
65
+ "model.layers.14.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
66
+ "model.layers.14.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
67
+ "model.layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
68
+ "model.layers.14.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
69
+ "model.layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
70
+ "model.layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
71
+ "model.layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors",
72
+ "model.layers.15.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
73
+ "model.layers.15.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
74
+ "model.layers.15.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
75
+ "model.layers.15.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
76
+ "model.layers.15.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
77
+ "model.layers.15.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
78
+ "model.layers.15.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
79
+ "model.layers.15.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
80
+ "model.layers.16.input_layernorm.weight": "model-00001-of-00002.safetensors",
81
+ "model.layers.16.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
82
+ "model.layers.16.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
83
+ "model.layers.16.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
84
+ "model.layers.16.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
85
+ "model.layers.16.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
86
+ "model.layers.16.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
87
+ "model.layers.16.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
88
+ "model.layers.16.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
89
+ "model.layers.17.input_layernorm.weight": "model-00001-of-00002.safetensors",
90
+ "model.layers.17.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
91
+ "model.layers.17.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
92
+ "model.layers.17.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
93
+ "model.layers.17.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
94
+ "model.layers.17.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
95
+ "model.layers.17.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
96
+ "model.layers.17.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
97
+ "model.layers.17.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
98
+ "model.layers.18.input_layernorm.weight": "model-00001-of-00002.safetensors",
99
+ "model.layers.18.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
100
+ "model.layers.18.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
101
+ "model.layers.18.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
102
+ "model.layers.18.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
103
+ "model.layers.18.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
104
+ "model.layers.18.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
105
+ "model.layers.18.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
106
+ "model.layers.18.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
107
+ "model.layers.19.input_layernorm.weight": "model-00001-of-00002.safetensors",
108
+ "model.layers.19.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
109
+ "model.layers.19.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
110
+ "model.layers.19.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
111
+ "model.layers.19.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
112
+ "model.layers.19.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
113
+ "model.layers.19.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
114
+ "model.layers.19.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
115
+ "model.layers.19.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
116
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
117
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
118
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
119
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
120
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
121
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
122
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
123
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
124
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
125
+ "model.layers.20.input_layernorm.weight": "model-00001-of-00002.safetensors",
126
+ "model.layers.20.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
127
+ "model.layers.20.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
128
+ "model.layers.20.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
129
+ "model.layers.20.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
130
+ "model.layers.20.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
131
+ "model.layers.20.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
132
+ "model.layers.20.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
133
+ "model.layers.20.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
134
+ "model.layers.21.input_layernorm.weight": "model-00001-of-00002.safetensors",
135
+ "model.layers.21.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
136
+ "model.layers.21.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
137
+ "model.layers.21.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
138
+ "model.layers.21.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
139
+ "model.layers.21.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
140
+ "model.layers.21.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
141
+ "model.layers.21.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
142
+ "model.layers.21.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
143
+ "model.layers.22.input_layernorm.weight": "model-00001-of-00002.safetensors",
144
+ "model.layers.22.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
145
+ "model.layers.22.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
146
+ "model.layers.22.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
147
+ "model.layers.22.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
148
+ "model.layers.22.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
149
+ "model.layers.22.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
150
+ "model.layers.22.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
151
+ "model.layers.22.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
152
+ "model.layers.23.input_layernorm.weight": "model-00001-of-00002.safetensors",
153
+ "model.layers.23.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
154
+ "model.layers.23.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
155
+ "model.layers.23.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
156
+ "model.layers.23.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
157
+ "model.layers.23.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
158
+ "model.layers.23.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
159
+ "model.layers.23.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
160
+ "model.layers.23.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
161
+ "model.layers.24.input_layernorm.weight": "model-00001-of-00002.safetensors",
162
+ "model.layers.24.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
163
+ "model.layers.24.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
164
+ "model.layers.24.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
165
+ "model.layers.24.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
166
+ "model.layers.24.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
167
+ "model.layers.24.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
168
+ "model.layers.24.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
169
+ "model.layers.24.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
170
+ "model.layers.25.input_layernorm.weight": "model-00001-of-00002.safetensors",
171
+ "model.layers.25.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
172
+ "model.layers.25.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
173
+ "model.layers.25.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
174
+ "model.layers.25.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
175
+ "model.layers.25.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
176
+ "model.layers.25.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
177
+ "model.layers.25.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
178
+ "model.layers.25.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
179
+ "model.layers.26.input_layernorm.weight": "model-00001-of-00002.safetensors",
180
+ "model.layers.26.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
181
+ "model.layers.26.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
182
+ "model.layers.26.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
183
+ "model.layers.26.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
184
+ "model.layers.26.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
185
+ "model.layers.26.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
186
+ "model.layers.26.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
187
+ "model.layers.26.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
188
+ "model.layers.27.input_layernorm.weight": "model-00001-of-00002.safetensors",
189
+ "model.layers.27.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
190
+ "model.layers.27.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
191
+ "model.layers.27.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
192
+ "model.layers.27.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
193
+ "model.layers.27.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
194
+ "model.layers.27.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
195
+ "model.layers.27.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
196
+ "model.layers.27.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
197
+ "model.layers.28.input_layernorm.weight": "model-00001-of-00002.safetensors",
198
+ "model.layers.28.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
199
+ "model.layers.28.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
200
+ "model.layers.28.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
201
+ "model.layers.28.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
202
+ "model.layers.28.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
203
+ "model.layers.28.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
204
+ "model.layers.28.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
205
+ "model.layers.28.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
206
+ "model.layers.29.input_layernorm.weight": "model-00001-of-00002.safetensors",
207
+ "model.layers.29.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
208
+ "model.layers.29.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
209
+ "model.layers.29.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
210
+ "model.layers.29.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
211
+ "model.layers.29.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
212
+ "model.layers.29.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
213
+ "model.layers.29.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
214
+ "model.layers.29.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
215
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
216
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
217
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
218
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
219
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
220
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
221
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
222
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
223
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
224
+ "model.layers.30.input_layernorm.weight": "model-00002-of-00002.safetensors",
225
+ "model.layers.30.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
226
+ "model.layers.30.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
227
+ "model.layers.30.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
228
+ "model.layers.30.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
229
+ "model.layers.30.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
230
+ "model.layers.30.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
231
+ "model.layers.30.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
232
+ "model.layers.30.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
233
+ "model.layers.31.input_layernorm.weight": "model-00002-of-00002.safetensors",
234
+ "model.layers.31.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
235
+ "model.layers.31.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
236
+ "model.layers.31.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
237
+ "model.layers.31.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
238
+ "model.layers.31.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
239
+ "model.layers.31.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
240
+ "model.layers.31.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
241
+ "model.layers.31.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
242
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
243
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
244
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
245
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
246
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
247
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
248
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
249
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
250
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
251
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
252
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
253
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
254
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
255
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
256
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
257
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
258
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
259
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
260
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
261
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
262
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
263
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
264
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
265
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
266
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
267
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
268
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
269
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
270
+ "model.layers.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
271
+ "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
272
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
273
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
274
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
275
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
276
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
277
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
278
+ "model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
279
+ "model.layers.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
280
+ "model.layers.8.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
281
+ "model.layers.8.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
282
+ "model.layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
283
+ "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
284
+ "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
285
+ "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
286
+ "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
287
+ "model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
288
+ "model.layers.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
289
+ "model.layers.9.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
290
+ "model.layers.9.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
291
+ "model.layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
292
+ "model.layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
293
+ "model.layers.9.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
294
+ "model.layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
295
+ "model.layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
296
+ "model.norm.weight": "model-00002-of-00002.safetensors"
297
+ }
298
+ }
checkpoint-6341/special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "</s>",
17
+ "unk_token": {
18
+ "content": "<unk>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
checkpoint-6341/tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
3
+ size 499723
checkpoint-6341/tokenizer_config.json ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "add_prefix_space": true,
5
+ "added_tokens_decoder": {
6
+ "0": {
7
+ "content": "<unk>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": true
13
+ },
14
+ "1": {
15
+ "content": "<s>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": true
21
+ },
22
+ "2": {
23
+ "content": "</s>",
24
+ "lstrip": false,
25
+ "normalized": false,
26
+ "rstrip": false,
27
+ "single_word": false,
28
+ "special": true
29
+ }
30
+ },
31
+ "bos_token": "<s>",
32
+ "clean_up_tokenization_spaces": false,
33
+ "eos_token": "</s>",
34
+ "legacy": false,
35
+ "model_max_length": 2048,
36
+ "pad_token": "</s>",
37
+ "padding_side": "right",
38
+ "sp_model_kwargs": {},
39
+ "spaces_between_special_tokens": false,
40
+ "tokenizer_class": "LlamaTokenizer",
41
+ "unk_token": "<unk>",
42
+ "use_default_system_prompt": false
43
+ }
checkpoint-6341/trainer_state.json ADDED
@@ -0,0 +1,1758 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 1.0,
5
+ "eval_steps": 200,
6
+ "global_step": 6341,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.004731114966093676,
13
+ "grad_norm": 0.9585382342338562,
14
+ "learning_rate": 7.235790156711095e-05,
15
+ "loss": 1.19,
16
+ "step": 30
17
+ },
18
+ {
19
+ "epoch": 0.009462229932187352,
20
+ "grad_norm": 0.9438452124595642,
21
+ "learning_rate": 8.817139967814685e-05,
22
+ "loss": 1.0589,
23
+ "step": 60
24
+ },
25
+ {
26
+ "epoch": 0.014193344898281028,
27
+ "grad_norm": 0.9442492723464966,
28
+ "learning_rate": 9.722413360750843e-05,
29
+ "loss": 1.0764,
30
+ "step": 90
31
+ },
32
+ {
33
+ "epoch": 0.018924459864374705,
34
+ "grad_norm": 0.8840267658233643,
35
+ "learning_rate": 9.994621104255655e-05,
36
+ "loss": 1.0847,
37
+ "step": 120
38
+ },
39
+ {
40
+ "epoch": 0.02365557483046838,
41
+ "grad_norm": 0.8207218050956726,
42
+ "learning_rate": 9.985445340927068e-05,
43
+ "loss": 1.0912,
44
+ "step": 150
45
+ },
46
+ {
47
+ "epoch": 0.028386689796562056,
48
+ "grad_norm": 0.8883314728736877,
49
+ "learning_rate": 9.975953171966461e-05,
50
+ "loss": 1.0608,
51
+ "step": 180
52
+ },
53
+ {
54
+ "epoch": 0.03154076644062451,
55
+ "eval_loss": 1.2097724676132202,
56
+ "eval_runtime": 3.756,
57
+ "eval_samples_per_second": 26.89,
58
+ "eval_steps_per_second": 3.461,
59
+ "step": 200
60
+ },
61
+ {
62
+ "epoch": 0.03311780476265573,
63
+ "grad_norm": 0.7577874064445496,
64
+ "learning_rate": 9.966461003005853e-05,
65
+ "loss": 1.0802,
66
+ "step": 210
67
+ },
68
+ {
69
+ "epoch": 0.03784891972874941,
70
+ "grad_norm": 1.4911932945251465,
71
+ "learning_rate": 9.956968834045246e-05,
72
+ "loss": 1.0397,
73
+ "step": 240
74
+ },
75
+ {
76
+ "epoch": 0.04258003469484308,
77
+ "grad_norm": 0.8236317038536072,
78
+ "learning_rate": 9.947476665084638e-05,
79
+ "loss": 1.0575,
80
+ "step": 270
81
+ },
82
+ {
83
+ "epoch": 0.04731114966093676,
84
+ "grad_norm": 0.7883521318435669,
85
+ "learning_rate": 9.937984496124031e-05,
86
+ "loss": 1.0369,
87
+ "step": 300
88
+ },
89
+ {
90
+ "epoch": 0.05204226462703044,
91
+ "grad_norm": 0.7798565626144409,
92
+ "learning_rate": 9.928492327163424e-05,
93
+ "loss": 1.0354,
94
+ "step": 330
95
+ },
96
+ {
97
+ "epoch": 0.05677337959312411,
98
+ "grad_norm": 0.7784315943717957,
99
+ "learning_rate": 9.919000158202817e-05,
100
+ "loss": 1.0341,
101
+ "step": 360
102
+ },
103
+ {
104
+ "epoch": 0.06150449455921779,
105
+ "grad_norm": 0.836300790309906,
106
+ "learning_rate": 9.909507989242209e-05,
107
+ "loss": 1.0272,
108
+ "step": 390
109
+ },
110
+ {
111
+ "epoch": 0.06308153288124901,
112
+ "eval_loss": 1.1889104843139648,
113
+ "eval_runtime": 3.7553,
114
+ "eval_samples_per_second": 26.895,
115
+ "eval_steps_per_second": 3.462,
116
+ "step": 400
117
+ },
118
+ {
119
+ "epoch": 0.06623560952531146,
120
+ "grad_norm": 0.7245925664901733,
121
+ "learning_rate": 9.900015820281602e-05,
122
+ "loss": 1.0256,
123
+ "step": 420
124
+ },
125
+ {
126
+ "epoch": 0.07096672449140515,
127
+ "grad_norm": 0.8321049213409424,
128
+ "learning_rate": 9.890523651320994e-05,
129
+ "loss": 1.0332,
130
+ "step": 450
131
+ },
132
+ {
133
+ "epoch": 0.07569783945749882,
134
+ "grad_norm": 0.7657173275947571,
135
+ "learning_rate": 9.881031482360387e-05,
136
+ "loss": 1.0221,
137
+ "step": 480
138
+ },
139
+ {
140
+ "epoch": 0.08042895442359249,
141
+ "grad_norm": 0.7464463114738464,
142
+ "learning_rate": 9.871539313399779e-05,
143
+ "loss": 0.9911,
144
+ "step": 510
145
+ },
146
+ {
147
+ "epoch": 0.08516006938968616,
148
+ "grad_norm": 0.7290617227554321,
149
+ "learning_rate": 9.862047144439172e-05,
150
+ "loss": 1.0258,
151
+ "step": 540
152
+ },
153
+ {
154
+ "epoch": 0.08989118435577985,
155
+ "grad_norm": 0.7311350703239441,
156
+ "learning_rate": 9.852554975478564e-05,
157
+ "loss": 1.0165,
158
+ "step": 570
159
+ },
160
+ {
161
+ "epoch": 0.09462229932187352,
162
+ "grad_norm": 0.8087915182113647,
163
+ "learning_rate": 9.843062806517957e-05,
164
+ "loss": 0.9716,
165
+ "step": 600
166
+ },
167
+ {
168
+ "epoch": 0.09462229932187352,
169
+ "eval_loss": 1.1471492052078247,
170
+ "eval_runtime": 3.7536,
171
+ "eval_samples_per_second": 26.907,
172
+ "eval_steps_per_second": 3.463,
173
+ "step": 600
174
+ },
175
+ {
176
+ "epoch": 0.09935341428796719,
177
+ "grad_norm": 0.7442970275878906,
178
+ "learning_rate": 9.833570637557348e-05,
179
+ "loss": 0.9747,
180
+ "step": 630
181
+ },
182
+ {
183
+ "epoch": 0.10408452925406088,
184
+ "grad_norm": 0.9510965347290039,
185
+ "learning_rate": 9.824078468596742e-05,
186
+ "loss": 0.9582,
187
+ "step": 660
188
+ },
189
+ {
190
+ "epoch": 0.10881564422015455,
191
+ "grad_norm": 0.6995567083358765,
192
+ "learning_rate": 9.814586299636133e-05,
193
+ "loss": 1.0118,
194
+ "step": 690
195
+ },
196
+ {
197
+ "epoch": 0.11354675918624822,
198
+ "grad_norm": 0.9319436550140381,
199
+ "learning_rate": 9.805094130675526e-05,
200
+ "loss": 0.9815,
201
+ "step": 720
202
+ },
203
+ {
204
+ "epoch": 0.11827787415234191,
205
+ "grad_norm": 0.7033783793449402,
206
+ "learning_rate": 9.795601961714918e-05,
207
+ "loss": 0.9738,
208
+ "step": 750
209
+ },
210
+ {
211
+ "epoch": 0.12300898911843558,
212
+ "grad_norm": 0.6606217622756958,
213
+ "learning_rate": 9.786109792754311e-05,
214
+ "loss": 0.961,
215
+ "step": 780
216
+ },
217
+ {
218
+ "epoch": 0.12616306576249803,
219
+ "eval_loss": 1.125948190689087,
220
+ "eval_runtime": 3.7557,
221
+ "eval_samples_per_second": 26.892,
222
+ "eval_steps_per_second": 3.461,
223
+ "step": 800
224
+ },
225
+ {
226
+ "epoch": 0.12774010408452927,
227
+ "grad_norm": 0.9087960124015808,
228
+ "learning_rate": 9.776617623793703e-05,
229
+ "loss": 0.9734,
230
+ "step": 810
231
+ },
232
+ {
233
+ "epoch": 0.13247121905062292,
234
+ "grad_norm": 0.7387025952339172,
235
+ "learning_rate": 9.767125454833097e-05,
236
+ "loss": 0.9605,
237
+ "step": 840
238
+ },
239
+ {
240
+ "epoch": 0.1372023340167166,
241
+ "grad_norm": 0.7939543724060059,
242
+ "learning_rate": 9.757633285872489e-05,
243
+ "loss": 0.952,
244
+ "step": 870
245
+ },
246
+ {
247
+ "epoch": 0.1419334489828103,
248
+ "grad_norm": 1.1417864561080933,
249
+ "learning_rate": 9.748141116911882e-05,
250
+ "loss": 0.9113,
251
+ "step": 900
252
+ },
253
+ {
254
+ "epoch": 0.14666456394890395,
255
+ "grad_norm": 0.7591778635978699,
256
+ "learning_rate": 9.738648947951274e-05,
257
+ "loss": 0.9565,
258
+ "step": 930
259
+ },
260
+ {
261
+ "epoch": 0.15139567891499764,
262
+ "grad_norm": 0.759545087814331,
263
+ "learning_rate": 9.729156778990667e-05,
264
+ "loss": 0.9401,
265
+ "step": 960
266
+ },
267
+ {
268
+ "epoch": 0.1561267938810913,
269
+ "grad_norm": 0.700552761554718,
270
+ "learning_rate": 9.719664610030059e-05,
271
+ "loss": 0.9447,
272
+ "step": 990
273
+ },
274
+ {
275
+ "epoch": 0.15770383220312253,
276
+ "eval_loss": 1.0677810907363892,
277
+ "eval_runtime": 3.7551,
278
+ "eval_samples_per_second": 26.897,
279
+ "eval_steps_per_second": 3.462,
280
+ "step": 1000
281
+ },
282
+ {
283
+ "epoch": 0.16085790884718498,
284
+ "grad_norm": 0.6673519015312195,
285
+ "learning_rate": 9.710172441069452e-05,
286
+ "loss": 0.8919,
287
+ "step": 1020
288
+ },
289
+ {
290
+ "epoch": 0.16558902381327867,
291
+ "grad_norm": 0.8046931028366089,
292
+ "learning_rate": 9.700680272108844e-05,
293
+ "loss": 0.9136,
294
+ "step": 1050
295
+ },
296
+ {
297
+ "epoch": 0.17032013877937233,
298
+ "grad_norm": 0.7277413606643677,
299
+ "learning_rate": 9.691188103148237e-05,
300
+ "loss": 0.9001,
301
+ "step": 1080
302
+ },
303
+ {
304
+ "epoch": 0.175051253745466,
305
+ "grad_norm": 0.661359429359436,
306
+ "learning_rate": 9.681695934187629e-05,
307
+ "loss": 0.9119,
308
+ "step": 1110
309
+ },
310
+ {
311
+ "epoch": 0.1797823687115597,
312
+ "grad_norm": 0.7349006533622742,
313
+ "learning_rate": 9.672203765227022e-05,
314
+ "loss": 0.8825,
315
+ "step": 1140
316
+ },
317
+ {
318
+ "epoch": 0.18451348367765336,
319
+ "grad_norm": 0.7114729285240173,
320
+ "learning_rate": 9.662711596266414e-05,
321
+ "loss": 0.8872,
322
+ "step": 1170
323
+ },
324
+ {
325
+ "epoch": 0.18924459864374704,
326
+ "grad_norm": 0.6496574282646179,
327
+ "learning_rate": 9.653219427305807e-05,
328
+ "loss": 0.8809,
329
+ "step": 1200
330
+ },
331
+ {
332
+ "epoch": 0.18924459864374704,
333
+ "eval_loss": 1.0253973007202148,
334
+ "eval_runtime": 3.7532,
335
+ "eval_samples_per_second": 26.91,
336
+ "eval_steps_per_second": 3.464,
337
+ "step": 1200
338
+ },
339
+ {
340
+ "epoch": 0.19397571360984073,
341
+ "grad_norm": 0.6576619744300842,
342
+ "learning_rate": 9.643727258345198e-05,
343
+ "loss": 0.876,
344
+ "step": 1230
345
+ },
346
+ {
347
+ "epoch": 0.19870682857593439,
348
+ "grad_norm": 0.666749119758606,
349
+ "learning_rate": 9.634235089384591e-05,
350
+ "loss": 0.8877,
351
+ "step": 1260
352
+ },
353
+ {
354
+ "epoch": 0.20343794354202807,
355
+ "grad_norm": 0.7769750952720642,
356
+ "learning_rate": 9.624742920423983e-05,
357
+ "loss": 0.8894,
358
+ "step": 1290
359
+ },
360
+ {
361
+ "epoch": 0.20816905850812176,
362
+ "grad_norm": 0.6562801599502563,
363
+ "learning_rate": 9.615250751463376e-05,
364
+ "loss": 0.8912,
365
+ "step": 1320
366
+ },
367
+ {
368
+ "epoch": 0.21290017347421542,
369
+ "grad_norm": 0.6531364917755127,
370
+ "learning_rate": 9.605758582502768e-05,
371
+ "loss": 0.875,
372
+ "step": 1350
373
+ },
374
+ {
375
+ "epoch": 0.2176312884403091,
376
+ "grad_norm": 0.6414660811424255,
377
+ "learning_rate": 9.596266413542163e-05,
378
+ "loss": 0.8721,
379
+ "step": 1380
380
+ },
381
+ {
382
+ "epoch": 0.22078536508437155,
383
+ "eval_loss": 1.0128834247589111,
384
+ "eval_runtime": 3.7539,
385
+ "eval_samples_per_second": 26.906,
386
+ "eval_steps_per_second": 3.463,
387
+ "step": 1400
388
+ },
389
+ {
390
+ "epoch": 0.2223624034064028,
391
+ "grad_norm": 0.8413099646568298,
392
+ "learning_rate": 9.586774244581554e-05,
393
+ "loss": 0.8807,
394
+ "step": 1410
395
+ },
396
+ {
397
+ "epoch": 0.22709351837249644,
398
+ "grad_norm": 0.6748294830322266,
399
+ "learning_rate": 9.577282075620947e-05,
400
+ "loss": 0.8245,
401
+ "step": 1440
402
+ },
403
+ {
404
+ "epoch": 0.23182463333859013,
405
+ "grad_norm": 0.7067525386810303,
406
+ "learning_rate": 9.567789906660339e-05,
407
+ "loss": 0.8767,
408
+ "step": 1470
409
+ },
410
+ {
411
+ "epoch": 0.23655574830468382,
412
+ "grad_norm": 1.074791431427002,
413
+ "learning_rate": 9.558297737699732e-05,
414
+ "loss": 0.8856,
415
+ "step": 1500
416
+ },
417
+ {
418
+ "epoch": 0.24128686327077747,
419
+ "grad_norm": 0.7461240887641907,
420
+ "learning_rate": 9.548805568739124e-05,
421
+ "loss": 0.8759,
422
+ "step": 1530
423
+ },
424
+ {
425
+ "epoch": 0.24601797823687116,
426
+ "grad_norm": 0.6231616139411926,
427
+ "learning_rate": 9.539313399778517e-05,
428
+ "loss": 0.837,
429
+ "step": 1560
430
+ },
431
+ {
432
+ "epoch": 0.25074909320296485,
433
+ "grad_norm": 0.7053641080856323,
434
+ "learning_rate": 9.529821230817909e-05,
435
+ "loss": 0.8763,
436
+ "step": 1590
437
+ },
438
+ {
439
+ "epoch": 0.25232613152499606,
440
+ "eval_loss": 0.9505324959754944,
441
+ "eval_runtime": 3.7563,
442
+ "eval_samples_per_second": 26.888,
443
+ "eval_steps_per_second": 3.461,
444
+ "step": 1600
445
+ },
446
+ {
447
+ "epoch": 0.25548020816905853,
448
+ "grad_norm": 0.6484207510948181,
449
+ "learning_rate": 9.520329061857302e-05,
450
+ "loss": 0.8787,
451
+ "step": 1620
452
+ },
453
+ {
454
+ "epoch": 0.26021132313515216,
455
+ "grad_norm": 0.5929827094078064,
456
+ "learning_rate": 9.510836892896694e-05,
457
+ "loss": 0.844,
458
+ "step": 1650
459
+ },
460
+ {
461
+ "epoch": 0.26494243810124585,
462
+ "grad_norm": 0.6840829849243164,
463
+ "learning_rate": 9.501344723936087e-05,
464
+ "loss": 0.8492,
465
+ "step": 1680
466
+ },
467
+ {
468
+ "epoch": 0.26967355306733953,
469
+ "grad_norm": 0.7365448474884033,
470
+ "learning_rate": 9.491852554975479e-05,
471
+ "loss": 0.8584,
472
+ "step": 1710
473
+ },
474
+ {
475
+ "epoch": 0.2744046680334332,
476
+ "grad_norm": 0.6528182029724121,
477
+ "learning_rate": 9.482360386014872e-05,
478
+ "loss": 0.8346,
479
+ "step": 1740
480
+ },
481
+ {
482
+ "epoch": 0.2791357829995269,
483
+ "grad_norm": 0.6200223565101624,
484
+ "learning_rate": 9.472868217054263e-05,
485
+ "loss": 0.8008,
486
+ "step": 1770
487
+ },
488
+ {
489
+ "epoch": 0.2838668979656206,
490
+ "grad_norm": 0.7503982186317444,
491
+ "learning_rate": 9.463376048093657e-05,
492
+ "loss": 0.8197,
493
+ "step": 1800
494
+ },
495
+ {
496
+ "epoch": 0.2838668979656206,
497
+ "eval_loss": 0.9286572933197021,
498
+ "eval_runtime": 3.7535,
499
+ "eval_samples_per_second": 26.908,
500
+ "eval_steps_per_second": 3.463,
501
+ "step": 1800
502
+ },
503
+ {
504
+ "epoch": 0.2885980129317142,
505
+ "grad_norm": 0.6671140193939209,
506
+ "learning_rate": 9.453883879133048e-05,
507
+ "loss": 0.8405,
508
+ "step": 1830
509
+ },
510
+ {
511
+ "epoch": 0.2933291278978079,
512
+ "grad_norm": 0.7057023048400879,
513
+ "learning_rate": 9.444391710172441e-05,
514
+ "loss": 0.7822,
515
+ "step": 1860
516
+ },
517
+ {
518
+ "epoch": 0.2980602428639016,
519
+ "grad_norm": 0.8120527267456055,
520
+ "learning_rate": 9.434899541211833e-05,
521
+ "loss": 0.8416,
522
+ "step": 1890
523
+ },
524
+ {
525
+ "epoch": 0.3027913578299953,
526
+ "grad_norm": 0.622718334197998,
527
+ "learning_rate": 9.425407372251228e-05,
528
+ "loss": 0.8174,
529
+ "step": 1920
530
+ },
531
+ {
532
+ "epoch": 0.30752247279608896,
533
+ "grad_norm": 0.6605896353721619,
534
+ "learning_rate": 9.41591520329062e-05,
535
+ "loss": 0.8003,
536
+ "step": 1950
537
+ },
538
+ {
539
+ "epoch": 0.3122535877621826,
540
+ "grad_norm": 0.7473495006561279,
541
+ "learning_rate": 9.406423034330012e-05,
542
+ "loss": 0.798,
543
+ "step": 1980
544
+ },
545
+ {
546
+ "epoch": 0.31540766440624507,
547
+ "eval_loss": 0.8976284861564636,
548
+ "eval_runtime": 3.7537,
549
+ "eval_samples_per_second": 26.907,
550
+ "eval_steps_per_second": 3.463,
551
+ "step": 2000
552
+ },
553
+ {
554
+ "epoch": 0.3169847027282763,
555
+ "grad_norm": 0.7177520394325256,
556
+ "learning_rate": 9.396930865369404e-05,
557
+ "loss": 0.8168,
558
+ "step": 2010
559
+ },
560
+ {
561
+ "epoch": 0.32171581769436997,
562
+ "grad_norm": 0.7600869536399841,
563
+ "learning_rate": 9.387438696408797e-05,
564
+ "loss": 0.7918,
565
+ "step": 2040
566
+ },
567
+ {
568
+ "epoch": 0.32644693266046365,
569
+ "grad_norm": 0.7001503109931946,
570
+ "learning_rate": 9.377946527448189e-05,
571
+ "loss": 0.7906,
572
+ "step": 2070
573
+ },
574
+ {
575
+ "epoch": 0.33117804762655734,
576
+ "grad_norm": 0.6279382705688477,
577
+ "learning_rate": 9.368454358487582e-05,
578
+ "loss": 0.7624,
579
+ "step": 2100
580
+ },
581
+ {
582
+ "epoch": 0.335909162592651,
583
+ "grad_norm": 0.7481889128684998,
584
+ "learning_rate": 9.358962189526974e-05,
585
+ "loss": 0.7849,
586
+ "step": 2130
587
+ },
588
+ {
589
+ "epoch": 0.34064027755874465,
590
+ "grad_norm": 0.6797828078269958,
591
+ "learning_rate": 9.349470020566367e-05,
592
+ "loss": 0.7899,
593
+ "step": 2160
594
+ },
595
+ {
596
+ "epoch": 0.34537139252483834,
597
+ "grad_norm": 0.6929941177368164,
598
+ "learning_rate": 9.339977851605759e-05,
599
+ "loss": 0.7703,
600
+ "step": 2190
601
+ },
602
+ {
603
+ "epoch": 0.3469484308468696,
604
+ "eval_loss": 0.8858568072319031,
605
+ "eval_runtime": 3.7538,
606
+ "eval_samples_per_second": 26.906,
607
+ "eval_steps_per_second": 3.463,
608
+ "step": 2200
609
+ },
610
+ {
611
+ "epoch": 0.350102507490932,
612
+ "grad_norm": 0.698906660079956,
613
+ "learning_rate": 9.330485682645152e-05,
614
+ "loss": 0.7724,
615
+ "step": 2220
616
+ },
617
+ {
618
+ "epoch": 0.3548336224570257,
619
+ "grad_norm": 0.779211163520813,
620
+ "learning_rate": 9.320993513684544e-05,
621
+ "loss": 0.7875,
622
+ "step": 2250
623
+ },
624
+ {
625
+ "epoch": 0.3595647374231194,
626
+ "grad_norm": 0.7313475608825684,
627
+ "learning_rate": 9.311817750355957e-05,
628
+ "loss": 0.794,
629
+ "step": 2280
630
+ },
631
+ {
632
+ "epoch": 0.3642958523892131,
633
+ "grad_norm": 0.6143506169319153,
634
+ "learning_rate": 9.30232558139535e-05,
635
+ "loss": 0.7742,
636
+ "step": 2310
637
+ },
638
+ {
639
+ "epoch": 0.3690269673553067,
640
+ "grad_norm": 0.6775010824203491,
641
+ "learning_rate": 9.292833412434741e-05,
642
+ "loss": 0.7822,
643
+ "step": 2340
644
+ },
645
+ {
646
+ "epoch": 0.3737580823214004,
647
+ "grad_norm": 0.7151722311973572,
648
+ "learning_rate": 9.283341243474134e-05,
649
+ "loss": 0.7617,
650
+ "step": 2370
651
+ },
652
+ {
653
+ "epoch": 0.3784891972874941,
654
+ "grad_norm": 0.6855128407478333,
655
+ "learning_rate": 9.273849074513526e-05,
656
+ "loss": 0.7668,
657
+ "step": 2400
658
+ },
659
+ {
660
+ "epoch": 0.3784891972874941,
661
+ "eval_loss": 0.8862702250480652,
662
+ "eval_runtime": 3.7541,
663
+ "eval_samples_per_second": 26.904,
664
+ "eval_steps_per_second": 3.463,
665
+ "step": 2400
666
+ },
667
+ {
668
+ "epoch": 0.38322031225358777,
669
+ "grad_norm": 0.743325412273407,
670
+ "learning_rate": 9.26435690555292e-05,
671
+ "loss": 0.7885,
672
+ "step": 2430
673
+ },
674
+ {
675
+ "epoch": 0.38795142721968146,
676
+ "grad_norm": 0.6186659932136536,
677
+ "learning_rate": 9.254864736592311e-05,
678
+ "loss": 0.7619,
679
+ "step": 2460
680
+ },
681
+ {
682
+ "epoch": 0.39268254218577514,
683
+ "grad_norm": 0.6791619062423706,
684
+ "learning_rate": 9.245372567631704e-05,
685
+ "loss": 0.8084,
686
+ "step": 2490
687
+ },
688
+ {
689
+ "epoch": 0.39741365715186877,
690
+ "grad_norm": 0.6537867784500122,
691
+ "learning_rate": 9.235880398671097e-05,
692
+ "loss": 0.7641,
693
+ "step": 2520
694
+ },
695
+ {
696
+ "epoch": 0.40214477211796246,
697
+ "grad_norm": 0.6688680052757263,
698
+ "learning_rate": 9.22638822971049e-05,
699
+ "loss": 0.7634,
700
+ "step": 2550
701
+ },
702
+ {
703
+ "epoch": 0.40687588708405614,
704
+ "grad_norm": 0.6369423866271973,
705
+ "learning_rate": 9.216896060749882e-05,
706
+ "loss": 0.7407,
707
+ "step": 2580
708
+ },
709
+ {
710
+ "epoch": 0.4100299637281186,
711
+ "eval_loss": 0.8817442059516907,
712
+ "eval_runtime": 3.7541,
713
+ "eval_samples_per_second": 26.904,
714
+ "eval_steps_per_second": 3.463,
715
+ "step": 2600
716
+ },
717
+ {
718
+ "epoch": 0.41160700205014983,
719
+ "grad_norm": 0.6841573119163513,
720
+ "learning_rate": 9.207403891789275e-05,
721
+ "loss": 0.7572,
722
+ "step": 2610
723
+ },
724
+ {
725
+ "epoch": 0.4163381170162435,
726
+ "grad_norm": 0.625957727432251,
727
+ "learning_rate": 9.197911722828667e-05,
728
+ "loss": 0.7493,
729
+ "step": 2640
730
+ },
731
+ {
732
+ "epoch": 0.42106923198233714,
733
+ "grad_norm": 0.7467941641807556,
734
+ "learning_rate": 9.18841955386806e-05,
735
+ "loss": 0.7468,
736
+ "step": 2670
737
+ },
738
+ {
739
+ "epoch": 0.42580034694843083,
740
+ "grad_norm": 0.6891815662384033,
741
+ "learning_rate": 9.178927384907452e-05,
742
+ "loss": 0.7698,
743
+ "step": 2700
744
+ },
745
+ {
746
+ "epoch": 0.4305314619145245,
747
+ "grad_norm": 0.6197889447212219,
748
+ "learning_rate": 9.169435215946845e-05,
749
+ "loss": 0.7588,
750
+ "step": 2730
751
+ },
752
+ {
753
+ "epoch": 0.4352625768806182,
754
+ "grad_norm": 0.7140328884124756,
755
+ "learning_rate": 9.159943046986237e-05,
756
+ "loss": 0.7569,
757
+ "step": 2760
758
+ },
759
+ {
760
+ "epoch": 0.4399936918467119,
761
+ "grad_norm": 0.7718496322631836,
762
+ "learning_rate": 9.15045087802563e-05,
763
+ "loss": 0.7448,
764
+ "step": 2790
765
+ },
766
+ {
767
+ "epoch": 0.4415707301687431,
768
+ "eval_loss": 0.8855557441711426,
769
+ "eval_runtime": 3.7544,
770
+ "eval_samples_per_second": 26.902,
771
+ "eval_steps_per_second": 3.463,
772
+ "step": 2800
773
+ },
774
+ {
775
+ "epoch": 0.4447248068128056,
776
+ "grad_norm": 0.6447039246559143,
777
+ "learning_rate": 9.140958709065022e-05,
778
+ "loss": 0.7623,
779
+ "step": 2820
780
+ },
781
+ {
782
+ "epoch": 0.4494559217788992,
783
+ "grad_norm": 0.6694769859313965,
784
+ "learning_rate": 9.131466540104415e-05,
785
+ "loss": 0.7081,
786
+ "step": 2850
787
+ },
788
+ {
789
+ "epoch": 0.4541870367449929,
790
+ "grad_norm": 0.6863081455230713,
791
+ "learning_rate": 9.121974371143806e-05,
792
+ "loss": 0.7228,
793
+ "step": 2880
794
+ },
795
+ {
796
+ "epoch": 0.4589181517110866,
797
+ "grad_norm": 0.7198454737663269,
798
+ "learning_rate": 9.1124822021832e-05,
799
+ "loss": 0.7356,
800
+ "step": 2910
801
+ },
802
+ {
803
+ "epoch": 0.46364926667718026,
804
+ "grad_norm": 0.6542885303497314,
805
+ "learning_rate": 9.102990033222591e-05,
806
+ "loss": 0.7606,
807
+ "step": 2940
808
+ },
809
+ {
810
+ "epoch": 0.46838038164327395,
811
+ "grad_norm": 0.657539963722229,
812
+ "learning_rate": 9.093497864261984e-05,
813
+ "loss": 0.7255,
814
+ "step": 2970
815
+ },
816
+ {
817
+ "epoch": 0.47311149660936763,
818
+ "grad_norm": 0.819503664970398,
819
+ "learning_rate": 9.084005695301376e-05,
820
+ "loss": 0.7184,
821
+ "step": 3000
822
+ },
823
+ {
824
+ "epoch": 0.47311149660936763,
825
+ "eval_loss": 0.8140414357185364,
826
+ "eval_runtime": 3.7531,
827
+ "eval_samples_per_second": 26.911,
828
+ "eval_steps_per_second": 3.464,
829
+ "step": 3000
830
+ },
831
+ {
832
+ "epoch": 0.47784261157546126,
833
+ "grad_norm": 0.7199704647064209,
834
+ "learning_rate": 9.074513526340769e-05,
835
+ "loss": 0.7227,
836
+ "step": 3030
837
+ },
838
+ {
839
+ "epoch": 0.48257372654155495,
840
+ "grad_norm": 0.7655025720596313,
841
+ "learning_rate": 9.065021357380162e-05,
842
+ "loss": 0.7217,
843
+ "step": 3060
844
+ },
845
+ {
846
+ "epoch": 0.48730484150764863,
847
+ "grad_norm": 0.7312873601913452,
848
+ "learning_rate": 9.055845594051574e-05,
849
+ "loss": 0.7059,
850
+ "step": 3090
851
+ },
852
+ {
853
+ "epoch": 0.4920359564737423,
854
+ "grad_norm": 0.5961809158325195,
855
+ "learning_rate": 9.046353425090967e-05,
856
+ "loss": 0.7033,
857
+ "step": 3120
858
+ },
859
+ {
860
+ "epoch": 0.496767071439836,
861
+ "grad_norm": 0.6955564022064209,
862
+ "learning_rate": 9.03686125613036e-05,
863
+ "loss": 0.7289,
864
+ "step": 3150
865
+ },
866
+ {
867
+ "epoch": 0.5014981864059297,
868
+ "grad_norm": 0.6622660160064697,
869
+ "learning_rate": 9.027369087169752e-05,
870
+ "loss": 0.6935,
871
+ "step": 3180
872
+ },
873
+ {
874
+ "epoch": 0.5046522630499921,
875
+ "eval_loss": 0.7775673270225525,
876
+ "eval_runtime": 3.754,
877
+ "eval_samples_per_second": 26.904,
878
+ "eval_steps_per_second": 3.463,
879
+ "step": 3200
880
+ },
881
+ {
882
+ "epoch": 0.5062293013720234,
883
+ "grad_norm": 0.7262014746665955,
884
+ "learning_rate": 9.017876918209145e-05,
885
+ "loss": 0.6906,
886
+ "step": 3210
887
+ },
888
+ {
889
+ "epoch": 0.5109604163381171,
890
+ "grad_norm": 0.7221697568893433,
891
+ "learning_rate": 9.008384749248537e-05,
892
+ "loss": 0.7079,
893
+ "step": 3240
894
+ },
895
+ {
896
+ "epoch": 0.5156915313042106,
897
+ "grad_norm": 0.7115603089332581,
898
+ "learning_rate": 8.99889258028793e-05,
899
+ "loss": 0.7191,
900
+ "step": 3270
901
+ },
902
+ {
903
+ "epoch": 0.5204226462703043,
904
+ "grad_norm": 0.7292232513427734,
905
+ "learning_rate": 8.989400411327322e-05,
906
+ "loss": 0.6702,
907
+ "step": 3300
908
+ },
909
+ {
910
+ "epoch": 0.525153761236398,
911
+ "grad_norm": 0.741580605506897,
912
+ "learning_rate": 8.979908242366715e-05,
913
+ "loss": 0.6762,
914
+ "step": 3330
915
+ },
916
+ {
917
+ "epoch": 0.5298848762024917,
918
+ "grad_norm": 0.7870708107948303,
919
+ "learning_rate": 8.970416073406108e-05,
920
+ "loss": 0.6838,
921
+ "step": 3360
922
+ },
923
+ {
924
+ "epoch": 0.5346159911685854,
925
+ "grad_norm": 0.71812903881073,
926
+ "learning_rate": 8.9609239044455e-05,
927
+ "loss": 0.7174,
928
+ "step": 3390
929
+ },
930
+ {
931
+ "epoch": 0.5361930294906166,
932
+ "eval_loss": 0.7375061511993408,
933
+ "eval_runtime": 3.7548,
934
+ "eval_samples_per_second": 26.899,
935
+ "eval_steps_per_second": 3.462,
936
+ "step": 3400
937
+ },
938
+ {
939
+ "epoch": 0.5393471061346791,
940
+ "grad_norm": 0.7266995906829834,
941
+ "learning_rate": 8.951431735484893e-05,
942
+ "loss": 0.6763,
943
+ "step": 3420
944
+ },
945
+ {
946
+ "epoch": 0.5440782211007728,
947
+ "grad_norm": 0.7786857485771179,
948
+ "learning_rate": 8.941939566524284e-05,
949
+ "loss": 0.7149,
950
+ "step": 3450
951
+ },
952
+ {
953
+ "epoch": 0.5488093360668664,
954
+ "grad_norm": 0.7807109355926514,
955
+ "learning_rate": 8.932447397563677e-05,
956
+ "loss": 0.6534,
957
+ "step": 3480
958
+ },
959
+ {
960
+ "epoch": 0.5535404510329601,
961
+ "grad_norm": 0.6960239410400391,
962
+ "learning_rate": 8.922955228603069e-05,
963
+ "loss": 0.7313,
964
+ "step": 3510
965
+ },
966
+ {
967
+ "epoch": 0.5582715659990538,
968
+ "grad_norm": 0.586615264415741,
969
+ "learning_rate": 8.913463059642462e-05,
970
+ "loss": 0.6579,
971
+ "step": 3540
972
+ },
973
+ {
974
+ "epoch": 0.5630026809651475,
975
+ "grad_norm": 0.9740248918533325,
976
+ "learning_rate": 8.903970890681854e-05,
977
+ "loss": 0.7013,
978
+ "step": 3570
979
+ },
980
+ {
981
+ "epoch": 0.5677337959312412,
982
+ "grad_norm": 0.6628558039665222,
983
+ "learning_rate": 8.894478721721247e-05,
984
+ "loss": 0.6546,
985
+ "step": 3600
986
+ },
987
+ {
988
+ "epoch": 0.5677337959312412,
989
+ "eval_loss": 0.7031014561653137,
990
+ "eval_runtime": 3.7542,
991
+ "eval_samples_per_second": 26.903,
992
+ "eval_steps_per_second": 3.463,
993
+ "step": 3600
994
+ },
995
+ {
996
+ "epoch": 0.5724649108973348,
997
+ "grad_norm": 0.6030669808387756,
998
+ "learning_rate": 8.884986552760639e-05,
999
+ "loss": 0.7146,
1000
+ "step": 3630
1001
+ },
1002
+ {
1003
+ "epoch": 0.5771960258634284,
1004
+ "grad_norm": 0.6010313034057617,
1005
+ "learning_rate": 8.875494383800032e-05,
1006
+ "loss": 0.6816,
1007
+ "step": 3660
1008
+ },
1009
+ {
1010
+ "epoch": 0.5819271408295221,
1011
+ "grad_norm": 0.6319311857223511,
1012
+ "learning_rate": 8.866002214839425e-05,
1013
+ "loss": 0.6642,
1014
+ "step": 3690
1015
+ },
1016
+ {
1017
+ "epoch": 0.5866582557956158,
1018
+ "grad_norm": 0.6059941053390503,
1019
+ "learning_rate": 8.856510045878817e-05,
1020
+ "loss": 0.6998,
1021
+ "step": 3720
1022
+ },
1023
+ {
1024
+ "epoch": 0.5913893707617095,
1025
+ "grad_norm": 0.5976997017860413,
1026
+ "learning_rate": 8.84701787691821e-05,
1027
+ "loss": 0.6694,
1028
+ "step": 3750
1029
+ },
1030
+ {
1031
+ "epoch": 0.5961204857278032,
1032
+ "grad_norm": 0.6985177993774414,
1033
+ "learning_rate": 8.837525707957602e-05,
1034
+ "loss": 0.6402,
1035
+ "step": 3780
1036
+ },
1037
+ {
1038
+ "epoch": 0.5992745623718656,
1039
+ "eval_loss": 0.6977850198745728,
1040
+ "eval_runtime": 3.7545,
1041
+ "eval_samples_per_second": 26.901,
1042
+ "eval_steps_per_second": 3.462,
1043
+ "step": 3800
1044
+ },
1045
+ {
1046
+ "epoch": 0.6008516006938969,
1047
+ "grad_norm": 0.7076742053031921,
1048
+ "learning_rate": 8.828033538996995e-05,
1049
+ "loss": 0.6749,
1050
+ "step": 3810
1051
+ },
1052
+ {
1053
+ "epoch": 0.6055827156599906,
1054
+ "grad_norm": 0.9254401326179504,
1055
+ "learning_rate": 8.818541370036387e-05,
1056
+ "loss": 0.6481,
1057
+ "step": 3840
1058
+ },
1059
+ {
1060
+ "epoch": 0.6103138306260842,
1061
+ "grad_norm": 0.7403334379196167,
1062
+ "learning_rate": 8.80904920107578e-05,
1063
+ "loss": 0.6704,
1064
+ "step": 3870
1065
+ },
1066
+ {
1067
+ "epoch": 0.6150449455921779,
1068
+ "grad_norm": 0.6302973628044128,
1069
+ "learning_rate": 8.799557032115171e-05,
1070
+ "loss": 0.6717,
1071
+ "step": 3900
1072
+ },
1073
+ {
1074
+ "epoch": 0.6197760605582716,
1075
+ "grad_norm": 0.7587308287620544,
1076
+ "learning_rate": 8.790064863154565e-05,
1077
+ "loss": 0.6526,
1078
+ "step": 3930
1079
+ },
1080
+ {
1081
+ "epoch": 0.6245071755243652,
1082
+ "grad_norm": 0.768151581287384,
1083
+ "learning_rate": 8.780572694193956e-05,
1084
+ "loss": 0.6614,
1085
+ "step": 3960
1086
+ },
1087
+ {
1088
+ "epoch": 0.6292382904904589,
1089
+ "grad_norm": 0.662624716758728,
1090
+ "learning_rate": 8.77108052523335e-05,
1091
+ "loss": 0.6471,
1092
+ "step": 3990
1093
+ },
1094
+ {
1095
+ "epoch": 0.6308153288124901,
1096
+ "eval_loss": 0.6685364246368408,
1097
+ "eval_runtime": 3.7533,
1098
+ "eval_samples_per_second": 26.909,
1099
+ "eval_steps_per_second": 3.464,
1100
+ "step": 4000
1101
+ },
1102
+ {
1103
+ "epoch": 0.6339694054565526,
1104
+ "grad_norm": 0.614434540271759,
1105
+ "learning_rate": 8.761588356272743e-05,
1106
+ "loss": 0.6305,
1107
+ "step": 4020
1108
+ },
1109
+ {
1110
+ "epoch": 0.6387005204226462,
1111
+ "grad_norm": 0.7292618751525879,
1112
+ "learning_rate": 8.752096187312134e-05,
1113
+ "loss": 0.632,
1114
+ "step": 4050
1115
+ },
1116
+ {
1117
+ "epoch": 0.6434316353887399,
1118
+ "grad_norm": 0.5890663862228394,
1119
+ "learning_rate": 8.742604018351527e-05,
1120
+ "loss": 0.6594,
1121
+ "step": 4080
1122
+ },
1123
+ {
1124
+ "epoch": 0.6481627503548336,
1125
+ "grad_norm": 0.6511669158935547,
1126
+ "learning_rate": 8.733111849390919e-05,
1127
+ "loss": 0.6417,
1128
+ "step": 4110
1129
+ },
1130
+ {
1131
+ "epoch": 0.6528938653209273,
1132
+ "grad_norm": 0.6794877648353577,
1133
+ "learning_rate": 8.723619680430312e-05,
1134
+ "loss": 0.6472,
1135
+ "step": 4140
1136
+ },
1137
+ {
1138
+ "epoch": 0.657624980287021,
1139
+ "grad_norm": 0.5826547145843506,
1140
+ "learning_rate": 8.714127511469704e-05,
1141
+ "loss": 0.6255,
1142
+ "step": 4170
1143
+ },
1144
+ {
1145
+ "epoch": 0.6623560952531147,
1146
+ "grad_norm": 0.8411812782287598,
1147
+ "learning_rate": 8.704635342509097e-05,
1148
+ "loss": 0.6368,
1149
+ "step": 4200
1150
+ },
1151
+ {
1152
+ "epoch": 0.6623560952531147,
1153
+ "eval_loss": 0.6538847088813782,
1154
+ "eval_runtime": 3.7543,
1155
+ "eval_samples_per_second": 26.903,
1156
+ "eval_steps_per_second": 3.463,
1157
+ "step": 4200
1158
+ },
1159
+ {
1160
+ "epoch": 0.6670872102192084,
1161
+ "grad_norm": 0.5682166218757629,
1162
+ "learning_rate": 8.69514317354849e-05,
1163
+ "loss": 0.6269,
1164
+ "step": 4230
1165
+ },
1166
+ {
1167
+ "epoch": 0.671818325185302,
1168
+ "grad_norm": 0.6340855360031128,
1169
+ "learning_rate": 8.685651004587882e-05,
1170
+ "loss": 0.6423,
1171
+ "step": 4260
1172
+ },
1173
+ {
1174
+ "epoch": 0.6765494401513957,
1175
+ "grad_norm": 0.6693681478500366,
1176
+ "learning_rate": 8.676158835627275e-05,
1177
+ "loss": 0.6471,
1178
+ "step": 4290
1179
+ },
1180
+ {
1181
+ "epoch": 0.6812805551174893,
1182
+ "grad_norm": 0.6101056337356567,
1183
+ "learning_rate": 8.666666666666667e-05,
1184
+ "loss": 0.6168,
1185
+ "step": 4320
1186
+ },
1187
+ {
1188
+ "epoch": 0.686011670083583,
1189
+ "grad_norm": 0.6096228361129761,
1190
+ "learning_rate": 8.65717449770606e-05,
1191
+ "loss": 0.6494,
1192
+ "step": 4350
1193
+ },
1194
+ {
1195
+ "epoch": 0.6907427850496767,
1196
+ "grad_norm": 0.6632306575775146,
1197
+ "learning_rate": 8.647682328745452e-05,
1198
+ "loss": 0.664,
1199
+ "step": 4380
1200
+ },
1201
+ {
1202
+ "epoch": 0.6938968616937392,
1203
+ "eval_loss": 0.6377571225166321,
1204
+ "eval_runtime": 3.756,
1205
+ "eval_samples_per_second": 26.89,
1206
+ "eval_steps_per_second": 3.461,
1207
+ "step": 4400
1208
+ },
1209
+ {
1210
+ "epoch": 0.6954739000157704,
1211
+ "grad_norm": 0.6547721028327942,
1212
+ "learning_rate": 8.638190159784845e-05,
1213
+ "loss": 0.6091,
1214
+ "step": 4410
1215
+ },
1216
+ {
1217
+ "epoch": 0.700205014981864,
1218
+ "grad_norm": 0.6063847541809082,
1219
+ "learning_rate": 8.628697990824237e-05,
1220
+ "loss": 0.6055,
1221
+ "step": 4440
1222
+ },
1223
+ {
1224
+ "epoch": 0.7049361299479577,
1225
+ "grad_norm": 0.6687933802604675,
1226
+ "learning_rate": 8.61920582186363e-05,
1227
+ "loss": 0.601,
1228
+ "step": 4470
1229
+ },
1230
+ {
1231
+ "epoch": 0.7096672449140514,
1232
+ "grad_norm": 0.701770007610321,
1233
+ "learning_rate": 8.609713652903021e-05,
1234
+ "loss": 0.6064,
1235
+ "step": 4500
1236
+ },
1237
+ {
1238
+ "epoch": 0.7143983598801451,
1239
+ "grad_norm": 0.6652805209159851,
1240
+ "learning_rate": 8.600221483942414e-05,
1241
+ "loss": 0.653,
1242
+ "step": 4530
1243
+ },
1244
+ {
1245
+ "epoch": 0.7191294748462388,
1246
+ "grad_norm": 0.6469018459320068,
1247
+ "learning_rate": 8.590729314981806e-05,
1248
+ "loss": 0.6019,
1249
+ "step": 4560
1250
+ },
1251
+ {
1252
+ "epoch": 0.7238605898123325,
1253
+ "grad_norm": 0.6343564391136169,
1254
+ "learning_rate": 8.5812371460212e-05,
1255
+ "loss": 0.6083,
1256
+ "step": 4590
1257
+ },
1258
+ {
1259
+ "epoch": 0.7254376281343636,
1260
+ "eval_loss": 0.6411118507385254,
1261
+ "eval_runtime": 3.754,
1262
+ "eval_samples_per_second": 26.905,
1263
+ "eval_steps_per_second": 3.463,
1264
+ "step": 4600
1265
+ },
1266
+ {
1267
+ "epoch": 0.7285917047784262,
1268
+ "grad_norm": 0.5817134976387024,
1269
+ "learning_rate": 8.571744977060592e-05,
1270
+ "loss": 0.602,
1271
+ "step": 4620
1272
+ },
1273
+ {
1274
+ "epoch": 0.7333228197445197,
1275
+ "grad_norm": 0.5552039742469788,
1276
+ "learning_rate": 8.562252808099984e-05,
1277
+ "loss": 0.6223,
1278
+ "step": 4650
1279
+ },
1280
+ {
1281
+ "epoch": 0.7380539347106134,
1282
+ "grad_norm": 0.6455065011978149,
1283
+ "learning_rate": 8.552760639139377e-05,
1284
+ "loss": 0.5865,
1285
+ "step": 4680
1286
+ },
1287
+ {
1288
+ "epoch": 0.7427850496767071,
1289
+ "grad_norm": 0.6448588371276855,
1290
+ "learning_rate": 8.543268470178769e-05,
1291
+ "loss": 0.6126,
1292
+ "step": 4710
1293
+ },
1294
+ {
1295
+ "epoch": 0.7475161646428008,
1296
+ "grad_norm": 0.6447100639343262,
1297
+ "learning_rate": 8.533776301218162e-05,
1298
+ "loss": 0.6167,
1299
+ "step": 4740
1300
+ },
1301
+ {
1302
+ "epoch": 0.7522472796088945,
1303
+ "grad_norm": 0.6894412636756897,
1304
+ "learning_rate": 8.524284132257555e-05,
1305
+ "loss": 0.5851,
1306
+ "step": 4770
1307
+ },
1308
+ {
1309
+ "epoch": 0.7569783945749882,
1310
+ "grad_norm": 0.6036236882209778,
1311
+ "learning_rate": 8.514791963296947e-05,
1312
+ "loss": 0.6025,
1313
+ "step": 4800
1314
+ },
1315
+ {
1316
+ "epoch": 0.7569783945749882,
1317
+ "eval_loss": 0.6117845177650452,
1318
+ "eval_runtime": 3.7554,
1319
+ "eval_samples_per_second": 26.894,
1320
+ "eval_steps_per_second": 3.462,
1321
+ "step": 4800
1322
+ },
1323
+ {
1324
+ "epoch": 0.7617095095410819,
1325
+ "grad_norm": 0.6214340925216675,
1326
+ "learning_rate": 8.50529979433634e-05,
1327
+ "loss": 0.6145,
1328
+ "step": 4830
1329
+ },
1330
+ {
1331
+ "epoch": 0.7664406245071755,
1332
+ "grad_norm": 0.6933445334434509,
1333
+ "learning_rate": 8.495807625375732e-05,
1334
+ "loss": 0.6184,
1335
+ "step": 4860
1336
+ },
1337
+ {
1338
+ "epoch": 0.7711717394732692,
1339
+ "grad_norm": 0.5649739503860474,
1340
+ "learning_rate": 8.486315456415125e-05,
1341
+ "loss": 0.5996,
1342
+ "step": 4890
1343
+ },
1344
+ {
1345
+ "epoch": 0.7759028544393629,
1346
+ "grad_norm": 0.6250168085098267,
1347
+ "learning_rate": 8.476823287454517e-05,
1348
+ "loss": 0.5762,
1349
+ "step": 4920
1350
+ },
1351
+ {
1352
+ "epoch": 0.7806339694054566,
1353
+ "grad_norm": 1.7125053405761719,
1354
+ "learning_rate": 8.46733111849391e-05,
1355
+ "loss": 0.5716,
1356
+ "step": 4950
1357
+ },
1358
+ {
1359
+ "epoch": 0.7853650843715503,
1360
+ "grad_norm": 0.5721966028213501,
1361
+ "learning_rate": 8.457838949533302e-05,
1362
+ "loss": 0.5612,
1363
+ "step": 4980
1364
+ },
1365
+ {
1366
+ "epoch": 0.7885191610156127,
1367
+ "eval_loss": 0.5980841517448425,
1368
+ "eval_runtime": 3.7547,
1369
+ "eval_samples_per_second": 26.9,
1370
+ "eval_steps_per_second": 3.462,
1371
+ "step": 5000
1372
+ },
1373
+ {
1374
+ "epoch": 0.7900961993376439,
1375
+ "grad_norm": 0.6716078519821167,
1376
+ "learning_rate": 8.448346780572695e-05,
1377
+ "loss": 0.5765,
1378
+ "step": 5010
1379
+ },
1380
+ {
1381
+ "epoch": 0.7948273143037375,
1382
+ "grad_norm": 0.6005885601043701,
1383
+ "learning_rate": 8.438854611612086e-05,
1384
+ "loss": 0.5941,
1385
+ "step": 5040
1386
+ },
1387
+ {
1388
+ "epoch": 0.7995584292698312,
1389
+ "grad_norm": 0.6507188081741333,
1390
+ "learning_rate": 8.42936244265148e-05,
1391
+ "loss": 0.5827,
1392
+ "step": 5070
1393
+ },
1394
+ {
1395
+ "epoch": 0.8042895442359249,
1396
+ "grad_norm": 0.7276827096939087,
1397
+ "learning_rate": 8.419870273690871e-05,
1398
+ "loss": 0.5555,
1399
+ "step": 5100
1400
+ },
1401
+ {
1402
+ "epoch": 0.8090206592020186,
1403
+ "grad_norm": 0.6792399287223816,
1404
+ "learning_rate": 8.410378104730264e-05,
1405
+ "loss": 0.5724,
1406
+ "step": 5130
1407
+ },
1408
+ {
1409
+ "epoch": 0.8137517741681123,
1410
+ "grad_norm": 0.7074045538902283,
1411
+ "learning_rate": 8.400885935769656e-05,
1412
+ "loss": 0.5724,
1413
+ "step": 5160
1414
+ },
1415
+ {
1416
+ "epoch": 0.818482889134206,
1417
+ "grad_norm": 0.6056311130523682,
1418
+ "learning_rate": 8.391393766809049e-05,
1419
+ "loss": 0.5546,
1420
+ "step": 5190
1421
+ },
1422
+ {
1423
+ "epoch": 0.8200599274562372,
1424
+ "eval_loss": 0.5805890560150146,
1425
+ "eval_runtime": 3.7561,
1426
+ "eval_samples_per_second": 26.889,
1427
+ "eval_steps_per_second": 3.461,
1428
+ "step": 5200
1429
+ },
1430
+ {
1431
+ "epoch": 0.8232140041002997,
1432
+ "grad_norm": 0.6667674779891968,
1433
+ "learning_rate": 8.381901597848441e-05,
1434
+ "loss": 0.6173,
1435
+ "step": 5220
1436
+ },
1437
+ {
1438
+ "epoch": 0.8279451190663933,
1439
+ "grad_norm": 0.607284426689148,
1440
+ "learning_rate": 8.372409428887834e-05,
1441
+ "loss": 0.5781,
1442
+ "step": 5250
1443
+ },
1444
+ {
1445
+ "epoch": 0.832676234032487,
1446
+ "grad_norm": 0.6476745009422302,
1447
+ "learning_rate": 8.362917259927227e-05,
1448
+ "loss": 0.5667,
1449
+ "step": 5280
1450
+ },
1451
+ {
1452
+ "epoch": 0.8374073489985807,
1453
+ "grad_norm": 0.6668260097503662,
1454
+ "learning_rate": 8.35342509096662e-05,
1455
+ "loss": 0.5456,
1456
+ "step": 5310
1457
+ },
1458
+ {
1459
+ "epoch": 0.8421384639646743,
1460
+ "grad_norm": 0.585110068321228,
1461
+ "learning_rate": 8.343932922006012e-05,
1462
+ "loss": 0.5648,
1463
+ "step": 5340
1464
+ },
1465
+ {
1466
+ "epoch": 0.846869578930768,
1467
+ "grad_norm": 0.6268571019172668,
1468
+ "learning_rate": 8.334757158677425e-05,
1469
+ "loss": 0.555,
1470
+ "step": 5370
1471
+ },
1472
+ {
1473
+ "epoch": 0.8516006938968617,
1474
+ "grad_norm": 0.6197232604026794,
1475
+ "learning_rate": 8.325264989716818e-05,
1476
+ "loss": 0.5333,
1477
+ "step": 5400
1478
+ },
1479
+ {
1480
+ "epoch": 0.8516006938968617,
1481
+ "eval_loss": 0.5601951479911804,
1482
+ "eval_runtime": 3.7534,
1483
+ "eval_samples_per_second": 26.909,
1484
+ "eval_steps_per_second": 3.464,
1485
+ "step": 5400
1486
+ },
1487
+ {
1488
+ "epoch": 0.8563318088629553,
1489
+ "grad_norm": 0.63880455493927,
1490
+ "learning_rate": 8.31577282075621e-05,
1491
+ "loss": 0.5602,
1492
+ "step": 5430
1493
+ },
1494
+ {
1495
+ "epoch": 0.861062923829049,
1496
+ "grad_norm": 0.6235695481300354,
1497
+ "learning_rate": 8.306280651795603e-05,
1498
+ "loss": 0.5604,
1499
+ "step": 5460
1500
+ },
1501
+ {
1502
+ "epoch": 0.8657940387951427,
1503
+ "grad_norm": 0.9000911712646484,
1504
+ "learning_rate": 8.296788482834995e-05,
1505
+ "loss": 0.5654,
1506
+ "step": 5490
1507
+ },
1508
+ {
1509
+ "epoch": 0.8705251537612364,
1510
+ "grad_norm": 0.6557802557945251,
1511
+ "learning_rate": 8.287612719506408e-05,
1512
+ "loss": 0.5962,
1513
+ "step": 5520
1514
+ },
1515
+ {
1516
+ "epoch": 0.8752562687273301,
1517
+ "grad_norm": 0.6231096982955933,
1518
+ "learning_rate": 8.278120550545801e-05,
1519
+ "loss": 0.5636,
1520
+ "step": 5550
1521
+ },
1522
+ {
1523
+ "epoch": 0.8799873836934238,
1524
+ "grad_norm": 0.5984258651733398,
1525
+ "learning_rate": 8.268628381585192e-05,
1526
+ "loss": 0.5616,
1527
+ "step": 5580
1528
+ },
1529
+ {
1530
+ "epoch": 0.8831414603374862,
1531
+ "eval_loss": 0.5611711740493774,
1532
+ "eval_runtime": 3.7542,
1533
+ "eval_samples_per_second": 26.903,
1534
+ "eval_steps_per_second": 3.463,
1535
+ "step": 5600
1536
+ },
1537
+ {
1538
+ "epoch": 0.8847184986595175,
1539
+ "grad_norm": 0.5818042159080505,
1540
+ "learning_rate": 8.259452618256605e-05,
1541
+ "loss": 0.5316,
1542
+ "step": 5610
1543
+ },
1544
+ {
1545
+ "epoch": 0.8894496136256111,
1546
+ "grad_norm": 0.7120912671089172,
1547
+ "learning_rate": 8.249960449295998e-05,
1548
+ "loss": 0.5556,
1549
+ "step": 5640
1550
+ },
1551
+ {
1552
+ "epoch": 0.8941807285917048,
1553
+ "grad_norm": 0.6223446130752563,
1554
+ "learning_rate": 8.24046828033539e-05,
1555
+ "loss": 0.5452,
1556
+ "step": 5670
1557
+ },
1558
+ {
1559
+ "epoch": 0.8989118435577984,
1560
+ "grad_norm": 0.6196858286857605,
1561
+ "learning_rate": 8.230976111374783e-05,
1562
+ "loss": 0.5601,
1563
+ "step": 5700
1564
+ },
1565
+ {
1566
+ "epoch": 0.9036429585238921,
1567
+ "grad_norm": 0.6353973150253296,
1568
+ "learning_rate": 8.221483942414175e-05,
1569
+ "loss": 0.5402,
1570
+ "step": 5730
1571
+ },
1572
+ {
1573
+ "epoch": 0.9083740734899858,
1574
+ "grad_norm": 0.6631510257720947,
1575
+ "learning_rate": 8.211991773453568e-05,
1576
+ "loss": 0.5382,
1577
+ "step": 5760
1578
+ },
1579
+ {
1580
+ "epoch": 0.9131051884560795,
1581
+ "grad_norm": 0.6404465436935425,
1582
+ "learning_rate": 8.20249960449296e-05,
1583
+ "loss": 0.5298,
1584
+ "step": 5790
1585
+ },
1586
+ {
1587
+ "epoch": 0.9146822267781107,
1588
+ "eval_loss": 0.560188353061676,
1589
+ "eval_runtime": 3.7541,
1590
+ "eval_samples_per_second": 26.904,
1591
+ "eval_steps_per_second": 3.463,
1592
+ "step": 5800
1593
+ },
1594
+ {
1595
+ "epoch": 0.9178363034221731,
1596
+ "grad_norm": 0.6810153126716614,
1597
+ "learning_rate": 8.193007435532353e-05,
1598
+ "loss": 0.5159,
1599
+ "step": 5820
1600
+ },
1601
+ {
1602
+ "epoch": 0.9225674183882668,
1603
+ "grad_norm": 0.5828801989555359,
1604
+ "learning_rate": 8.183515266571745e-05,
1605
+ "loss": 0.5155,
1606
+ "step": 5850
1607
+ },
1608
+ {
1609
+ "epoch": 0.9272985333543605,
1610
+ "grad_norm": 0.538987934589386,
1611
+ "learning_rate": 8.174023097611138e-05,
1612
+ "loss": 0.5273,
1613
+ "step": 5880
1614
+ },
1615
+ {
1616
+ "epoch": 0.9320296483204542,
1617
+ "grad_norm": 0.6222363114356995,
1618
+ "learning_rate": 8.16453092865053e-05,
1619
+ "loss": 0.526,
1620
+ "step": 5910
1621
+ },
1622
+ {
1623
+ "epoch": 0.9367607632865479,
1624
+ "grad_norm": 0.542966902256012,
1625
+ "learning_rate": 8.155038759689923e-05,
1626
+ "loss": 0.5653,
1627
+ "step": 5940
1628
+ },
1629
+ {
1630
+ "epoch": 0.9414918782526416,
1631
+ "grad_norm": 0.7064533829689026,
1632
+ "learning_rate": 8.145546590729315e-05,
1633
+ "loss": 0.5207,
1634
+ "step": 5970
1635
+ },
1636
+ {
1637
+ "epoch": 0.9462229932187353,
1638
+ "grad_norm": 0.6652514934539795,
1639
+ "learning_rate": 8.136054421768708e-05,
1640
+ "loss": 0.5342,
1641
+ "step": 6000
1642
+ },
1643
+ {
1644
+ "epoch": 0.9462229932187353,
1645
+ "eval_loss": 0.5476773977279663,
1646
+ "eval_runtime": 3.7543,
1647
+ "eval_samples_per_second": 26.902,
1648
+ "eval_steps_per_second": 3.463,
1649
+ "step": 6000
1650
+ },
1651
+ {
1652
+ "epoch": 0.9509541081848288,
1653
+ "grad_norm": 0.6436010003089905,
1654
+ "learning_rate": 8.126562252808101e-05,
1655
+ "loss": 0.536,
1656
+ "step": 6030
1657
+ },
1658
+ {
1659
+ "epoch": 0.9556852231509225,
1660
+ "grad_norm": 0.5532657504081726,
1661
+ "learning_rate": 8.117070083847494e-05,
1662
+ "loss": 0.5261,
1663
+ "step": 6060
1664
+ },
1665
+ {
1666
+ "epoch": 0.9604163381170162,
1667
+ "grad_norm": 0.6539950370788574,
1668
+ "learning_rate": 8.107577914886886e-05,
1669
+ "loss": 0.5226,
1670
+ "step": 6090
1671
+ },
1672
+ {
1673
+ "epoch": 0.9651474530831099,
1674
+ "grad_norm": 0.5767289996147156,
1675
+ "learning_rate": 8.098085745926279e-05,
1676
+ "loss": 0.534,
1677
+ "step": 6120
1678
+ },
1679
+ {
1680
+ "epoch": 0.9698785680492036,
1681
+ "grad_norm": 0.6355389356613159,
1682
+ "learning_rate": 8.08859357696567e-05,
1683
+ "loss": 0.5282,
1684
+ "step": 6150
1685
+ },
1686
+ {
1687
+ "epoch": 0.9746096830152973,
1688
+ "grad_norm": 0.6711322665214539,
1689
+ "learning_rate": 8.079101408005064e-05,
1690
+ "loss": 0.5384,
1691
+ "step": 6180
1692
+ },
1693
+ {
1694
+ "epoch": 0.9777637596593597,
1695
+ "eval_loss": 0.5372142195701599,
1696
+ "eval_runtime": 3.7547,
1697
+ "eval_samples_per_second": 26.899,
1698
+ "eval_steps_per_second": 3.462,
1699
+ "step": 6200
1700
+ },
1701
+ {
1702
+ "epoch": 0.979340797981391,
1703
+ "grad_norm": 0.5990795493125916,
1704
+ "learning_rate": 8.069609239044455e-05,
1705
+ "loss": 0.4624,
1706
+ "step": 6210
1707
+ },
1708
+ {
1709
+ "epoch": 0.9840719129474846,
1710
+ "grad_norm": 0.6971167325973511,
1711
+ "learning_rate": 8.060117070083848e-05,
1712
+ "loss": 0.5015,
1713
+ "step": 6240
1714
+ },
1715
+ {
1716
+ "epoch": 0.9888030279135783,
1717
+ "grad_norm": 0.6699081659317017,
1718
+ "learning_rate": 8.05062490112324e-05,
1719
+ "loss": 0.5325,
1720
+ "step": 6270
1721
+ },
1722
+ {
1723
+ "epoch": 0.993534142879672,
1724
+ "grad_norm": 0.6347541213035583,
1725
+ "learning_rate": 8.041132732162633e-05,
1726
+ "loss": 0.5255,
1727
+ "step": 6300
1728
+ },
1729
+ {
1730
+ "epoch": 0.9982652578457657,
1731
+ "grad_norm": 0.7587487101554871,
1732
+ "learning_rate": 8.031640563202025e-05,
1733
+ "loss": 0.5154,
1734
+ "step": 6330
1735
+ }
1736
+ ],
1737
+ "logging_steps": 30,
1738
+ "max_steps": 31705,
1739
+ "num_input_tokens_seen": 0,
1740
+ "num_train_epochs": 5,
1741
+ "save_steps": 500,
1742
+ "stateful_callbacks": {
1743
+ "TrainerControl": {
1744
+ "args": {
1745
+ "should_epoch_stop": false,
1746
+ "should_evaluate": false,
1747
+ "should_log": false,
1748
+ "should_save": true,
1749
+ "should_training_stop": false
1750
+ },
1751
+ "attributes": {}
1752
+ }
1753
+ },
1754
+ "total_flos": 2.9843838888449147e+18,
1755
+ "train_batch_size": 2,
1756
+ "trial_name": null,
1757
+ "trial_params": null
1758
+ }
checkpoint-6341/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a54e267381bb5495a94c0e010aacd60a26fbc7a49b6188c7488c38be0ea28c37
3
+ size 6267
checkpoint-6341/zero_to_fp32.py ADDED
@@ -0,0 +1,604 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example: python zero_to_fp32.py . pytorch_model.bin
14
+
15
+ import argparse
16
+ import torch
17
+ import glob
18
+ import math
19
+ import os
20
+ import re
21
+ from collections import OrderedDict
22
+ from dataclasses import dataclass
23
+
24
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
25
+ # DeepSpeed data structures it has to be available in the current python environment.
26
+ from deepspeed.utils import logger
27
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
28
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
29
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
30
+
31
+
32
+ @dataclass
33
+ class zero_model_state:
34
+ buffers: dict()
35
+ param_shapes: dict()
36
+ shared_params: list
37
+ ds_version: int
38
+ frozen_param_shapes: dict()
39
+ frozen_param_fragments: dict()
40
+
41
+
42
+ debug = 0
43
+
44
+ # load to cpu
45
+ device = torch.device('cpu')
46
+
47
+
48
+ def atoi(text):
49
+ return int(text) if text.isdigit() else text
50
+
51
+
52
+ def natural_keys(text):
53
+ '''
54
+ alist.sort(key=natural_keys) sorts in human order
55
+ http://nedbatchelder.com/blog/200712/human_sorting.html
56
+ (See Toothy's implementation in the comments)
57
+ '''
58
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
59
+
60
+
61
+ def get_model_state_file(checkpoint_dir, zero_stage):
62
+ if not os.path.isdir(checkpoint_dir):
63
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
64
+
65
+ # there should be only one file
66
+ if zero_stage <= 2:
67
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
68
+ elif zero_stage == 3:
69
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
70
+
71
+ if not os.path.exists(file):
72
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
73
+
74
+ return file
75
+
76
+
77
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
78
+ # XXX: need to test that this simple glob rule works for multi-node setup too
79
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
80
+
81
+ if len(ckpt_files) == 0:
82
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
83
+
84
+ return ckpt_files
85
+
86
+
87
+ def get_optim_files(checkpoint_dir):
88
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
89
+
90
+
91
+ def get_model_state_files(checkpoint_dir):
92
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
93
+
94
+
95
+ def parse_model_states(files):
96
+ zero_model_states = []
97
+ for file in files:
98
+ state_dict = torch.load(file, map_location=device)
99
+
100
+ if BUFFER_NAMES not in state_dict:
101
+ raise ValueError(f"{file} is not a model state checkpoint")
102
+ buffer_names = state_dict[BUFFER_NAMES]
103
+ if debug:
104
+ print("Found buffers:", buffer_names)
105
+
106
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
107
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
108
+ param_shapes = state_dict[PARAM_SHAPES]
109
+
110
+ # collect parameters that are included in param_shapes
111
+ param_names = []
112
+ for s in param_shapes:
113
+ for name in s.keys():
114
+ param_names.append(name)
115
+
116
+ # update with frozen parameters
117
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
118
+ if frozen_param_shapes is not None:
119
+ if debug:
120
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
121
+ param_names += list(frozen_param_shapes.keys())
122
+
123
+ # handle shared params
124
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
125
+
126
+ ds_version = state_dict.get(DS_VERSION, None)
127
+
128
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
129
+
130
+ z_model_state = zero_model_state(buffers=buffers,
131
+ param_shapes=param_shapes,
132
+ shared_params=shared_params,
133
+ ds_version=ds_version,
134
+ frozen_param_shapes=frozen_param_shapes,
135
+ frozen_param_fragments=frozen_param_fragments)
136
+ zero_model_states.append(z_model_state)
137
+
138
+ return zero_model_states
139
+
140
+
141
+ def parse_optim_states(files, ds_checkpoint_dir):
142
+
143
+ total_files = len(files)
144
+ state_dicts = []
145
+ for f in files:
146
+ state_dict = torch.load(f, map_location=device)
147
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
148
+ # and also handle the case where it was already removed by another helper script
149
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
150
+ state_dicts.append(state_dict)
151
+
152
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
153
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
154
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
155
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
156
+
157
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
158
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
159
+ # use the max of the partition_count to get the dp world_size.
160
+
161
+ if type(world_size) is list:
162
+ world_size = max(world_size)
163
+
164
+ if world_size != total_files:
165
+ raise ValueError(
166
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
167
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
168
+ )
169
+
170
+ # the groups are named differently in each stage
171
+ if zero_stage <= 2:
172
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
173
+ elif zero_stage == 3:
174
+ fp32_groups_key = FP32_FLAT_GROUPS
175
+ else:
176
+ raise ValueError(f"unknown zero stage {zero_stage}")
177
+
178
+ if zero_stage <= 2:
179
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
180
+ elif zero_stage == 3:
181
+ # if there is more than one param group, there will be multiple flattened tensors - one
182
+ # flattened tensor per group - for simplicity merge them into a single tensor
183
+ #
184
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
185
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
186
+
187
+ fp32_flat_groups = [
188
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
189
+ ]
190
+
191
+ return zero_stage, world_size, fp32_flat_groups
192
+
193
+
194
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
195
+ """
196
+ Returns fp32 state_dict reconstructed from ds checkpoint
197
+
198
+ Args:
199
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
200
+
201
+ """
202
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
203
+
204
+ optim_files = get_optim_files(ds_checkpoint_dir)
205
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
206
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
207
+
208
+ model_files = get_model_state_files(ds_checkpoint_dir)
209
+
210
+ zero_model_states = parse_model_states(model_files)
211
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
212
+
213
+ if zero_stage <= 2:
214
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
215
+ exclude_frozen_parameters)
216
+ elif zero_stage == 3:
217
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
218
+ exclude_frozen_parameters)
219
+
220
+
221
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
222
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
223
+ return
224
+
225
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
226
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
227
+
228
+ if debug:
229
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
230
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
231
+
232
+ wanted_params = len(frozen_param_shapes)
233
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
234
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
235
+ print(f'Frozen params: Have {avail_numel} numels to process.')
236
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
237
+
238
+ total_params = 0
239
+ total_numel = 0
240
+ for name, shape in frozen_param_shapes.items():
241
+ total_params += 1
242
+ unpartitioned_numel = shape.numel()
243
+ total_numel += unpartitioned_numel
244
+
245
+ state_dict[name] = frozen_param_fragments[name]
246
+
247
+ if debug:
248
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
249
+
250
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
251
+
252
+
253
+ def _has_callable(obj, fn):
254
+ attr = getattr(obj, fn, None)
255
+ return callable(attr)
256
+
257
+
258
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
259
+ param_shapes = zero_model_states[0].param_shapes
260
+
261
+ # Reconstruction protocol:
262
+ #
263
+ # XXX: document this
264
+
265
+ if debug:
266
+ for i in range(world_size):
267
+ for j in range(len(fp32_flat_groups[0])):
268
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
269
+
270
+ # XXX: memory usage doubles here (zero2)
271
+ num_param_groups = len(fp32_flat_groups[0])
272
+ merged_single_partition_of_fp32_groups = []
273
+ for i in range(num_param_groups):
274
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
275
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
276
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
277
+ avail_numel = sum(
278
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
279
+
280
+ if debug:
281
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
282
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
283
+ # not asserting if there is a mismatch due to possible padding
284
+ print(f"Have {avail_numel} numels to process.")
285
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
286
+
287
+ # params
288
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
289
+ # out-of-core computing solution
290
+ total_numel = 0
291
+ total_params = 0
292
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
293
+ offset = 0
294
+ avail_numel = full_single_fp32_vector.numel()
295
+ for name, shape in shapes.items():
296
+
297
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
298
+ total_numel += unpartitioned_numel
299
+ total_params += 1
300
+
301
+ if debug:
302
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
303
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
304
+ offset += unpartitioned_numel
305
+
306
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
307
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
308
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
309
+ # live optimizer object, so we are checking that the numbers are within the right range
310
+ align_to = 2 * world_size
311
+
312
+ def zero2_align(x):
313
+ return align_to * math.ceil(x / align_to)
314
+
315
+ if debug:
316
+ print(f"original offset={offset}, avail_numel={avail_numel}")
317
+
318
+ offset = zero2_align(offset)
319
+ avail_numel = zero2_align(avail_numel)
320
+
321
+ if debug:
322
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
323
+
324
+ # Sanity check
325
+ if offset != avail_numel:
326
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
327
+
328
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
329
+
330
+
331
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
332
+ exclude_frozen_parameters):
333
+ state_dict = OrderedDict()
334
+
335
+ # buffers
336
+ buffers = zero_model_states[0].buffers
337
+ state_dict.update(buffers)
338
+ if debug:
339
+ print(f"added {len(buffers)} buffers")
340
+
341
+ if not exclude_frozen_parameters:
342
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
343
+
344
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
345
+
346
+ # recover shared parameters
347
+ for pair in zero_model_states[0].shared_params:
348
+ if pair[1] in state_dict:
349
+ state_dict[pair[0]] = state_dict[pair[1]]
350
+
351
+ return state_dict
352
+
353
+
354
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
355
+ remainder = unpartitioned_numel % world_size
356
+ padding_numel = (world_size - remainder) if remainder else 0
357
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
358
+ return partitioned_numel, padding_numel
359
+
360
+
361
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
362
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
363
+ return
364
+
365
+ if debug:
366
+ for i in range(world_size):
367
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
368
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
369
+
370
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
371
+ wanted_params = len(frozen_param_shapes)
372
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
373
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
374
+ print(f'Frozen params: Have {avail_numel} numels to process.')
375
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
376
+
377
+ total_params = 0
378
+ total_numel = 0
379
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
380
+ total_params += 1
381
+ unpartitioned_numel = shape.numel()
382
+ total_numel += unpartitioned_numel
383
+
384
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
385
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
386
+
387
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
388
+
389
+ if debug:
390
+ print(
391
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
392
+ )
393
+
394
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
395
+
396
+
397
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
398
+ param_shapes = zero_model_states[0].param_shapes
399
+ avail_numel = fp32_flat_groups[0].numel() * world_size
400
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
401
+ # param, re-consolidating each param, while dealing with padding if any
402
+
403
+ # merge list of dicts, preserving order
404
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
405
+
406
+ if debug:
407
+ for i in range(world_size):
408
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
409
+
410
+ wanted_params = len(param_shapes)
411
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
412
+ # not asserting if there is a mismatch due to possible padding
413
+ avail_numel = fp32_flat_groups[0].numel() * world_size
414
+ print(f"Trainable params: Have {avail_numel} numels to process.")
415
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
416
+
417
+ # params
418
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
419
+ # out-of-core computing solution
420
+ offset = 0
421
+ total_numel = 0
422
+ total_params = 0
423
+ for name, shape in param_shapes.items():
424
+
425
+ unpartitioned_numel = shape.numel()
426
+ total_numel += unpartitioned_numel
427
+ total_params += 1
428
+
429
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
430
+
431
+ if debug:
432
+ print(
433
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
434
+ )
435
+
436
+ # XXX: memory usage doubles here
437
+ state_dict[name] = torch.cat(
438
+ tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
439
+ 0).narrow(0, 0, unpartitioned_numel).view(shape)
440
+ offset += partitioned_numel
441
+
442
+ offset *= world_size
443
+
444
+ # Sanity check
445
+ if offset != avail_numel:
446
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
447
+
448
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
449
+
450
+
451
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
452
+ exclude_frozen_parameters):
453
+ state_dict = OrderedDict()
454
+
455
+ # buffers
456
+ buffers = zero_model_states[0].buffers
457
+ state_dict.update(buffers)
458
+ if debug:
459
+ print(f"added {len(buffers)} buffers")
460
+
461
+ if not exclude_frozen_parameters:
462
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
463
+
464
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
465
+
466
+ # recover shared parameters
467
+ for pair in zero_model_states[0].shared_params:
468
+ if pair[1] in state_dict:
469
+ state_dict[pair[0]] = state_dict[pair[1]]
470
+
471
+ return state_dict
472
+
473
+
474
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
475
+ """
476
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
477
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
478
+ via a model hub.
479
+
480
+ Args:
481
+ - ``checkpoint_dir``: path to the desired checkpoint folder
482
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
483
+ - ``exclude_frozen_parameters``: exclude frozen parameters
484
+
485
+ Returns:
486
+ - pytorch ``state_dict``
487
+
488
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
489
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
490
+ the checkpoint.
491
+
492
+ A typical usage might be ::
493
+
494
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
495
+ # do the training and checkpoint saving
496
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
497
+ model = model.cpu() # move to cpu
498
+ model.load_state_dict(state_dict)
499
+ # submit to model hub or save the model to share with others
500
+
501
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
502
+ application. i.e. you will need to re-initialize the deepspeed engine, since
503
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
504
+
505
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
506
+
507
+ """
508
+ if tag is None:
509
+ latest_path = os.path.join(checkpoint_dir, 'latest')
510
+ if os.path.isfile(latest_path):
511
+ with open(latest_path, 'r') as fd:
512
+ tag = fd.read().strip()
513
+ else:
514
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
515
+
516
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
517
+
518
+ if not os.path.isdir(ds_checkpoint_dir):
519
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
520
+
521
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
522
+
523
+
524
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None, exclude_frozen_parameters=False):
525
+ """
526
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
527
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
528
+
529
+ Args:
530
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
531
+ - ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
532
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
533
+ - ``exclude_frozen_parameters``: exclude frozen parameters
534
+ """
535
+
536
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
537
+ print(f"Saving fp32 state dict to {output_file}")
538
+ torch.save(state_dict, output_file)
539
+
540
+
541
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
542
+ """
543
+ 1. Put the provided model to cpu
544
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
545
+ 3. Load it into the provided model
546
+
547
+ Args:
548
+ - ``model``: the model object to update
549
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
550
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
551
+
552
+ Returns:
553
+ - ``model`: modified model
554
+
555
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
556
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
557
+ conveniently placed for you in the checkpoint folder.
558
+
559
+ A typical usage might be ::
560
+
561
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
562
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
563
+ # submit to model hub or save the model to share with others
564
+
565
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
566
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
567
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
568
+
569
+ """
570
+ logger.info(f"Extracting fp32 weights")
571
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
572
+
573
+ logger.info(f"Overwriting model with fp32 weights")
574
+ model = model.cpu()
575
+ model.load_state_dict(state_dict, strict=False)
576
+
577
+ return model
578
+
579
+
580
+ if __name__ == "__main__":
581
+
582
+ parser = argparse.ArgumentParser()
583
+ parser.add_argument("checkpoint_dir",
584
+ type=str,
585
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
586
+ parser.add_argument(
587
+ "output_file",
588
+ type=str,
589
+ help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
590
+ parser.add_argument("-t",
591
+ "--tag",
592
+ type=str,
593
+ default=None,
594
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
595
+ parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
596
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
597
+ args = parser.parse_args()
598
+
599
+ debug = args.debug
600
+
601
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
602
+ args.output_file,
603
+ tag=args.tag,
604
+ exclude_frozen_parameters=args.exclude_frozen_parameters)