ppo-LunarLander-v2 / config.json
azhiboedova's picture
Upload PPO LunarLander-v2 trained agent
478d804 verified
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7aea58a10940>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7aea58a109d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7aea58a10a60>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7aea58a10af0>", "_build": "<function ActorCriticPolicy._build at 0x7aea58a10b80>", "forward": "<function ActorCriticPolicy.forward at 0x7aea58a10c10>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7aea58a10ca0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7aea58a10d30>", "_predict": "<function ActorCriticPolicy._predict at 0x7aea58a10dc0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7aea58a10e50>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7aea58a10ee0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7aea58a10f70>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7aea589ac200>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1724801999284056090, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGY9TT2D+C09/r3JPDP9V77tZsk8hn+CPQAAAAAAAAAAGmUTPXsehboN4Ne5PEnFuDHswDlSIwg5AACAPwAAgD9mHxE9XL8TupAZWDoAHA22q7r7OgXegLkAAIA/AACAPwAtMz07VKE/EPF+Pv+Yxr6LWvE8EmzVPQAAAAAAAAAAo5yLPp0Kjz9a3tM+jaP0vsZXwT44l7w9AAAAAAAAAACaM2y9UtqouyCl8zx2RTw9rJd4vHHUDrwAAIA/AACAPz1rsD5QDYQ/okS3PNLt175Ea5k+9Wz0vQAAAAAAAAAAWt+qvmAfAz9yIes+AKWMvhdRWr2KNoU+AAAAAAAAAACz9hQ9A4FPPe7+nb0aRV++RnZJOoABkD0AAAAAAAAAADN3kDyECTM+0Oe2PPoKf770G5i8jXjCPAAAAAAAAAAAU1kTPgZfnj6Whpu+5yJDvsJOir10oaS7AAAAAAAAAADmNYw9LYEPPozMjz1BVGu+HtmrPHBnMj0AAAAAAAAAAABaFb4YwYA+eAJrPm2kVr4gJjs8us9GPQAAAAAAAAAA5tREPddMEbv39oq7jQaRPAXGSjxlCnq9AACAPwAAgD8AUIW6uiwnPwX+sj32/pi+r+t5vDjVsz0AAAAAAAAAADM4aj6B4O68TkDNO+soPLpVFFC+UiAPuwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVMwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHCtOwkgOjKMAWyUS/mMAXSUR0CUNgiBXjlxdX2UKGgGR0BxpeWWyC4CaAdNBQFoCEdAlDZPKdQO4HV9lChoBkdAcBkKO1fE42gHTTgBaAhHQJQ2a4YrJ8x1fZQoaAZHQHHZ2BOHnEFoB00OAWgIR0CUNmuAI6bOdX2UKGgGR0BBiTIFNcnmaAdL3GgIR0CUOBdWQwK0dX2UKGgGR0ByxtVKf4ATaAdNOAFoCEdAlDmGu1WsBHV9lChoBkdAcdaJo0ygw2gHTSEBaAhHQJQ5pcHGCI11fZQoaAZHQG93J0wJw85oB00DAWgIR0CUOf4y44IbdX2UKGgGR0Bvg0iSq2jPaAdNMgFoCEdAlDobpiZv1nV9lChoBkdASTVVHWjGk2gHS8NoCEdAlDpUL2HtW3V9lChoBkdAbh/znzQNTmgHTRcBaAhHQJQ6hyXD3uh1fZQoaAZHQHOGMQEpy6toB0v8aAhHQJQ6pbQkX1t1fZQoaAZHQHLFk7bL2YhoB01LAWgIR0CUO4rjHXEqdX2UKGgGR0Bv8brmhdt3aAdL/WgIR0CUO8MBp5/tdX2UKGgGR0By7jCl7+kyaAdL+WgIR0CUPYANXo1UdX2UKGgGR0BvZQvYe1a4aAdNJAFoCEdAlD5yojv/i3V9lChoBkdAcTktFKCg9WgHTSsBaAhHQJQ/GZKFqSJ1fZQoaAZHQHKADFMqSYBoB01YAWgIR0CUP/o1UEPldX2UKGgGR0BwwYG9pRGdaAdNKwFoCEdAlEHN8JD3NHV9lChoBkdASdpdY4hllWgHS+VoCEdAlEI8H4XXRXV9lChoBkdAcZtrEcbR4WgHTQgBaAhHQJRDJUHY6GR1fZQoaAZHQG/Je6y0KJFoB00DAWgIR0CUQ0EHt4RmdX2UKGgGR0Bwn675Ec81aAdNEgFoCEdAlENkmplz2nV9lChoBkdAchS+nIhhY2gHTTMBaAhHQJREJY0VJtl1fZQoaAZHQHG1ctPHktFoB00SAWgIR0CURGxWkrPMdX2UKGgGR0ByYaaZx7zDaAdNSwFoCEdAlEVC6Ymb9nV9lChoBkdAbu1t9hJAdGgHTQcBaAhHQJRFrnhbW3B1fZQoaAZHQG+NI6CDmKZoB00tAWgIR0CURwlVLi++dX2UKGgGR0BuFCvovBacaAdL/GgIR0CUST7MgU1ydX2UKGgGR0BvhIU34sVdaAdNFwJoCEdAlElIFNcnmnV9lChoBkdAcIhLR8c+7mgHTSUBaAhHQJRJs7U5MlF1fZQoaAZHQHCUacqe9SNoB00aAWgIR0CUSzLThHbzdX2UKGgGR0BvPwfKZDzAaAdNCgFoCEdAlEtn+hoM8nV9lChoBkdAb0tbpNbkfmgHS/FoCEdAlEymBe5WinV9lChoBkdAcAUkOqebu2gHTR8BaAhHQJRNLCO3lS11fZQoaAZHQHITghKUVzpoB00EAWgIR0CUTW0rsjVydX2UKGgGR0BwSWxRl6JJaAdNDgFoCEdAlE5DD4xk/nV9lChoBkdAcjTaPjn3c2gHTUQBaAhHQJROlsguAZt1fZQoaAZHQG8DCW3Sa3JoB00SAWgIR0CUTpiX6ZYxdX2UKGgGR0BxKuPluFYdaAdNmQNoCEdAlE7h9gF5fXV9lChoBkdAbzmANG3F1mgHTR0BaAhHQJRPbslb/wR1fZQoaAZHQHGFEHlfZ29oB00wAWgIR0CUUDr8BMi9dX2UKGgGR0Bynny8SPELaAdNXQFoCEdAlFK2V/tpmHV9lChoBkdAcpS0RODaoWgHTQQBaAhHQJRTDHwPRRd1fZQoaAZHQHDwby+YdABoB001AWgIR0CUUwhwl0HRdX2UKGgGR0Bu6rvgFX7taAdNKgFoCEdAlFMJV0cOsnV9lChoBkdAcGQV2icoY2gHTVoBaAhHQJRk0px3mmt1fZQoaAZHQHGpUSmIj4ZoB00bAWgIR0CUZfmapgkUdX2UKGgGR0BzJT9OymhuaAdNSAFoCEdAlGYPXf642HV9lChoBkdAcAr15Sm65GgHTREBaAhHQJRmaLk0aZR1fZQoaAZHQHDrRF/hESdoB0vtaAhHQJRmzSApazN1fZQoaAZHQHG2uA/cFhZoB00xAWgIR0CUZxTJyQxOdX2UKGgGR0ByH22G7BfsaAdNLgFoCEdAlGf52yLQ5XV9lChoBkdAcPGl3Qla82gHTQ4BaAhHQJRoR5t3wCt1fZQoaAZHQHDVUNayKN1oB00+AWgIR0CUaLhNM496dX2UKGgGR0BsRmOOsDGMaAdNHwFoCEdAlGmWX9itrHV9lChoBkdAc3wIeYD1XmgHTXEBaAhHQJRqMHAymAN1fZQoaAZHQG7iSOJcgQpoB00CAWgIR0CUavPyCnP3dX2UKGgGR0BwlnReC04SaAdNEwFoCEdAlGvCC8OCoXV9lChoBkdAcIGbnoxHoWgHTQEBaAhHQJRsWqxTsIF1fZQoaAZHQG/9w0GeMAFoB00vAWgIR0CUbKshgVoIdX2UKGgGR0BxjVdqtYCAaAdNPgFoCEdAlG0VvMr3CnV9lChoBkdAcTWoMKCxvGgHS/NoCEdAlG1+3DvVmXV9lChoBkdAbRiD+zdDY2gHTRcBaAhHQJRuOKvV3EB1fZQoaAZHQHCm6ZhKDkFoB00iAWgIR0CUbndFvybydX2UKGgGR0BzOZCJGe+VaAdNDQFoCEdAlG6uzIFNcnV9lChoBkdAQ2yiVSn+AGgHS8xoCEdAlG+ZJXhfjXV9lChoBkdAbfh2wmmcfGgHTT8BaAhHQJRwVHxz7uV1fZQoaAZHQHFGmHDaXa9oB00bAWgIR0CUcItpmEoOdX2UKGgGR0BwJ65qdpZfaAdNPQFoCEdAlHIH8wYcenV9lChoBkdAcX6sabWmQGgHTWIBaAhHQJRyVib2Dg91fZQoaAZHQHHcO1v2oNxoB00iAWgIR0CUcr/JvHcUdX2UKGgGR0BwB7t+kP+XaAdL/WgIR0CUc01ie/YbdX2UKGgGR0BZqfPC2tuDaAdN6ANoCEdAlHQ185S3s3V9lChoBkdAbFhG5tm+TWgHTQkBaAhHQJR0erbQC0Z1fZQoaAZHQHEPpVXFLnNoB01KAWgIR0CUdTt8uzyCdX2UKGgGR0Byt5wl0HQhaAdNDwFoCEdAlHWfhZQpF3V9lChoBkdAcb/lFMIu5GgHTR8BaAhHQJR1rp/wy7B1fZQoaAZHQHGlHDm8ujBoB0v1aAhHQJR2Op2ll9V1fZQoaAZHQHIpp7CzkZJoB003AWgIR0CUd1+H8CPqdX2UKGgGR0BLUveYUnG9aAdL1WgIR0CUd3PN3W4FdX2UKGgGR0Bw74RVZLZjaAdNPwFoCEdAlHiA3gk1M3V9lChoBkdAcebC/XXiBGgHTTQBaAhHQJR4tkWhysF1fZQoaAZHQHJLW912aDxoB002AWgIR0CUejMGHHmzdX2UKGgGR0BwmfuogmqpaAdNJgFoCEdAlHrsqnWJ8HV9lChoBkdAbTNj3Ehq02gHTRYBaAhHQJR8jjin5zp1fZQoaAZHQFEznf2saKloB0vIaAhHQJR9phkRSP51fZQoaAZHQHJr41xbSqloB00eAWgIR0CUffLzf779dX2UKGgGR0BuFQ150KZ2aAdNGQFoCEdAlH5C3Td+HHV9lChoBkdAbEz1B+nZTWgHTRcBaAhHQJR/JrRBu4x1fZQoaAZHQHClrRF7UodoB00HAWgIR0CUf0kHlfZ3dX2UKGgGR0BxpujO9nK5aAdNKwFoCEdAlH+Lm6oVEnV9lChoBkdAR5AA80UGmmgHS9BoCEdAlH+FWbPQfXV9lChoBkdAcmD5Etuk12gHTRIBaAhHQJR/3TPSlWR1fZQoaAZHQHLQI7vG6wtoB00fAWgIR0CUgLX4j8k2dX2UKGgGR0BvoqbBoEjgaAdNEwFoCEdAlIFn27FsHnV9lChoBkdAbumVEd/8VGgHTQwBaAhHQJSCP6Ggzxh1fZQoaAZHQHJVEZvUBn1oB00lAWgIR0CUgtW8yvcKdX2UKGgGR0BwnJMyrPt2aAdNFQFoCEdAlIOgRPGhmHV9lChoBkdAcnfR+z+m32gHTSQBaAhHQJSEldOZb6h1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.4.0+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}