--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: mbert-finnic-ner results: [] --- # mbert-finnic-ner This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1427 - Precision: 0.9090 - Recall: 0.9156 - F1: 0.9123 - Accuracy: 0.9672 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.1636 | 1.0 | 2188 | 0.1385 | 0.8906 | 0.9000 | 0.8953 | 0.9601 | | 0.0991 | 2.0 | 4376 | 0.1346 | 0.9099 | 0.9095 | 0.9097 | 0.9660 | | 0.0596 | 3.0 | 6564 | 0.1427 | 0.9090 | 0.9156 | 0.9123 | 0.9672 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6