initial commit
Browse files- README.md +1 -1
- a2c-AntBulletEnv-v0.zip +2 -2
- a2c-AntBulletEnv-v0/data +27 -24
- a2c-AntBulletEnv-v0/policy.optimizer.pth +1 -1
- a2c-AntBulletEnv-v0/policy.pth +1 -1
- config.json +1 -1
- replay.mp4 +2 -2
- results.json +1 -1
- vec_normalize.pkl +3 -0
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: AntBulletEnv-v0
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: AntBulletEnv-v0
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 1475.58 +/- 130.31
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
a2c-AntBulletEnv-v0.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ca6b6a346ca0b9978427479f513eea28ff77269884cbaa240fc404921c3f0c21
|
3 |
+
size 129248
|
a2c-AntBulletEnv-v0/data
CHANGED
@@ -4,20 +4,20 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"extract_features": "<function ActorCriticPolicy.extract_features at
|
14 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
15 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
16 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
17 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
18 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
-
"_abc_impl": "<_abc._abc_data object at
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {
|
@@ -37,7 +37,7 @@
|
|
37 |
"_num_timesteps_at_start": 0,
|
38 |
"seed": null,
|
39 |
"action_noise": null,
|
40 |
-
"start_time":
|
41 |
"learning_rate": 0.00096,
|
42 |
"tensorboard_log": null,
|
43 |
"lr_schedule": {
|
@@ -46,13 +46,16 @@
|
|
46 |
},
|
47 |
"_last_obs": {
|
48 |
":type:": "<class 'numpy.ndarray'>",
|
49 |
-
":serialized:": "
|
50 |
},
|
51 |
"_last_episode_starts": {
|
52 |
":type:": "<class 'numpy.ndarray'>",
|
53 |
-
":serialized:": "
|
|
|
|
|
|
|
|
|
54 |
},
|
55 |
-
"_last_original_obs": null,
|
56 |
"_episode_num": 0,
|
57 |
"use_sde": true,
|
58 |
"sde_sample_freq": -1,
|
@@ -60,13 +63,13 @@
|
|
60 |
"_stats_window_size": 100,
|
61 |
"ep_info_buffer": {
|
62 |
":type:": "<class 'collections.deque'>",
|
63 |
-
":serialized:": "
|
64 |
},
|
65 |
"ep_success_buffer": {
|
66 |
":type:": "<class 'collections.deque'>",
|
67 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
68 |
},
|
69 |
-
"_n_updates":
|
70 |
"n_steps": 8,
|
71 |
"gamma": 0.99,
|
72 |
"gae_lambda": 0.9,
|
@@ -76,7 +79,7 @@
|
|
76 |
"normalize_advantage": false,
|
77 |
"observation_space": {
|
78 |
":type:": "<class 'gym.spaces.box.Box'>",
|
79 |
-
":serialized:": "
|
80 |
"dtype": "float32",
|
81 |
"_shape": [
|
82 |
28
|
@@ -85,11 +88,11 @@
|
|
85 |
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
86 |
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
87 |
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
88 |
-
"_np_random":
|
89 |
},
|
90 |
"action_space": {
|
91 |
":type:": "<class 'gym.spaces.box.Box'>",
|
92 |
-
":serialized:": "
|
93 |
"dtype": "float32",
|
94 |
"_shape": [
|
95 |
8
|
@@ -98,7 +101,7 @@
|
|
98 |
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
99 |
"bounded_below": "[ True True True True True True True True]",
|
100 |
"bounded_above": "[ True True True True True True True True]",
|
101 |
-
"_np_random":
|
102 |
},
|
103 |
-
"n_envs":
|
104 |
}
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f3af8912950>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f3af89129e0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f3af8912a70>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f3af8912b00>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f3af8912b90>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f3af8912c20>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f3af8912cb0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f3af8912d40>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f3af8912dd0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f3af8912e60>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f3af8912ef0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f3af8912f80>",
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f3af891c600>"
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {
|
|
|
37 |
"_num_timesteps_at_start": 0,
|
38 |
"seed": null,
|
39 |
"action_noise": null,
|
40 |
+
"start_time": 1687090734341298791,
|
41 |
"learning_rate": 0.00096,
|
42 |
"tensorboard_log": null,
|
43 |
"lr_schedule": {
|
|
|
46 |
},
|
47 |
"_last_obs": {
|
48 |
":type:": "<class 'numpy.ndarray'>",
|
49 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAKHAdT+HpGa/WFggvq+N9D5/PirAVq4nv/T+tr8imJg+X/4YPyaWA77dYVW/s5cvPcXNqT9ALI6+RE4Ov0PRXcDpN+O/Xy0RwDWDCcCEXIC/RrMiP+Xlx7+1cF6/ZDKRwGErAz8AbrQ+xl8VPzzfhb9G8C6+kQmxv8NGir83ROE9eqOMv84Ybz+vVzS/JH5Gvtwnrb96F10+fXxJvhYhxrwGnY++cTAAv2y6OD94HgU97WSFP+7Jc7+mDCG/TBgEv1xRhj/V1H68+cYaP8yCBD9hKwM/AG60PsZfFT8834W/zRoyPlbFqL/val2/6HSlPsK53r946Ng/AOKEv3rlc742PLO/iKyMvnEZqL3eDn6+7eMsvSWE6r/rWD0/HGFPvqzKvL4MtyjAmVtFv1G5x74oenc/+AoGwME7tD5k/EE/YSsDPwButD7GXxU/PN+Fv9lVUr16RS6/KXaGPfu9Z76Uzy6/cYgEP+sknb/Hr5c9pBZav1b+wj6Miye/ST4uvsw6/bwWfl2+k+E4P0e67TwtqSQ/W8YKv9T3q79mQou+U9NUP3cGB7+p+28+HUyhPGErAz8AbrQ+xl8VPzzfhb+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
50 |
},
|
51 |
"_last_episode_starts": {
|
52 |
":type:": "<class 'numpy.ndarray'>",
|
53 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
54 |
+
},
|
55 |
+
"_last_original_obs": {
|
56 |
+
":type:": "<class 'numpy.ndarray'>",
|
57 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABvHpk2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACARorZvQAAAABpg+2/AAAAAILMjj0AAAAAaYfmPwAAAABPl8C9AAAAACglAEAAAAAA1wn1vQAAAAClQ/+/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqmYkNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgHxKyDwAAAAA53vrvwAAAAB4lCw8AAAAAP/i2T8AAAAAPWKrPAAAAAAyPvE/AAAAAOfzzb0AAAAAIlj4vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGfzzLUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBRpn+7AAAAAA0k2r8AAAAAH+kLvgAAAADg0+c/AAAAAAJYmzwAAAAAVeL4PwAAAAAXOye9AAAAAGga8b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA5z5k1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAeadUPAAAAAAQtf6/AAAAAEYflT0AAAAA1RfqPwAAAABJjom9AAAAAH4Q4D8AAAAAeI1rvQAAAABM4OG/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
58 |
},
|
|
|
59 |
"_episode_num": 0,
|
60 |
"use_sde": true,
|
61 |
"sde_sample_freq": -1,
|
|
|
63 |
"_stats_window_size": 100,
|
64 |
"ep_info_buffer": {
|
65 |
":type:": "<class 'collections.deque'>",
|
66 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJnEQ4dZJTWMAWyUTegDjAF0lEdAqmDm3rleW3V9lChoBkdAmL6RCUornWgHTegDaAhHQKphhQD3dsV1fZQoaAZHQJc7KTKT0QNoB03oA2gIR0CqZByQo1DTdX2UKGgGR0CW8u6BAfMfaAdN6ANoCEdAqmWmnwXqJXV9lChoBkdAmIWeVPepGWgHTegDaAhHQKptZFCswL51fZQoaAZHQJXF9v60pmVoB03oA2gIR0CqblQf6oETdX2UKGgGR0CYl/Z0jkdWaAdN6ANoCEdAqnJeuoxYaHV9lChoBkdAlgFUxyn1nWgHTegDaAhHQKp0x4sVclh1fZQoaAZHQJgwS7nPmgdoB03oA2gIR0CqfItthuwYdX2UKGgGR0CZdQleWv8qaAdN6ANoCEdAqn0jxgAp8XV9lChoBkdAmDJzLOiWV2gHTegDaAhHQKp/wAcT8Hh1fZQoaAZHQJkWmNdZ7oloB03oA2gIR0CqgUuSOinHdX2UKGgGR0CXoUtO2y9maAdN6ANoCEdAqohv9BKL9HV9lChoBkdAml2CYgJTl2gHTegDaAhHQKqJCo0hvBJ1fZQoaAZHQJitEvGp++doB03oA2gIR0CqjDWy9mHydX2UKGgGR0CV0GzQNTcZaAdN6ANoCEdAqo5wiu+yq3V9lChoBkdAkVvogNgBtGgHTegDaAhHQKqYF3RG+bp1fZQoaAZHQJc4aMefZmJoB03oA2gIR0CqmLY9gWrPdX2UKGgGR0CBUqcf/3nIaAdN6ANoCEdAqptZ4QjD9HV9lChoBkdAjxm2pIczZmgHTegDaAhHQKqc56AvtdB1fZQoaAZHQJFBV9c8klhoB03oA2gIR0CqpB9ELH+7dX2UKGgGR0CURokupS75aAdN6ANoCEdAqqS9OIqLCXV9lChoBkdAlEg8/+sHSmgHTegDaAhHQKqnaS7oSth1fZQoaAZHQJWJSZy+6AhoB03oA2gIR0CqqO9V/+bWdX2UKGgGR0CTVpKfFrEcaAdN6ANoCEdAqrO3uTibUnV9lChoBkdAkwvfkWAPNGgHTegDaAhHQKq0XmQKa5R1fZQoaAZHQJTDWr0aqCJoB03oA2gIR0CqtvO1WsBAdX2UKGgGR0CVNCFpfx+baAdN6ANoCEdAqriCpT/ACXV9lChoBkdAlh7UIPbwjWgHTegDaAhHQKq/rm4iHIp1fZQoaAZHQJSFFAVwgkloB03oA2gIR0CqwEjjJdSmdX2UKGgGR0CVFH6NEPUbaAdN6ANoCEdAqsLd/WlMy3V9lChoBkdAli4v3i704GgHTegDaAhHQKrEYvkili11fZQoaAZHQJTo0mOU+s5oB03oA2gIR0CqzVX6hxo7dX2UKGgGR0CV8z2NNrTIaAdN6ANoCEdAqs5F5MURF3V9lChoBkdAhPt3VTaTOmgHTegDaAhHQKrSXcQiA2B1fZQoaAZHQJRTM2l2vB9oB03oA2gIR0Cq0/yteUpvdX2UKGgGR0CXPYdBSk0raAdN6ANoCEdAqtsTwvxpc3V9lChoBkdAl0J6zRhMJ2gHTegDaAhHQKrbrN5dGAl1fZQoaAZHQJjHQX40uUVoB03oA2gIR0Cq3lEuHvc8dX2UKGgGR0CW1UPk7wKCaAdN6ANoCEdAqt/UKCxu9HV9lChoBkdAlQEi4axX4mgHTegDaAhHQKrnQ1mapgl1fZQoaAZHQJd2oqtozvZoB03oA2gIR0Cq6ClUyYXwdX2UKGgGR0CWasgn+hoNaAdN6ANoCEdAquwbJEH+qHV9lChoBkdAlsCQnH/952gHTegDaAhHQKruiflIVdp1fZQoaAZHQItJApc5bQloB03oA2gIR0Cq9tu/k/8mdX2UKGgGR0CXdard30PIaAdN6ANoCEdAqvdx7Z39rHV9lChoBkdAlLgtVFQVK2gHTegDaAhHQKr6EzNUwSJ1fZQoaAZHQJfq9MAWBSVoB03oA2gIR0Cq+503Ov+wdX2UKGgGR0CW0yYaHbh4aAdN6ANoCEdAqwLe01IiDHV9lChoBkdAloJdGViWmmgHTegDaAhHQKsDfZMcp9Z1fZQoaAZHQJbgBzEJjUdoB03oA2gIR0CrBm7TMJQddX2UKGgGR0CYHXI55qubaAdN6ANoCEdAqwilqgyuZHV9lChoBkdAlr1rulXRxGgHTegDaAhHQKsSk9TP0I11fZQoaAZHQJXyEqmTC+FoB03oA2gIR0CrEylxffGddX2UKGgGR0CW2C2ETQE7aAdN6ANoCEdAqxXJnjABUHV9lChoBkdAln6dqpLmIWgHTegDaAhHQKsXW+JxecB1fZQoaAZHQJT1Kn62v0RoB03oA2gIR0CrHr2ll9SddX2UKGgGR0CWMxHN5dGBaAdN6ANoCEdAqx9XrGBFu3V9lChoBkdAlWHo6GQCCGgHTegDaAhHQKsiAKG+K0l1fZQoaAZHQJXeR6KLsKNoB03oA2gIR0CrI6MRQJokdX2UKGgGR0CWuWQhwEQoaAdN6ANoCEdAqy5560IC2nV9lChoBkdAl2tPlp48l2gHTegDaAhHQKsvTUZNwit1fZQoaAZHQJZqC6BiCrdoB03oA2gIR0CrMf9i+cpcdX2UKGgGR0CWGaF7laKUaAdN6ANoCEdAqzOUb5uZTnV9lChoBkdAllSa+8Gs3mgHTegDaAhHQKs7DjwQUYd1fZQoaAZHQItUjbFjurpoB03oA2gIR0CrO60OmR/3dX2UKGgGR0CWgsLa24NJaAdN6ANoCEdAqz5cwBYFJXV9lChoBkdAlglDzundf2gHTegDaAhHQKs/7DjR2KV1fZQoaAZHQI9cNxQzk6toB03oA2gIR0CrSUzch1TzdX2UKGgGR0CVE9YbbUPQaAdN6ANoCEdAq0pBrN4Z/HV9lChoBkdAlQs36hxo7GgHTegDaAhHQKtOPwhGH591fZQoaAZHQJWEeuU2UB5oB03oA2gIR0CrT9QmeDnOdX2UKGgGR0CNf2RChN/OaAdN6ANoCEdAq1dIccU/OnV9lChoBkdAlmgEnTiKi2gHTegDaAhHQKtX4aXKKYR1fZQoaAZHQJKLFiExqO9oB03oA2gIR0CrWo3NcGC7dX2UKGgGR0CSZoTaTOgQaAdN6ANoCEdAq1w1hTfixXV9lChoBkdAj32QpnYg72gHTegDaAhHQKtknaLXL/11fZQoaAZHQI/9sQPI4l1oB03oA2gIR0CrZYRs2vSudX2UKGgGR0CK5QGoJiRXaAdN6ANoCEdAq2nEfHPu5XV9lChoBkdAjpdtpdrwfGgHTegDaAhHQKtsWyZa3Zx1fZQoaAZHQIpxrkCFK05oB03oA2gIR0Crc/FL39JjdX2UKGgGR0CJ3x35eqrBaAdN6ANoCEdAq3SO4Vh1DHV9lChoBkdAlG6tDYywfWgHTegDaAhHQKt3S/xDst11fZQoaAZHQJJEqj8DSw5oB03oA2gIR0CreOPwNLDidX2UKGgGR0CTjGYhdMTOaAdN6ANoCEdAq4BiUA1ejXV9lChoBkdAlsL7CemNzmgHTegDaAhHQKuBHW4mTkh1fZQoaAZHQIivgMBp5/toB03oA2gIR0CrhPZwn6VMdX2UKGgGR0CSm+HYYixFaAdN6ANoCEdAq4dzJnxri3V9lChoBkdAkkAbwBo242gHTegDaAhHQKuQW9gWrOt1fZQoaAZHQJbFO1jRUm5oB03oA2gIR0CrkP7FS88LdX2UKGgGR0CVwmHSF49paAdN6ANoCEdAq5O49HMEBHV9lChoBkdAk3hGJaaCtmgHTegDaAhHQKuVV+w1R+B1fZQoaAZHQJWfQ31jAi5oB03oA2gIR0CrnJyRKYiQdX2UKGgGR0CUOUbblA/taAdN6ANoCEdAq506ujh1knV9lChoBkdAkyYjdHlOoGgHTegDaAhHQKugJrtVrAR1fZQoaAZHQJdRFbRnezloB03oA2gIR0Croma06YE4dX2UKGgGR0CWRM2TPjXGaAdN6ANoCEdAq6zSh6By0nV9lChoBkdAlc+vUKArhGgHTegDaAhHQKutccG1QZZ1fZQoaAZHQJcLcS00FbFoB03oA2gIR0CrsCjD8+A3dX2UKGgGR0CXT8iUxEfDaAdN6ANoCEdAq7HS+BYms3VlLg=="
|
67 |
},
|
68 |
"ep_success_buffer": {
|
69 |
":type:": "<class 'collections.deque'>",
|
70 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
71 |
},
|
72 |
+
"_n_updates": 62500,
|
73 |
"n_steps": 8,
|
74 |
"gamma": 0.99,
|
75 |
"gae_lambda": 0.9,
|
|
|
79 |
"normalize_advantage": false,
|
80 |
"observation_space": {
|
81 |
":type:": "<class 'gym.spaces.box.Box'>",
|
82 |
+
":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
83 |
"dtype": "float32",
|
84 |
"_shape": [
|
85 |
28
|
|
|
88 |
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
89 |
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
90 |
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
91 |
+
"_np_random": null
|
92 |
},
|
93 |
"action_space": {
|
94 |
":type:": "<class 'gym.spaces.box.Box'>",
|
95 |
+
":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
96 |
"dtype": "float32",
|
97 |
"_shape": [
|
98 |
8
|
|
|
101 |
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
102 |
"bounded_below": "[ True True True True True True True True]",
|
103 |
"bounded_above": "[ True True True True True True True True]",
|
104 |
+
"_np_random": null
|
105 |
},
|
106 |
+
"n_envs": 4
|
107 |
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 56190
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d341ebbc9b860e4ec88ce6d68a7aa7b391a74e7afc060417834d356b70298396
|
3 |
size 56190
|
a2c-AntBulletEnv-v0/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 56894
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:78e69cbfa2544603e39be3d7e59e6c2ac5a5ab2d65b7b06f3eadb2b1cc008dce
|
3 |
size 56894
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f4ceb31c790>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f4ceb31c820>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f4ceb31c8b0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f4ceb31c940>", "_build": "<function ActorCriticPolicy._build at 0x7f4ceb31c9d0>", "forward": "<function ActorCriticPolicy.forward at 0x7f4ceb31ca60>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f4ceb31caf0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f4ceb31cb80>", "_predict": "<function ActorCriticPolicy._predict at 0x7f4ceb31cc10>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f4ceb31cca0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f4ceb31cd30>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f4ceb31cdc0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f4ceb3202c0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1687015893246976361, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWV5QAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJZwAAAAAAAAACVBob5ZKfC91jt+P8664T3/tqk+iMN4vqk7n7/axJG9KxqAv2Z+7TkTZ4A/iTBiOqo8gD+tRUm6DSvSP4BWSDqUPoC/8SyTOuIagL9xjpA7W0WAP5eLNLxcC4A/z9SmuQAAgD8AAIA/AAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwFLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQDokt9QXQ+mMAWyUS1qMAXSUR0C5m0UsasIWdX2UKGgGR0A1SDW9US7HaAdLTmgIR0C5m3/AGjbjdX2UKGgGR0A4OUB4lhPTaAdLamgIR0C5m/CcoYvWdX2UKGgGR0BBMuiN83MqaAdLeGgIR0C5nG7OzIFNdX2UKGgGR0AxcE3Kji4saAdLVWgIR0C5nMG5H3DfdX2UKGgGR0Awx8La24NJaAdLVGgIR0C5nRiXpnpTdX2UKGgGR0Ay1a+vhZQpaAdLVWgIR0C5nWyc9W6tdX2UKGgGR0A0zG+9Jz1caAdLaGgIR0C5ndqSPluFdX2UKGgGR0ApU3H7xd6caAdLVmgIR0C5nj2s7uD0dX2UKGgGR0A4STMaCL/CaAdLYGgIR0C5nqhvitJWdX2UKGgGR0Aqd4+KTB69aAdLVmgIR0C5nwk/OdGzdX2UKGgGR0Azy77sOXmeaAdLfmgIR0C5n5i+pOvddX2UKGgGR0AtdhUipvP1aAdLVmgIR0C5n/enyd4FdX2UKGgGR0Az74iHIp6QaAdLcGgIR0C5oHZP69CedX2UKGgGR0Aqd2FFlTWHaAdLYWgIR0C5oNqmKqGUdX2UKGgGR0A4p8c+7lJZaAdLUGgIR0C5oRRn3+MqdX2UKGgGR0AwWpQUHpr2aAdLVGgIR0C5oVQz+FURdX2UKGgGR0BAnSZSeiBYaAdLZmgIR0C5oZ6+FlCkdX2UKGgGR0ArBkPMB6rvaAdLW2gIR0C5od+iFj/ddX2UKGgGR0AnqnH/95yEaAdLY2gIR0C5oiW/BWPtdX2UKGgGR0A0OHLA57w8aAdLUGgIR0C5omJiqhlEdX2UKGgGR0AwAZH/cWTHaAdLZGgIR0C5oqnM2WIHdX2UKGgGR0A3D86FM7EHaAdLVWgIR0C5oumQnx8VdX2UKGgGR0BA/bf51vETaAdLeGgIR0C5o0JWeYlZdX2UKGgGR0A6xsiB5HEuaAdLU2gIR0C5o3ygwoLHdX2UKGgGR0A21jlPrOZ9aAdLWGgIR0C5o79/WlMzdX2UKGgGR0AywhOP/7zkaAdLV2gIR0C5o/0xREWqdX2UKGgGR0A4osTFl05maAdLXmgIR0C5pEISHuZ1dX2UKGgGR0A4NkNWluWKaAdLZ2gIR0C5pI3BHkLhdX2UKGgGR0BDpHgxagVXaAdLcWgIR0C5pN5sj3VTdX2UKGgGR0A91HM2WIGhaAdLYGgIR0C5pSQoPTXrdX2UKGgGR0A/Jh6jWTX8aAdLbGgIR0C5pXMEJSiudX2UKGgGR0A1HFbmlqJuaAdLXGgIR0C5pbWo73fydX2UKGgGR0A65eRxLkCFaAdLW2gIR0C5pfXpwCKadX2UKGgGR0A9Dq1gH/tIaAdLXmgIR0C5pjkcjqwAdX2UKGgGR0A7H4lhPTG6aAdLa2gIR0C5poYaLn9vdX2UKGgGR0A4CQzUI9kjaAdLX2gIR0C5psnlbNbDdX2UKGgGR0A70hjOLR8daAdLV2gIR0C5pwm+bmU4dX2UKGgGR0A1mHKOktVaaAdLWGgIR0C5p0smF8G+dX2UKGgGR0A2Hzf779AHaAdLTmgIR0C5p4Rhpg1FdX2UKGgGR0A61XNke6qbaAdLUWgIR0C5p75cophGdX2UKGgGR0A0F9CNS619aAdLUGgIR0C5p/f5DZ13dX2UKGgGR0AwTfVI7NjcaAdLUmgIR0C5qDIKIBRydX2UKGgGR0A85qVyFPBSaAdLXGgIR0C5qHPnW8RMdX2UKGgGR0A6uO9WZJCjaAdLaGgIR0C5qL0f1YhddX2UKGgGR0A4q3JxNqQBaAdLXmgIR0C5qQBp1zQvdX2UKGgGR0Ay8kI5YHPeaAdLTmgIR0C5qThU70WedX2UKGgGR0A0Ez+FUQ05aAdLYmgIR0C5qYJqREF4dX2UKGgGR0A2WymALApKaAdLWWgIR0C5qcLofSx8dX2UKGgGR0A40IO6NEPUaAdLYmgIR0C5qgmH58BudX2UKGgGR0A420/4ZdfLaAdLUGgIR0C5qkkGeMAFdX2UKGgGR0Ax/gtvn8sMaAdLXGgIR0C5qou5J9RadX2UKGgGR0AqHfWtlqagaAdLYGgIR0C5qtGVqveQdX2UKGgGR0A0YTAFgUlBaAdLZWgIR0C5qzs/+sHTdX2UKGgGR0AwRy5Zr56/aAdLYGgIR0C5q5wv+OwQdX2UKGgGR0Andnlnyup0aAdLUmgIR0C5q+3RgJC0dX2UKGgGR0Al9VLBbfP5aAdLVGgIR0C5rETNMXabdX2UKGgGR0Ao04uscQyzaAdLWGgIR0C5rJu4LCvYdX2UKGgGR0A4pROUMXrMaAdLWWgIR0C5rPaUFB6bdX2UKGgGR0ApiCJ40Mw2aAdLWWgIR0C5rVjiCJ40dX2UKGgGR0AwCZlWfbsXaAdLU2gIR0C5rbV9F4LUdX2UKGgGR0Au+ilBQemvaAdLWGgIR0C5rhiwr1/UdX2UKGgGR0A3D4lyBClaaAdLT2gIR0C5rnCoS+QEdX2UKGgGR0A7Ls0HhS9/aAdLXmgIR0C5rty4axX5dX2UKGgGR0A3j4uK4x1xaAdLWmgIR0C5r0A8wHqvdX2UKGgGR0A6oyLAHmihaAdLWWgIR0C5r6Wf029+dX2UKGgGR0AvXmUW2w3YaAdLUWgIR0C5sALihnJ1dX2UKGgGR0A3Te+mFajfaAdLTWgIR0C5sEtW+49YdX2UKGgGR0A09ecQRPGiaAdLWGgIR0C5sIsmBvrGdX2UKGgGR0A0yxoqTbFkaAdLWGgIR0C5sMlb7j1gdX2UKGgGR0A0TgGKQ7tBaAdLU2gIR0C5sQT/hl19dX2UKGgGR0AyoF5OafBfaAdLaWgIR0C5sVAvpQk5dX2UKGgGR0A819IwudwvaAdLZmgIR0C5sZ0RJ2+xdX2UKGgGR0A+jUwBYFJQaAdLZWgIR0C5seZVn27GdX2UKGgGR0Axu0a6z3RHaAdLVWgIR0C5siaGQCCBdX2UKGgGR0AzadHlOoHcaAdLTmgIR0C5smNEPUaydX2UKGgGR0AsEudPLxI8aAdLcWgIR0C5sruaWom5dX2UKGgGR0A8eG3F1jiGaAdLcWgIR0C5sxOCf6GhdX2UKGgGR0A56fapPykLaAdLamgIR0C5s2b+DOC5dX2UKGgGR0A+jfa6BiCraAdLYGgIR0C5s7L08NhFdX2UKGgGR0A1a1IAfdRBaAdLTGgIR0C5s+y/oJRgdX2UKGgGR0A2m7ALy+YdaAdLWGgIR0C5tC/HLidbdX2UKGgGR0A22EDyOJcgaAdLWmgIR0C5tHRjnV5KdX2UKGgGR0A3tir1dxACaAdLWWgIR0C5tL0yxiXqdX2UKGgGR0A8K/axoqTbaAdLb2gIR0C5tRbg0j1PdX2UKGgGR0A0KzLfUF0QaAdLUWgIR0C5tVbr1M/RdX2UKGgGR0AwbVWCEpRXaAdLVWgIR0C5tZredkJ8dX2UKGgGR0AtebhFVktmaAdLVGgIR0C5teAU5+6RdX2UKGgGR0A6Tje9Ba9saAdLWWgIR0C5tiou9OARdX2UKGgGR0AwyEC/47A+aAdLcmgIR0C5tnxxo7FLdX2UKGgGR0AyZlI3BHkMaAdLXmgIR0C5tsMiwB5pdX2UKGgGR0AwTYOUdJaraAdLYWgIR0C5twrv5P/JdX2UKGgGR0AuavduYQaraAdLVWgIR0C5t0dg0CRwdX2UKGgGR0AwJTOPeYUnaAdLUWgIR0C5t4MWoFV1dX2UKGgGR0A8zcghbGFSaAdLXWgIR0C5t8ffGdZrdX2UKGgGR0A88fsNUfgaaAdLV2gIR0C5uAYYekpJdX2UKGgGR0A8IEw35vcaaAdLXmgIR0C5uErnDBM0dX2UKGgGR0A173cHnlnzaAdLXWgIR0C5uI1qFh5PdX2UKGgGR0AkD3u/k/8maAdLT2gIR0C5uMhDw6QvdX2UKGgGR0AuCauOjqOcaAdLWWgIR0C5uQgXqJMydWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 250000, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWV9AwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBJfX3JhbmRvbXN0YXRlX2N0b3KUk5SMB01UMTk5MzeUhZRSlH2UKIwNYml0X2dlbmVyYXRvcpRoMYwFc3RhdGWUfZQojANrZXmUaBMolsAJAAAAAAAAVVuPWrtCDIx4m7yu/Elk0Dh+K5VsudDcQNHTxierDInuR0l1l6yZqVHC6jqmVScr3oCsBNo4ao+6GwoeLYTnHGRtjhkQziSCj9NigT8GVnL0DGiXnTiQHL0JhewMojVJwwzL3/atRR9BOSf6qKYUUW74/FMNsO+nIoHXLWU7ItzeAbUnxOtnuzbAlYISCB5PcCVH3cqb029rgsMttcV/MFc6ZDQQILaDJjM4bdo8nXc6MqdvzfudFfc9mONhxgyLnBLPHh1M0sse9Q22Em7vGGRIwM8j7ZdZVB+73DwSUFmOyUeMzNWEs/CNMUEwkQvtuMd6WmzuEfaQDK05CI/TfrWqbzMuKHQ8H13SQQVevuM1WuiA4C5ayUiNcgbyUTMtfFO+HdbetNGXr3htvzk+rq8/KaCpo7jgq57kZZ8G8d6bEut+KCGoSawS/i2FsXi7XCJZm8+tKk+5srifJWUEd8yvi0LA+IXBeoyshGrtuA8cmwwHhu3bBaB4W4Ya5afOMP6veo113xmQnRufO3O7XUyBQWjkkevoOVNQt8FgByYZuuoeu22t+/9a/xawwY6oPQh8fhbxReuM7do06vaDwhrZeI8NlI0kcZjviNmmCMV76erxkImRT7UxdzpCFSWHI6Q2AfHtdC66MYF9Hww5aAOdOaBsACFMnL+dGjfcjTMzsCARMyniQQpP1lfP7WuTwqPRdy0n2B8yg880+f2UhJyFV3+272zZOQp2PSth3LBsA4u2ATL8PiHFMqU3RdWXGftFNRpeg8qevvze7OaZ4Kb7YFcTZetbxQPdexFiamXN5pBOdUo9vvsiLo+3D5uQuklH33ZjV4XssswAIKfQu+VjGG2e5dPgONwSoljOKEtcBt9XL0+o5VECzsnhIxqdjOaK1WIbqvEhNYqY+Cdo/OA7JtEGoO2G9JbnXFK0sRMWbp4crBfXwSmQRTf0hclyHPVZdLTzAaEXXHMS/AzTcRdx2h+sPb1Q3CcaH8ixArGmkse943d/LJv1IR7Yi9h6NVR7XlMPe78nPWfc/tRe5jydLLn/BKcuqtBUkz7BmJSNpNg8Q9OQDk8Gj7cpEupdMlmW+M0fgoZj/ZYPjsDi8mCBzdobVZBSTdUoQfVkRYatZZPEakz8cP3PoP4pjPqOMN4JEiWsa3hoZLkVYwB+62zhrWn10PDqIT/e08YEHHylKEZSQJoBKkS/75QSpap4uC3cjJQqhLBqZSlBVWEjC+NDVjWECN2kJA/Y+R77MTJ1Qkt5hMjABKFjWKxYcUYm6rgAyVvHZTK82Vqb3C9Wnw42uKGKzqGYef4l/GHgU7f+MPJ71Ky/kKlxXiyOQio5Jrpd3rvMpDYUeqQf7/X7OKD0+DVs1r2eGCCi0ehsC4qBlZWv9fgGTecpfwdGixFYWoWiQmdsM92ouAaoDTOX87ocsiA+aFL8ILGG+5uzjurgU7YzhmiO780hurN/NObbbE1/Y5vCCtKZUhz7i8cAYxokuBrzbYU6G+dsBhymhiFzBbuF8TcSRP6Ro/bWAx8V4GFGO+MmK/5iKX8GzHsFp0B2AdVA81psiRmIb9XcdbttZOFDsgNjNSkc1pLHZZ61V4LFo1DBOyO0FZLEcdW8EHcPPVFmk+rMdHSmmK3bGDoGlbIEokQIemQS5vMCzAIrhiyZcr1GXuA3d0+zYVu6FHTkxNo5RgRs7iCfQZQwT/p3hRQnI/K8WXfxyluERlf/4wVPD4CtUwTE5UfYwOn0M+pMVDflE2plZL8/bpw5FV2KKvqQithdJhYx9Xik6NYSC/rRYFrPT1iM7wVvhE/zeAazNNE92vxBLLzKKk5J56daFqkyr+dfKRoPWl0hwjcb1KLZL1buKjTYUDNhy88F5GBk6yHOsRqgGdumCNciNEl76UW3uX9tPJMcJh0S2HEmCzbVAtUOPauDI4dtZ5gZ6OcA64rT+8HkmT1u6jvMph8fwvZ4T9YrSDgzxHz+/22KPa+Nwxp/ikQOnKMh4B5pW0cNiCf76ZNUwHk8xaebYy8cvk01K43oGZIoz0Ku8jUKbmtVpPIaQpnZ7wJzKO9PVuUPaR8XMEYOL31W9zn51J+amG1+Xrx+DxgSmLzqCtqwIGF3K04m5FjTg1+74H8P9Rt/siiyKrVLaP9vLICkU481bWIvidN0FPPB/hjDWP6mV69ibJO6GTwB2is4oiRF7FMrkDEvpmJSgp6lPnWRh7b0uo9v21NKFKqpOgPbT1qh+znQRxI+d30m1zGPp8WleIixOGjbi+LnCsJlfCxdUqqJju9I9ZOBSvBbJlZWEmMLxEZSGKepvp0IfH4KyaFFqhQEHfPIqaqUdUB0QTphKqtQtefmnyJZBgcthzjS38kQ9NCBP+KzQDKtPvZD1KaaSKQoGgfWF267PlCYoW5UxDxJXL82nakm3+muOsXxC/W2odY1ivZj+zYzyu3sJLCax3ZsQHmSW7cCXZxVAiwMTWdP5suFJF409nP2kgc4CCZOa9wPIshTclPD95liO/VYVNvwsI3GD9VtfQL0zAYbKziMbUg2mPXG9gu9iSQMNpC2hu6Mw3SmcFZNqsrk5pHLVwhIbMfuIWJPiRe42+crpem4XrqPeA4OrZJPZfLCtqtLKetzuWkZF48uoELE3iKR3GOKt8ZhpaPGzJBZFSogy6+dMbFjehrvc+d5OoH7pQ23jOEfaxQcYgeYMwEGSkeKKIPuz5/6YMXVehGTOa1OJYA54KDaVgJZjCxvjmJ3XWL1pVDVLhll7PZcIw02LvJLTy2cZ7+fsZcSRo7hkOJ62Is2sTLjS7Y8QnJl7tmHv4FSwm1IAkj/cBxSd/sMFDZ4ARn5HWkH6jdF/SFAQ+3R9cTH1exOk+yTegXijlQobezo7gHdBTxAT5jGna67k5Mqc5wa2f42h5TyyGHNH1XCsSHLKK6G+wEVZ0DQfsp/2YdQ0u/nPzNI9c6xxm85Car4xJWQXHjrDWf4v/p6loplXiWQiMmq4t8N06OZGn3SC/CHBMlvxxdOPOFY0ssTNE3ilsDN3TZioAjqoaHGl1noRRYehw5sMpPL12cwmrXlb7U2nHQUN2sMNxbi1Q9lqztX+MNXKMHe+s8M4SQghHVN6V6KtdIxqkxvj3ukcHsT3XKnJuIiG0sAfzpdI2MKjCyvGTkzd4NBilS31fORnWoccU0h1EN4LUH+k8I1yHsqG9z/FYKEnhBqP+BoindhJJknXKEY94BuegEWXhGNp8KH23ONoxNwDcXOPTU5D4Dl4xNbxdM0QyuHaltaOAwWWqDHfYSRNT79BoqTyUFP5IOD7ozR4MaUudvCfXVa+iFVfDjflGgIjAJ1NJSJiIeUUpQoSwNoDE5OTkr/////Sv////9LAHSUYk1wAoWUaBZ0lFKUjANwb3OUS0B1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVidWIu", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": "RandomState(MT19937)"}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVLAwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaDGMBXN0YXRllH2UKIwDa2V5lGgTKJbACQAAAAAAADknr4+/aFc7yoM142uL09rAYrWytmTvfB4cG8QyHfvVWpSCQDgEl1/j16FCPSuEXCPll1v2LCSFmklmjH/KsB9/RTwmZf+xc13pejP07cI5DOBG7VTZORjZbvqvv15lYOffrxKzr7M1E0SG7zBONJWo9uSYFmo8Et9S8+L+RHbwTpS1nEuKfxe8ltTRW9UO4PANmnKOOshBXdGt3Rnm0gMcAkJ+jT6CSzsdjlFOIa9ic6eOZ5hwEXCyJJpBX9/HLOe283hzO6dAbNfQ0O4OXLQZz1t2zTvVD3rEoEJjhuNrzEAAZkBLsgGX38d/01iVXGUjVD7uNgnQ/zVJIwqQwqGnru4332EDhv6r7jCoxUIfNIIyaFF8J6tanlUe5q+5puHWBCuq4uSGJjUUm2o3T2wYcu4mzB74shlrb7DtAgKic64PmiTODV7pKQ87z9IUsMOYBU4gkP8/I4H6AqnSI1mJHwYUQUeARkuPrncVoiDB6qmeETIQIXlz0A5gdoyb6qAeadaHpRtGlBIPI+1BzBnj2y37jdTvgE4WlH/xWRUAQbiRIk62LzOajCkPWcLKUhmFZ5coZzXpYxEmnIbBvua4HHQ0YnaTr1WRajr8fs0kdRNxVc5JVqLB+5xevvMsWIzklDm2nnQvYmHDXPQhB0zghv+ul9F0RG63zC4+BPB47BBchp2K+p2M99b1DDQrM49HYLeGSNMrCrLUFE8ovceLKp/G+gtNhJMNLFzh4wOk2n/mmZlppz1jxMvL9UDKOMzMPBBN9SivXI0SACTzN2sCbPvJyLcGucaHw52xMhSCFAxRZKVtDfbIEIP0sVvYoC4ffsQP4T2Yz9quvZ0wyoZWD0VXrPfrPHgnUELk8I3Xzf3VjijkRSQbsRi/bMoMS5qxrQLkDn2JWYcYMeu1MXZC9Bl9E34xVUSWxT1ZyFcLuxWVmQYgtteZLlS+7aw6TU3xETgk7d3HEWxXZFkPANOrgc73PMpavtYp67pOHjvCQSQq1cFXXkaCwXmrNYAPAnMz/UMm3idqhrBtNgBQyhYLRmDhAmFQ4xOj8K0eaUjSg5Sjd1BNrZKyU3DfdRXhthJuUr8BGPvtciHjFPCUTtsdNzyLeh18BBRPz7UsNt0i8WA2bB/fOUYiz1QNMHQRA4xVA+GM8FYpSL6NxmjCCAswme//5ZLrSt+CRklkFxC543IEYgi3NYowU+5kfDxqKN9GhyZJGnj9c4g8u+7/7tgnMDOLVfP0KPK9+hvuURb2lIH9c4a++zXh6vooxGZB6cfmHhGQ3j5EV284rCC/K3iAk3KAkl49/nWueWl9tt2hUud9z/+z7AGjYOCitj797p7KOX5R3XQqck6ZY/SkcAqiUbj6ADwcYCDW9fxDoTFqr5vRFAsHS7Z7+HjkBLbEDCel3AEXYSdhhgXz8e/7bLNU4USO0+sJDg3L9kSUqrxST6WSnZRcbEQrPnj3H5tH/UTvJkg6qbfYUq6n4CpyyoweAes1vHz0fnQDdXB5CIz6oThfi6KPlGzbd4d8AEmylfhLQe5XVeGWo3X+cdeZSObmE0+VCEnFstqtPOY6mnPnyGon+vzQHh5H+lHWNiGHD1tVFBmDSzeMIQEh2K846CvKOMgSKhT1xK+sqd/nCldV+kVrqWTXiuKz7+zgGiq9mF9B7zg+aBTRuH4ZpdswbBt3klHkwHGSaYLaVTt5pVQJqZFd3a0nuacRI/X0IkaEUy4NFao9q04OIsmRD+SAqLG7EXh3EK6oGu5WDScHuUtBd/f8+Owg70HGYXAlxPX+B9QopIG1P/LSDOLd9pbZNLTIXO0NUHZef+sxmG0XZ8FwR+qmrwHulaNqiUHH7oa9ETvctCyH+9D9yQs2s3TttwDFzwugYjvvvxbM0cqH8lRyiZcw0PpE+BxQK3GXKH0Wy0m8XO3uikrZ8TgLdkathtquk/Ef1aEWA+nKZ/MvC9NirGQPSosqLhnhtKTeTFDCkPHd05E7x3jyDSeuXfXL8/5irZRUZzmhqVo30JtSjEzWx4VuXSIttp7Ju247aGRd1iFKf02SrE/bf3itV/952zeiPAjnOFreIsv3Zvdqd1ylUMvNKa2qgllWXVM9B5Tpg5fElWppTrqmGfGwq8+lvwu2vWRSo5EjdsR/w7Nk93cxEVRbVDH0Q/PZM+wugeChTaeVSqkdiJIq1qEgR14FyGmATw4AbDTJjg9k8u5C0bk0Insm5QB8KjMVcWxy5OWjDuXomIkZD6HU46Tm5w9OzDoBRGA5slCc2FM70V+TKKa6OlknVhCpFYUFB8+pjjoH6gn8bVI1dhVn/BdVUAeVFpqTQBuULKmVWfHM4fckRgioIi0SMO392l4tspdznjHZrbH6ZbOg21nRh4Lomr+gI91HrSLb7Vg4dQPgHzLoVxWYBfX9OAAoWQ3S0XmZr2gqNpZqK7qJt7Lgk2DWJOZInGJWnYbrqg+L6FgqzintchFZna3uTsqs5y7y1CnlO7Nq2bP8aU3efncPpCCj0/Zj/xI1jlMtX+t4+IeEH+fy0doE6RyK1NDoQvE3zvZI6ens2BG8vVc/DONIW3RTN5EJRpDXllCCPou78Bq9IIqH9ZBEz8VLjObi3+RlyaLKHGqE/zpcQpx9X9qQsX/wk3qRRao4KZ2JRJaygXjH0zXBzMToExMHxFBXnzwZf2mXFnXdqlnzjNiSoq66Cp1LA0DQFgxMma1dnucbqyWHr4zrRHbIW0oxahRnyuowIeWatILpRzW0clJHxedMAXAynBqwqLWY3a3yR+QbJetOvmhZoHsEU8YmGIoUDzjBrQR70fI7DzrhvHMtsiaDC0puMUmf25mGCUYBxkF7j4wIqqZj9Xh+WKlCMzmK+DdJoZK/m3sdjGgJ8LmGx2bI47UcxeKgHkOIRYE7vEEMc0Yz8hEw6EF2odz8f+UTv3ZrMi8mJ1DMUK+DFtXYvjVmKLRIJNVDbj5bQIrwK8/ijQ2+W74R0xspaKUtwHRdrZnEToM9/jKPv2SxDWl8muHayEzEwAKlsOfE1hNNpZhEruyTw6Uv5AeBrRWeAXWxs1OTOmOzV4B7LeHsECAws2Vv12D6uAgSRk8Bu18gVLkTW0AaB44R+hEtoNYTAfvy1+N7W0HvCsoMVwYAQaJ0LnPdsXOue4fHL6wPkyFVSkz0FG0l5Wi1SgLmScSeH2ObnuoxyxhmOt/cT7cZC3qmS+v6lBaKg7eN78LkHNrhZMVZMWg+SMTMCKPPM5qFMs+9J7ZVvIv/AmnOD1oZ5vDmZ0eSfT2ExZWJuipn1VFwNsIQYTEEBt3xlJxn/Lr2GPd0usTkIpkJ1OdKtJRoCIwCdTSUiYiHlFKUKEsDaAxOTk5K/////0r/////SwB0lGJNcAKFlGgWdJRSlIwDcG9zlEsQdYwJaGFzX2dhdXNzlEsAjAVnYXVzc5RHAAAAAAAAAAB1YnViLg==", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": "RandomState(MT19937)"}, "n_envs": 1, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f3af8912950>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f3af89129e0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f3af8912a70>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f3af8912b00>", "_build": "<function ActorCriticPolicy._build at 0x7f3af8912b90>", "forward": "<function ActorCriticPolicy.forward at 0x7f3af8912c20>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f3af8912cb0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f3af8912d40>", "_predict": "<function ActorCriticPolicy._predict at 0x7f3af8912dd0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f3af8912e60>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f3af8912ef0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f3af8912f80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f3af891c600>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1687090734341298791, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAKHAdT+HpGa/WFggvq+N9D5/PirAVq4nv/T+tr8imJg+X/4YPyaWA77dYVW/s5cvPcXNqT9ALI6+RE4Ov0PRXcDpN+O/Xy0RwDWDCcCEXIC/RrMiP+Xlx7+1cF6/ZDKRwGErAz8AbrQ+xl8VPzzfhb9G8C6+kQmxv8NGir83ROE9eqOMv84Ybz+vVzS/JH5Gvtwnrb96F10+fXxJvhYhxrwGnY++cTAAv2y6OD94HgU97WSFP+7Jc7+mDCG/TBgEv1xRhj/V1H68+cYaP8yCBD9hKwM/AG60PsZfFT8834W/zRoyPlbFqL/val2/6HSlPsK53r946Ng/AOKEv3rlc742PLO/iKyMvnEZqL3eDn6+7eMsvSWE6r/rWD0/HGFPvqzKvL4MtyjAmVtFv1G5x74oenc/+AoGwME7tD5k/EE/YSsDPwButD7GXxU/PN+Fv9lVUr16RS6/KXaGPfu9Z76Uzy6/cYgEP+sknb/Hr5c9pBZav1b+wj6Miye/ST4uvsw6/bwWfl2+k+E4P0e67TwtqSQ/W8YKv9T3q79mQou+U9NUP3cGB7+p+28+HUyhPGErAz8AbrQ+xl8VPzzfhb+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABvHpk2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACARorZvQAAAABpg+2/AAAAAILMjj0AAAAAaYfmPwAAAABPl8C9AAAAACglAEAAAAAA1wn1vQAAAAClQ/+/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqmYkNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgHxKyDwAAAAA53vrvwAAAAB4lCw8AAAAAP/i2T8AAAAAPWKrPAAAAAAyPvE/AAAAAOfzzb0AAAAAIlj4vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGfzzLUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBRpn+7AAAAAA0k2r8AAAAAH+kLvgAAAADg0+c/AAAAAAJYmzwAAAAAVeL4PwAAAAAXOye9AAAAAGga8b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA5z5k1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAeadUPAAAAAAQtf6/AAAAAEYflT0AAAAA1RfqPwAAAABJjom9AAAAAH4Q4D8AAAAAeI1rvQAAAABM4OG/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJnEQ4dZJTWMAWyUTegDjAF0lEdAqmDm3rleW3V9lChoBkdAmL6RCUornWgHTegDaAhHQKphhQD3dsV1fZQoaAZHQJc7KTKT0QNoB03oA2gIR0CqZByQo1DTdX2UKGgGR0CW8u6BAfMfaAdN6ANoCEdAqmWmnwXqJXV9lChoBkdAmIWeVPepGWgHTegDaAhHQKptZFCswL51fZQoaAZHQJXF9v60pmVoB03oA2gIR0CqblQf6oETdX2UKGgGR0CYl/Z0jkdWaAdN6ANoCEdAqnJeuoxYaHV9lChoBkdAlgFUxyn1nWgHTegDaAhHQKp0x4sVclh1fZQoaAZHQJgwS7nPmgdoB03oA2gIR0CqfItthuwYdX2UKGgGR0CZdQleWv8qaAdN6ANoCEdAqn0jxgAp8XV9lChoBkdAmDJzLOiWV2gHTegDaAhHQKp/wAcT8Hh1fZQoaAZHQJkWmNdZ7oloB03oA2gIR0CqgUuSOinHdX2UKGgGR0CXoUtO2y9maAdN6ANoCEdAqohv9BKL9HV9lChoBkdAml2CYgJTl2gHTegDaAhHQKqJCo0hvBJ1fZQoaAZHQJitEvGp++doB03oA2gIR0CqjDWy9mHydX2UKGgGR0CV0GzQNTcZaAdN6ANoCEdAqo5wiu+yq3V9lChoBkdAkVvogNgBtGgHTegDaAhHQKqYF3RG+bp1fZQoaAZHQJc4aMefZmJoB03oA2gIR0CqmLY9gWrPdX2UKGgGR0CBUqcf/3nIaAdN6ANoCEdAqptZ4QjD9HV9lChoBkdAjxm2pIczZmgHTegDaAhHQKqc56AvtdB1fZQoaAZHQJFBV9c8klhoB03oA2gIR0CqpB9ELH+7dX2UKGgGR0CURokupS75aAdN6ANoCEdAqqS9OIqLCXV9lChoBkdAlEg8/+sHSmgHTegDaAhHQKqnaS7oSth1fZQoaAZHQJWJSZy+6AhoB03oA2gIR0CqqO9V/+bWdX2UKGgGR0CTVpKfFrEcaAdN6ANoCEdAqrO3uTibUnV9lChoBkdAkwvfkWAPNGgHTegDaAhHQKq0XmQKa5R1fZQoaAZHQJTDWr0aqCJoB03oA2gIR0CqtvO1WsBAdX2UKGgGR0CVNCFpfx+baAdN6ANoCEdAqriCpT/ACXV9lChoBkdAlh7UIPbwjWgHTegDaAhHQKq/rm4iHIp1fZQoaAZHQJSFFAVwgkloB03oA2gIR0CqwEjjJdSmdX2UKGgGR0CVFH6NEPUbaAdN6ANoCEdAqsLd/WlMy3V9lChoBkdAli4v3i704GgHTegDaAhHQKrEYvkili11fZQoaAZHQJTo0mOU+s5oB03oA2gIR0CqzVX6hxo7dX2UKGgGR0CV8z2NNrTIaAdN6ANoCEdAqs5F5MURF3V9lChoBkdAhPt3VTaTOmgHTegDaAhHQKrSXcQiA2B1fZQoaAZHQJRTM2l2vB9oB03oA2gIR0Cq0/yteUpvdX2UKGgGR0CXPYdBSk0raAdN6ANoCEdAqtsTwvxpc3V9lChoBkdAl0J6zRhMJ2gHTegDaAhHQKrbrN5dGAl1fZQoaAZHQJjHQX40uUVoB03oA2gIR0Cq3lEuHvc8dX2UKGgGR0CW1UPk7wKCaAdN6ANoCEdAqt/UKCxu9HV9lChoBkdAlQEi4axX4mgHTegDaAhHQKrnQ1mapgl1fZQoaAZHQJd2oqtozvZoB03oA2gIR0Cq6ClUyYXwdX2UKGgGR0CWasgn+hoNaAdN6ANoCEdAquwbJEH+qHV9lChoBkdAlsCQnH/952gHTegDaAhHQKruiflIVdp1fZQoaAZHQItJApc5bQloB03oA2gIR0Cq9tu/k/8mdX2UKGgGR0CXdard30PIaAdN6ANoCEdAqvdx7Z39rHV9lChoBkdAlLgtVFQVK2gHTegDaAhHQKr6EzNUwSJ1fZQoaAZHQJfq9MAWBSVoB03oA2gIR0Cq+503Ov+wdX2UKGgGR0CW0yYaHbh4aAdN6ANoCEdAqwLe01IiDHV9lChoBkdAloJdGViWmmgHTegDaAhHQKsDfZMcp9Z1fZQoaAZHQJbgBzEJjUdoB03oA2gIR0CrBm7TMJQddX2UKGgGR0CYHXI55qubaAdN6ANoCEdAqwilqgyuZHV9lChoBkdAlr1rulXRxGgHTegDaAhHQKsSk9TP0I11fZQoaAZHQJXyEqmTC+FoB03oA2gIR0CrEylxffGddX2UKGgGR0CW2C2ETQE7aAdN6ANoCEdAqxXJnjABUHV9lChoBkdAln6dqpLmIWgHTegDaAhHQKsXW+JxecB1fZQoaAZHQJT1Kn62v0RoB03oA2gIR0CrHr2ll9SddX2UKGgGR0CWMxHN5dGBaAdN6ANoCEdAqx9XrGBFu3V9lChoBkdAlWHo6GQCCGgHTegDaAhHQKsiAKG+K0l1fZQoaAZHQJXeR6KLsKNoB03oA2gIR0CrI6MRQJokdX2UKGgGR0CWuWQhwEQoaAdN6ANoCEdAqy5560IC2nV9lChoBkdAl2tPlp48l2gHTegDaAhHQKsvTUZNwit1fZQoaAZHQJZqC6BiCrdoB03oA2gIR0CrMf9i+cpcdX2UKGgGR0CWGaF7laKUaAdN6ANoCEdAqzOUb5uZTnV9lChoBkdAllSa+8Gs3mgHTegDaAhHQKs7DjwQUYd1fZQoaAZHQItUjbFjurpoB03oA2gIR0CrO60OmR/3dX2UKGgGR0CWgsLa24NJaAdN6ANoCEdAqz5cwBYFJXV9lChoBkdAlglDzundf2gHTegDaAhHQKs/7DjR2KV1fZQoaAZHQI9cNxQzk6toB03oA2gIR0CrSUzch1TzdX2UKGgGR0CVE9YbbUPQaAdN6ANoCEdAq0pBrN4Z/HV9lChoBkdAlQs36hxo7GgHTegDaAhHQKtOPwhGH591fZQoaAZHQJWEeuU2UB5oB03oA2gIR0CrT9QmeDnOdX2UKGgGR0CNf2RChN/OaAdN6ANoCEdAq1dIccU/OnV9lChoBkdAlmgEnTiKi2gHTegDaAhHQKtX4aXKKYR1fZQoaAZHQJKLFiExqO9oB03oA2gIR0CrWo3NcGC7dX2UKGgGR0CSZoTaTOgQaAdN6ANoCEdAq1w1hTfixXV9lChoBkdAj32QpnYg72gHTegDaAhHQKtknaLXL/11fZQoaAZHQI/9sQPI4l1oB03oA2gIR0CrZYRs2vSudX2UKGgGR0CK5QGoJiRXaAdN6ANoCEdAq2nEfHPu5XV9lChoBkdAjpdtpdrwfGgHTegDaAhHQKtsWyZa3Zx1fZQoaAZHQIpxrkCFK05oB03oA2gIR0Crc/FL39JjdX2UKGgGR0CJ3x35eqrBaAdN6ANoCEdAq3SO4Vh1DHV9lChoBkdAlG6tDYywfWgHTegDaAhHQKt3S/xDst11fZQoaAZHQJJEqj8DSw5oB03oA2gIR0CreOPwNLDidX2UKGgGR0CTjGYhdMTOaAdN6ANoCEdAq4BiUA1ejXV9lChoBkdAlsL7CemNzmgHTegDaAhHQKuBHW4mTkh1fZQoaAZHQIivgMBp5/toB03oA2gIR0CrhPZwn6VMdX2UKGgGR0CSm+HYYixFaAdN6ANoCEdAq4dzJnxri3V9lChoBkdAkkAbwBo242gHTegDaAhHQKuQW9gWrOt1fZQoaAZHQJbFO1jRUm5oB03oA2gIR0CrkP7FS88LdX2UKGgGR0CVwmHSF49paAdN6ANoCEdAq5O49HMEBHV9lChoBkdAk3hGJaaCtmgHTegDaAhHQKuVV+w1R+B1fZQoaAZHQJWfQ31jAi5oB03oA2gIR0CrnJyRKYiQdX2UKGgGR0CUOUbblA/taAdN6ANoCEdAq506ujh1knV9lChoBkdAkyYjdHlOoGgHTegDaAhHQKugJrtVrAR1fZQoaAZHQJdRFbRnezloB03oA2gIR0Croma06YE4dX2UKGgGR0CWRM2TPjXGaAdN6ANoCEdAq6zSh6By0nV9lChoBkdAlc+vUKArhGgHTegDaAhHQKutccG1QZZ1fZQoaAZHQJcLcS00FbFoB03oA2gIR0CrsCjD8+A3dX2UKGgGR0CXT8iUxEfDaAdN6ANoCEdAq7HS+BYms3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a049168e4379ff745a4d2ee2e3cc5ff1053c4e5a65b8102bf62847a85f464b83
|
3 |
+
size 1018394
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 1475.5788348965057, "std_reward": 130.30824845111727, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-06-18T13:33:07.709107"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f744cc84cc8ff720e9c9bf20255fe6b8067af2b9024f73cd504f2c60515400cf
|
3 |
+
size 2176
|