File size: 44,758 Bytes
9fa8856
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
from __future__ import annotations
from typing import Union
from transformers import LlamaConfig, LlamaModel, LlamaForCausalLM
from transformers.modeling_outputs import CausalLMOutputWithPast
from transformers.generation.utils import GenerateOutput
from .configuration_m3d_lamed import LamedConfig
from abc import ABC, abstractmethod
from torch import Tensor
import math
from typing import Any, Dict, List
import torch
import torch.nn as nn
from typing import Optional, Tuple, Type
from monai.networks.blocks import PatchEmbed
import numpy as np
import torch.nn.functional as F

from einops import rearrange
from einops.layers.torch import Rearrange
from collections.abc import Sequence
from monai.networks.blocks.patchembedding import PatchEmbeddingBlock
from monai.networks.blocks.transformerblock import TransformerBlock
from monai.networks.nets import ViT





class LayerNorm2d(nn.Module):
    def __init__(self, num_channels: int, eps: float = 1e-6) -> None:
        super().__init__()
        self.weight = nn.Parameter(torch.ones(num_channels))
        self.bias = nn.Parameter(torch.zeros(num_channels))
        self.eps = eps

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        u = x.mean(1, keepdim=True)
        s = (x - u).pow(2).mean(1, keepdim=True)
        x = (x - u) / torch.sqrt(s + self.eps)
        x = self.weight[:, None, None] * x + self.bias[:, None, None]
        return x


class MLPBlock(nn.Module):
    def __init__(
            self,
            embedding_dim: int,
            mlp_dim: int,
            act: Type[nn.Module] = nn.GELU,
    ) -> None:
        super().__init__()
        self.lin1 = nn.Linear(embedding_dim, mlp_dim)
        self.lin2 = nn.Linear(mlp_dim, embedding_dim)
        self.act = act()

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        return self.lin2(self.act(self.lin1(x)))


class TwoWayTransformer(nn.Module):
    def __init__(
            self,
            depth: int,
            embedding_dim: int,
            num_heads: int,
            mlp_dim: int,
            activation: Type[nn.Module] = nn.ReLU,
            attention_downsample_rate: int = 2,
    ) -> None:
        """
        A transformer decoder that attends to an input image using
        queries whose positional embedding is supplied.

        Args:
          depth (int): number of layers in the transformer
          embedding_dim (int): the channel dimension for the input embeddings
          num_heads (int): the number of heads for multihead attention. Must
            divide embedding_dim
          mlp_dim (int): the channel dimension internal to the MLP block
          activation (nn.Module): the activation to use in the MLP block
        """
        super().__init__()
        self.depth = depth
        self.embedding_dim = embedding_dim
        self.num_heads = num_heads
        self.mlp_dim = mlp_dim
        self.layers = nn.ModuleList()

        for i in range(depth):
            self.layers.append(
                TwoWayAttentionBlock(
                    embedding_dim=embedding_dim,
                    num_heads=num_heads,
                    mlp_dim=mlp_dim,
                    activation=activation,
                    attention_downsample_rate=attention_downsample_rate,
                    skip_first_layer_pe=(i == 0),
                )
            )

        self.final_attn_token_to_image = Attention(
            embedding_dim, num_heads, downsample_rate=attention_downsample_rate
        )
        self.norm_final_attn = nn.LayerNorm(embedding_dim)

    def forward(
            self,
            image_embedding: Tensor,
            image_pe: Tensor,
            point_embedding: Tensor,
    ) -> Tuple[Tensor, Tensor]:
        """
        Args:
          image_embedding (torch.Tensor): image to attend to. Should be shape
            B x embedding_dim x h x w for any h and w.
          image_pe (torch.Tensor): the positional encoding to add to the image. Must
            have the same shape as image_embedding.
          point_embedding (torch.Tensor): the embedding to add to the query points.
            Must have shape B x N_points x embedding_dim for any N_points.

        Returns:
          torch.Tensor: the processed point_embedding
          torch.Tensor: the processed image_embedding
        """
        # BxCxHxW -> BxHWxC == B x N_image_tokens x C
        bs, c, h, w, d = image_embedding.shape
        image_embedding = image_embedding.flatten(2).permute(0, 2, 1)
        image_pe = image_pe.flatten(2).permute(0, 2, 1)

        # Prepare queries
        queries = point_embedding
        keys = image_embedding

        # Apply transformer blocks and final layernorm
        for layer in self.layers:
            queries, keys = layer(
                queries=queries,
                keys=keys,
                query_pe=point_embedding,
                key_pe=image_pe,
            )

        # Apply the final attention layer from the points to the image
        q = queries + point_embedding
        k = keys + image_pe
        attn_out = self.final_attn_token_to_image(q=q, k=k, v=keys)
        queries = queries + attn_out
        queries = self.norm_final_attn(queries)

        return queries, keys


class TwoWayAttentionBlock(nn.Module):
    def __init__(
            self,
            embedding_dim: int,
            num_heads: int,
            mlp_dim: int = 2048,
            activation: Type[nn.Module] = nn.ReLU,
            attention_downsample_rate: int = 2,
            skip_first_layer_pe: bool = False,
    ) -> None:
        """
        A transformer block with four layers: (1) self-attention of sparse
        inputs, (2) cross attention of sparse inputs to dense inputs, (3) mlp
        block on sparse inputs, and (4) cross attention of dense inputs to sparse
        inputs.

        Arguments:
          embedding_dim (int): the channel dimension of the embeddings
          num_heads (int): the number of heads in the attention layers
          mlp_dim (int): the hidden dimension of the mlp block
          activation (nn.Module): the activation of the mlp block
          skip_first_layer_pe (bool): skip the PE on the first layer
        """
        super().__init__()
        self.self_attn = Attention(embedding_dim, num_heads)
        self.norm1 = nn.LayerNorm(embedding_dim)

        self.cross_attn_token_to_image = Attention(
            embedding_dim, num_heads, downsample_rate=attention_downsample_rate
        )
        self.norm2 = nn.LayerNorm(embedding_dim)

        self.mlp = MLPBlock(embedding_dim, mlp_dim, activation)
        self.norm3 = nn.LayerNorm(embedding_dim)

        self.norm4 = nn.LayerNorm(embedding_dim)
        self.cross_attn_image_to_token = Attention(
            embedding_dim, num_heads, downsample_rate=attention_downsample_rate
        )

        self.skip_first_layer_pe = skip_first_layer_pe

    def forward(
            self, queries: Tensor, keys: Tensor, query_pe: Tensor, key_pe: Tensor
    ) -> Tuple[Tensor, Tensor]:
        # Self attention block
        if self.skip_first_layer_pe:
            queries = self.self_attn(q=queries, k=queries, v=queries)
        else:
            q = queries + query_pe
            attn_out = self.self_attn(q=q, k=q, v=queries)
            queries = queries + attn_out
        queries = self.norm1(queries)

        # Cross attention block, tokens attending to image embedding
        q = queries + query_pe
        k = keys + key_pe
        attn_out = self.cross_attn_token_to_image(q=q, k=k, v=keys)
        queries = queries + attn_out
        queries = self.norm2(queries)

        # MLP block
        mlp_out = self.mlp(queries)
        queries = queries + mlp_out
        queries = self.norm3(queries)

        # Cross attention block, image embedding attending to tokens
        q = queries + query_pe
        k = keys + key_pe
        attn_out = self.cross_attn_image_to_token(q=k, k=q, v=queries)
        keys = keys + attn_out
        keys = self.norm4(keys)

        return queries, keys


class Attention(nn.Module):
    """
    An attention layer that allows for downscaling the size of the embedding
    after projection to queries, keys, and values.
    """

    def __init__(
            self,
            embedding_dim: int,
            num_heads: int,
            downsample_rate: int = 1,
    ) -> None:
        super().__init__()
        self.embedding_dim = embedding_dim
        self.internal_dim = embedding_dim // downsample_rate
        self.num_heads = num_heads
        assert self.internal_dim % num_heads == 0, "num_heads must divide embedding_dim."

        self.q_proj = nn.Linear(embedding_dim, self.internal_dim)
        self.k_proj = nn.Linear(embedding_dim, self.internal_dim)
        self.v_proj = nn.Linear(embedding_dim, self.internal_dim)
        self.out_proj = nn.Linear(self.internal_dim, embedding_dim)

    def _separate_heads(self, x: Tensor, num_heads: int) -> Tensor:
        b, n, c = x.shape
        x = x.reshape(b, n, num_heads, c // num_heads)
        return x.transpose(1, 2)  # B x N_heads x N_tokens x C_per_head

    def _recombine_heads(self, x: Tensor) -> Tensor:
        b, n_heads, n_tokens, c_per_head = x.shape
        x = x.transpose(1, 2)
        return x.reshape(b, n_tokens, n_heads * c_per_head)  # B x N_tokens x C

    def forward(self, q: Tensor, k: Tensor, v: Tensor) -> Tensor:
        # Input projections
        q = self.q_proj(q)
        k = self.k_proj(k)
        v = self.v_proj(v)

        # Separate into heads
        q = self._separate_heads(q, self.num_heads)
        k = self._separate_heads(k, self.num_heads)
        v = self._separate_heads(v, self.num_heads)

        # Attention
        _, _, _, c_per_head = q.shape
        attn = q @ k.permute(0, 1, 3, 2)  # B x N_heads x N_tokens x N_tokens
        attn = attn / math.sqrt(c_per_head)
        attn = torch.softmax(attn, dim=-1)

        # Get output
        out = attn @ v
        out = self._recombine_heads(out)
        out = self.out_proj(out)

        return out



# This class and its supporting functions below lightly adapted from the ViTDet backbone available at: https://github.com/facebookresearch/detectron2/blob/main/detectron2/modeling/backbone/vit.py # noqa
class ImageEncoderViT(nn.Module):
    def __init__(
            self,
            img_size: int = 1024,
            patch_size: int = 16,
            in_chans: int = 1,
            embed_dim: int = 768,
            depth: int = 12,
            num_heads: int = 12,
            mlp_ratio: float = 4.0,
            out_chans: int = 256,
            qkv_bias: bool = True,
            norm_layer: Type[nn.Module] = nn.LayerNorm,
            act_layer: Type[nn.Module] = nn.GELU,
            use_abs_pos: bool = True,
            use_rel_pos: bool = False,
            rel_pos_zero_init: bool = True,
            window_size: int = 0,
            global_attn_indexes: Tuple[int, ...] = (),
    ) -> None:
        """
        Args:
            img_size (int): Input image size.
            patch_size (int): Patch size.
            in_chans (int): Number of input image channels.
            embed_dim (int): Patch embedding dimension.
            depth (int): Depth of ViT.
            num_heads (int): Number of attention heads in each ViT block.
            mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
            qkv_bias (bool): If True, add a learnable bias to query, key, value.
            norm_layer (nn.Module): Normalization layer.
            act_layer (nn.Module): Activation layer.
            use_abs_pos (bool): If True, use absolute positional embeddings.
            use_rel_pos (bool): If True, add relative positional embeddings to the attention map.
            rel_pos_zero_init (bool): If True, zero initialize relative positional parameters.
            window_size (int): Window size for window attention blocks.
            global_attn_indexes (list): Indexes for blocks using global attention.
        """
        super().__init__()
        self.img_size = img_size

        # self.patch_embed = PatchEmbed(
        #     kernel_size=(patch_size, patch_size),
        #     stride=(patch_size, patch_size),
        #     in_chans=in_chans,
        #     embed_dim=embed_dim,
        # )

        self.patch_embed = PatchEmbed(
            patch_size=patch_size,
            in_chans=in_chans,
            embed_dim=embed_dim,
            spatial_dims=3,
        )

        self.pos_embed: Optional[nn.Parameter] = None
        if use_abs_pos:
            # Initialize absolute positional embedding with pretrain image size.
            self.pos_embed = nn.Parameter(
                torch.zeros(1, img_size // patch_size, img_size // patch_size, img_size // patch_size, embed_dim)
            )

        self.blocks = nn.ModuleList()
        for i in range(depth):
            block = Block(
                dim=embed_dim,
                num_heads=num_heads,
                mlp_ratio=mlp_ratio,
                qkv_bias=qkv_bias,
                norm_layer=norm_layer,
                act_layer=act_layer,
                use_rel_pos=use_rel_pos,
                rel_pos_zero_init=rel_pos_zero_init,
                window_size=window_size if i not in global_attn_indexes else 0,
                input_size=(img_size // patch_size, img_size // patch_size),
            )
            self.blocks.append(block)

        self.neck = nn.Sequential(
            nn.Conv2d(
                embed_dim,
                out_chans,
                kernel_size=1,
                bias=False,
            ),
            LayerNorm2d(out_chans),
            nn.Conv2d(
                out_chans,
                out_chans,
                kernel_size=3,
                padding=1,
                bias=False,
            ),
            LayerNorm2d(out_chans),
        )

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        x = self.patch_embed(x)
        print('patch embedded shape: ', x.shape)  # embedded: [8, 768, 6, 6, 6]
        if self.pos_embed is not None:
            x = x + self.pos_embed

        for blk in self.blocks:
            x = blk(x)

        x = self.neck(x.permute(0, 3, 1, 2))

        return x


class Block(nn.Module):
    """Transformer blocks with support of window attention and residual propagation blocks"""

    def __init__(
            self,
            dim: int,
            num_heads: int,
            mlp_ratio: float = 4.0,
            qkv_bias: bool = True,
            norm_layer: Type[nn.Module] = nn.LayerNorm,
            act_layer: Type[nn.Module] = nn.GELU,
            use_rel_pos: bool = False,
            rel_pos_zero_init: bool = True,
            window_size: int = 0,
            input_size: Optional[Tuple[int, int]] = None,
    ) -> None:
        """
        Args:
            dim (int): Number of input channels.
            num_heads (int): Number of attention heads in each ViT block.
            mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
            qkv_bias (bool): If True, add a learnable bias to query, key, value.
            norm_layer (nn.Module): Normalization layer.
            act_layer (nn.Module): Activation layer.
            use_rel_pos (bool): If True, add relative positional embeddings to the attention map.
            rel_pos_zero_init (bool): If True, zero initialize relative positional parameters.
            window_size (int): Window size for window attention blocks. If it equals 0, then
                use global attention.
            input_size (tuple(int, int) or None): Input resolution for calculating the relative
                positional parameter size.
        """
        super().__init__()
        self.norm1 = norm_layer(dim)
        self.attn = Attention2(
            dim,
            num_heads=num_heads,
            qkv_bias=qkv_bias,
            use_rel_pos=use_rel_pos,
            rel_pos_zero_init=rel_pos_zero_init,
            input_size=input_size if window_size == 0 else (window_size, window_size),
        )

        self.norm2 = norm_layer(dim)
        self.mlp = MLPBlock(embedding_dim=dim, mlp_dim=int(dim * mlp_ratio), act=act_layer)

        self.window_size = window_size

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        shortcut = x
        x = self.norm1(x)
        # Window partition
        if self.window_size > 0:
            H, W = x.shape[1], x.shape[2]
            x, pad_hw = window_partition(x, self.window_size)

        x = self.attn(x)
        # Reverse window partition
        if self.window_size > 0:
            x = window_unpartition(x, self.window_size, pad_hw, (H, W))

        x = shortcut + x
        x = x + self.mlp(self.norm2(x))

        return x


class Attention2(nn.Module):
    """Multi-head Attention block with relative position embeddings."""

    def __init__(
            self,
            dim: int,
            num_heads: int = 8,
            qkv_bias: bool = True,
            use_rel_pos: bool = False,
            rel_pos_zero_init: bool = True,
            input_size: Optional[Tuple[int, int]] = None,
    ) -> None:
        """
        Args:
            dim (int): Number of input channels.
            num_heads (int): Number of attention heads.
            qkv_bias (bool):  If True, add a learnable bias to query, key, value.
            rel_pos (bool): If True, add relative positional embeddings to the attention map.
            rel_pos_zero_init (bool): If True, zero initialize relative positional parameters.
            input_size (tuple(int, int) or None): Input resolution for calculating the relative
                positional parameter size.
        """
        super().__init__()
        self.num_heads = num_heads
        head_dim = dim // num_heads
        self.scale = head_dim ** -0.5

        self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
        self.proj = nn.Linear(dim, dim)

        self.use_rel_pos = use_rel_pos
        if self.use_rel_pos:
            assert (
                    input_size is not None
            ), "Input size must be provided if using relative positional encoding."
            # initialize relative positional embeddings
            self.rel_pos_h = nn.Parameter(torch.zeros(2 * input_size[0] - 1, head_dim))
            self.rel_pos_w = nn.Parameter(torch.zeros(2 * input_size[1] - 1, head_dim))

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        B, H, W, _ = x.shape
        # qkv with shape (3, B, nHead, H * W, C)
        qkv = self.qkv(x).reshape(B, H * W, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
        # q, k, v with shape (B * nHead, H * W, C)
        q, k, v = qkv.reshape(3, B * self.num_heads, H * W, -1).unbind(0)

        attn = (q * self.scale) @ k.transpose(-2, -1)

        if self.use_rel_pos:
            attn = add_decomposed_rel_pos(attn, q, self.rel_pos_h, self.rel_pos_w, (H, W), (H, W))

        attn = attn.softmax(dim=-1)
        x = (attn @ v).view(B, self.num_heads, H, W, -1).permute(0, 2, 3, 1, 4).reshape(B, H, W, -1)
        x = self.proj(x)

        return x


def window_partition(x: torch.Tensor, window_size: int) -> Tuple[torch.Tensor, Tuple[int, int]]:
    """
    Partition into non-overlapping windows with padding if needed.
    Args:
        x (tensor): input tokens with [B, H, W, C].
        window_size (int): window size.

    Returns:
        windows: windows after partition with [B * num_windows, window_size, window_size, C].
        (Hp, Wp): padded height and width before partition
    """
    B, H, W, C = x.shape

    pad_h = (window_size - H % window_size) % window_size
    pad_w = (window_size - W % window_size) % window_size
    if pad_h > 0 or pad_w > 0:
        x = F.pad(x, (0, 0, 0, pad_w, 0, pad_h))
    Hp, Wp = H + pad_h, W + pad_w

    x = x.view(B, Hp // window_size, window_size, Wp // window_size, window_size, C)
    windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
    return windows, (Hp, Wp)


def window_unpartition(windows: torch.Tensor, window_size: int, pad_hw: Tuple[int, int], hw: Tuple[int, int]) -> torch.Tensor:
    """
    Window unpartition into original sequences and removing padding.
    Args:
        windows (tensor): input tokens with [B * num_windows, window_size, window_size, C].
        window_size (int): window size.
        pad_hw (Tuple): padded height and width (Hp, Wp).
        hw (Tuple): original height and width (H, W) before padding.

    Returns:
        x: unpartitioned sequences with [B, H, W, C].
    """
    Hp, Wp = pad_hw
    H, W = hw
    B = windows.shape[0] // (Hp * Wp // window_size // window_size)
    x = windows.view(B, Hp // window_size, Wp // window_size, window_size, window_size, -1)
    x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, Hp, Wp, -1)

    if Hp > H or Wp > W:
        x = x[:, :H, :W, :].contiguous()
    return x


def get_rel_pos(q_size: int, k_size: int, rel_pos: torch.Tensor) -> torch.Tensor:
    """
    Get relative positional embeddings according to the relative positions of
        query and key sizes.
    Args:
        q_size (int): size of query q.
        k_size (int): size of key k.
        rel_pos (Tensor): relative position embeddings (L, C).

    Returns:
        Extracted positional embeddings according to relative positions.
    """
    max_rel_dist = int(2 * max(q_size, k_size) - 1)
    # Interpolate rel pos if needed.
    if rel_pos.shape[0] != max_rel_dist:
        # Interpolate rel pos.
        rel_pos_resized = F.interpolate(
            rel_pos.reshape(1, rel_pos.shape[0], -1).permute(0, 2, 1),
            size=max_rel_dist,
            mode="linear",
        )
        rel_pos_resized = rel_pos_resized.reshape(-1, max_rel_dist).permute(1, 0)
    else:
        rel_pos_resized = rel_pos

    # Scale the coords with short length if shapes for q and k are different.
    q_coords = torch.arange(q_size)[:, None] * max(k_size / q_size, 1.0)
    k_coords = torch.arange(k_size)[None, :] * max(q_size / k_size, 1.0)
    relative_coords = (q_coords - k_coords) + (k_size - 1) * max(q_size / k_size, 1.0)

    return rel_pos_resized[relative_coords.long()]


def add_decomposed_rel_pos(
        attn: torch.Tensor,
        q: torch.Tensor,
        rel_pos_h: torch.Tensor,
        rel_pos_w: torch.Tensor,
        q_size: Tuple[int, int],
        k_size: Tuple[int, int],
) -> torch.Tensor:
    """
    Calculate decomposed Relative Positional Embeddings from :paper:`mvitv2`.
    https://github.com/facebookresearch/mvit/blob/19786631e330df9f3622e5402b4a419a263a2c80/mvit/models/attention.py   # noqa B950
    Args:
        attn (Tensor): attention map.
        q (Tensor): query q in the attention layer with shape (B, q_h * q_w, C).
        rel_pos_h (Tensor): relative position embeddings (Lh, C) for height axis.
        rel_pos_w (Tensor): relative position embeddings (Lw, C) for width axis.
        q_size (Tuple): spatial sequence size of query q with (q_h, q_w).
        k_size (Tuple): spatial sequence size of key k with (k_h, k_w).

    Returns:
        attn (Tensor): attention map with added relative positional embeddings.
    """
    q_h, q_w = q_size
    k_h, k_w = k_size
    Rh = get_rel_pos(q_h, k_h, rel_pos_h)
    Rw = get_rel_pos(q_w, k_w, rel_pos_w)

    B, _, dim = q.shape
    r_q = q.reshape(B, q_h, q_w, dim)
    rel_h = torch.einsum("bhwc,hkc->bhwk", r_q, Rh)
    rel_w = torch.einsum("bhwc,wkc->bhwk", r_q, Rw)

    attn = (
            attn.view(B, q_h, q_w, k_h, k_w) + rel_h[:, :, :, :, None] + rel_w[:, :, :, None, :]
    ).view(B, q_h * q_w, k_h * k_w)

    return attn











class IdentityMap(nn.Module):
    def __init__(self):
        super().__init__()

    def forward(self, x, *args, **kwargs):
        return x

    @property
    def config(self):
        return {"mm_projector_type": 'identity'}


class SpatialPoolingProjector(nn.Module):
    def __init__(self, image_size, patch_size, in_dim, out_dim, layer_type, layer_num, pooling_type='spatial', pooling_size=2):
        super().__init__()
        self.in_dim = in_dim
        self.pooling_size = pooling_size

        self.num_patches_pre = [img // pch for img, pch in zip(image_size, patch_size)]
        self.num_patches_post = [num // pooling_size for num in self.num_patches_pre]

        if layer_type == 'linear':
            depth = int(layer_num)
            modules = [nn.Linear(in_dim, out_dim)]
            for _ in range(1, depth):
                modules.append(nn.Linear(out_dim, out_dim))
            self.projector = nn.Sequential(*modules)
        elif layer_type == 'mlp':
            depth = int(layer_num)
            modules = [nn.Linear(in_dim, out_dim)]
            for _ in range(1, depth):
                modules.append(nn.GELU())
                modules.append(nn.Linear(out_dim, out_dim))
            self.projector = nn.Sequential(*modules)
        else:
            print("Projector error!")

        self.pooling_type = pooling_type

    def forward(self, x):
        B = x.shape[0] # B*N*D

        if self.pooling_type == 'spatial':
            to_3d = Rearrange("b (p1 p2 p3) d -> b d p1 p2 p3", b=B, d=self.in_dim, p1=self.num_patches_pre[0], p2=self.num_patches_pre[1], p3=self.num_patches_pre[2])
            x = to_3d(x)
            x = F.avg_pool3d(x, kernel_size=self.pooling_size, stride=self.pooling_size)
            to_seq = Rearrange("b d p1 p2 p3 -> b (p1 p2 p3) d", b=B, d=self.in_dim, p1=self.num_patches_post[0], p2=self.num_patches_post[1], p3=self.num_patches_post[2])
            x = to_seq(x)
        elif self.pooling_type == 'sequence':
            x = x.permute(0, 2, 1) #b d n
            x = F.avg_pool1d(x, kernel_size=self.pooling_size**3, stride=self.pooling_size**3)
            x = x.permute(0, 2, 1) #b n d

        x = rearrange(x, "b n d -> (b n) d")
        x = self.projector(x)
        x = rearrange(x, "(b n) d -> b n d", b=B)

        return x

    @property
    def proj_out_num(self):
        num = 1
        for n in self.num_patches_post:
            num *= n
        return num


class Minigpt(nn.Module):
    def __init__(self, config=None):
        super(Minigpt, self).__init__()
        # c*4 is the input size, and c is the output size for the linear layer
        inc, ouc = config.mm_hidden_size, config.hidden_size
        self.linear = nn.Linear(inc * 4, ouc)

    def forward(self, x):
        # x is the input tensor with shape [b, num_tokens, c]
        b, num_tokens, c = x.shape

        # Check if num_tokens is divisible by 4
        if num_tokens % 4 != 0:
            raise ValueError("num_tokens must be divisible by 4")

        # Reshape x to [b, num_tokens/4, c*4]
        x = x.view(b, num_tokens // 4, c * 4)

        # Apply the linear transformation
        x = self.linear(x)
        return x


class Vanilla(nn.Module):
    def __init__(self, config=None):
        super(Vanilla, self).__init__()
        # c*4 is the input size, and c is the output size for the linear layer
        inc, ouc = config.mm_hidden_size, config.hidden_size
        self.linear = nn.Linear(inc * 4, ouc)

    def forward(self, x):
        b, num_tokens, c = x.shape

        # Check if num_tokens is divisible by 4
        if num_tokens % 4 != 0:
            raise ValueError("num_tokens must be divisible by 4")

        # First, reshape to [b, num_tokens//4, 4, c]
        x = x.view(b, num_tokens // 4, 4, c)

        # Then, permute to interleave the tokens
        x = x.permute(0, 1, 3, 2).contiguous()

        # Finally, reshape to [b, num_tokens//4, c*4] to interleave features of 4 tokens
        x = x.view(b, num_tokens // 4, c * 4)

        # Apply the linear transformation
        x = self.linear(x)
        return x


def build_mm_projector(config, delay_load=False, **kwargs):
    projector_type = getattr(config, 'mm_projector_type')

    if projector_type == 'linear':
        return nn.Linear(config.mm_hidden_size, config.hidden_size)


    elif projector_type == 'spp':
        return SpatialPoolingProjector(image_size=config.image_size,
                                        patch_size=config.patch_size,
                                        in_dim=config.mm_hidden_size,
                                        out_dim=config.hidden_size,
                                        layer_type=config.proj_layer_type,
                                        layer_num=config.proj_layer_num,
                                        pooling_type=config.proj_pooling_type,
                                        pooling_size=config.proj_pooling_size)


    elif projector_type == 'identity':
        return IdentityMap()
    else:
        raise ValueError(f'Unknown projector type: {projector_type}')


class myViT(nn.Module):
    """
    Vision Transformer (ViT), based on: "Dosovitskiy et al.,
    An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale <https://arxiv.org/abs/2010.11929>"

    ViT supports Torchscript but only works for Pytorch after 1.8.
    """

    def __init__(
        self,
        in_channels: int,
        img_size: Sequence[int] | int,
        patch_size: Sequence[int] | int,
        hidden_size: int = 768,
        mlp_dim: int = 3072,
        num_layers: int = 12,
        num_heads: int = 12,
        pos_embed: str = "conv",
        classification: bool = False,
        num_classes: int = 2,
        dropout_rate: float = 0.0,
        spatial_dims: int = 3,
        post_activation="Tanh",
        qkv_bias: bool = False,
        save_attn: bool = False,
    ) -> None:
        """
        Args:
            in_channels (int): dimension of input channels.
            img_size (Union[Sequence[int], int]): dimension of input image.
            patch_size (Union[Sequence[int], int]): dimension of patch size.
            hidden_size (int, optional): dimension of hidden layer. Defaults to 768.
            mlp_dim (int, optional): dimension of feedforward layer. Defaults to 3072.
            num_layers (int, optional): number of transformer blocks. Defaults to 12.
            num_heads (int, optional): number of attention heads. Defaults to 12.
            pos_embed (str, optional): position embedding layer type. Defaults to "conv".
            classification (bool, optional): bool argument to determine if classification is used. Defaults to False.
            num_classes (int, optional): number of classes if classification is used. Defaults to 2.
            dropout_rate (float, optional): faction of the input units to drop. Defaults to 0.0.
            spatial_dims (int, optional): number of spatial dimensions. Defaults to 3.
            post_activation (str, optional): add a final acivation function to the classification head
                when `classification` is True. Default to "Tanh" for `nn.Tanh()`.
                Set to other values to remove this function.
            qkv_bias (bool, optional): apply bias to the qkv linear layer in self attention block. Defaults to False.
            save_attn (bool, optional): to make accessible the attention in self attention block. Defaults to False.

        Examples::

            # for single channel input with image size of (96,96,96), conv position embedding and segmentation backbone
            >>> net = ViT(in_channels=1, img_size=(96,96,96), pos_embed='conv')

            # for 3-channel with image size of (128,128,128), 24 layers and classification backbone
            >>> net = ViT(in_channels=3, img_size=(128,128,128), pos_embed='conv', classification=True)

            # for 3-channel with image size of (224,224), 12 layers and classification backbone
            >>> net = ViT(in_channels=3, img_size=(224,224), pos_embed='conv', classification=True, spatial_dims=2)

        """

        super().__init__()

        if not (0 <= dropout_rate <= 1):
            raise ValueError("dropout_rate should be between 0 and 1.")

        if hidden_size % num_heads != 0:
            raise ValueError("hidden_size should be divisible by num_heads.")
        self.hidden_size = hidden_size
        self.classification = classification
        self.patch_embedding = PatchEmbeddingBlock(
            in_channels=in_channels,
            img_size=img_size,
            patch_size=patch_size,
            hidden_size=hidden_size,
            num_heads=num_heads,
            pos_embed=pos_embed,
            dropout_rate=dropout_rate,
            spatial_dims=spatial_dims,
        )
        self.blocks = nn.ModuleList(
            [
                TransformerBlock(hidden_size, mlp_dim, num_heads, dropout_rate, qkv_bias, save_attn)
                for i in range(num_layers)
            ]
        )
        self.norm = nn.LayerNorm(hidden_size)
        if self.classification:
            self.cls_token = nn.Parameter(torch.zeros(1, 1, hidden_size))
            # if post_activation == "Tanh":
            #     self.classification_head = nn.Sequential(nn.Linear(hidden_size, num_classes), nn.Tanh())
            # else:
            #     self.classification_head = nn.Linear(hidden_size, num_classes)  # type: ignore

    def forward(self, x):
        x = self.patch_embedding(x)
        if hasattr(self, "cls_token"):
            cls_token = self.cls_token.expand(x.shape[0], -1, -1)
            x = torch.cat((cls_token, x), dim=1)
        hidden_states_out = []
        for blk in self.blocks:
            x = blk(x)
            hidden_states_out.append(x)
        x = self.norm(x)
        # if hasattr(self, "classification_head"):
        #     x = self.classification_head(x[:, 0])
        return x, hidden_states_out


class ViT3DTower(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.config = config
        self.select_layer = config.vision_select_layer
        self.select_feature = config.vision_select_feature

        self.vision_tower = myViT(
            in_channels=self.config.image_channel,
            img_size=self.config.image_size,
            patch_size=self.config.patch_size,
            pos_embed="perceptron",
            spatial_dims=len(self.config.patch_size),
            classification=True,
        )

    def forward(self, images):
        last_feature, hidden_states = self.vision_tower(images)
        if self.select_layer == -1:
            image_features = last_feature
        elif self.select_layer < -1:
            image_features = hidden_states[self.select_feature]
        else:
            raise ValueError(f'Unexpected select layer: {self.select_layer}')

        if self.select_feature == 'patch':
            image_features = image_features[:, 1:]
        elif self.select_feature == 'cls_patch':
            image_features = image_features
        else:
            raise ValueError(f'Unexpected select feature: {self.select_feature}')

        return image_features

    @property
    def dtype(self):
        return self.vision_tower.dtype

    @property
    def device(self):
        return self.vision_tower.device

    @property
    def hidden_size(self):
        return self.vision_tower.hidden_size


def build_vision_tower(config, **kwargs):
    vision_tower = getattr(config, 'vision_tower', None)
    if 'vit3d' in vision_tower.lower():
        return ViT3DTower(config, **kwargs)
    else:
        raise ValueError(f'Unknown vision tower: {vision_tower}')


class LamedMetaModel:
    def __init__(self, config):
        super(LamedMetaModel, self).__init__(config)

        self.config = config

        if hasattr(config, "vision_tower"):
            self.vision_tower = build_vision_tower(config)
            self.mm_projector = build_mm_projector(config)

    def get_vision_tower(self):
        vision_tower = getattr(self, 'vision_tower', None)
        return vision_tower

    def initialize_vision_modules(self, model_args):
        self.config.image_channel = model_args.image_channel
        self.config.image_size = model_args.image_size
        self.config.patch_size = model_args.patch_size

        self.config.vision_tower = model_args.vision_tower
        self.config.vision_select_layer = model_args.vision_select_layer
        self.config.vision_select_feature = model_args.vision_select_feature

        self.config.mm_projector_type = model_args.mm_projector_type
        self.config.proj_layer_type = model_args.proj_layer_type
        self.config.proj_layer_num = model_args.proj_layer_num
        self.config.proj_pooling_type = model_args.proj_pooling_type
        self.config.proj_pooling_size = model_args.proj_pooling_size

        # vision tower
        if self.get_vision_tower() is None:
            self.vision_tower = build_vision_tower(self.config)
            # If you have a more robust vision encoder, try freezing the vision tower by requires_grad_(False)


        if model_args.pretrain_vision_model is not None:
            vision_model_weights = torch.load(model_args.pretrain_vision_model, map_location='cpu')
            self.vision_tower.vision_tower.load_state_dict(vision_model_weights, strict=True)

        self.config.mm_hidden_size = self.vision_tower.hidden_size

        # mm_projector
        if getattr(self, 'mm_projector', None) is None:
            self.mm_projector = build_mm_projector(self.config)

        if model_args.pretrain_mm_mlp_adapter is not None:
            mm_projector_weights = torch.load(model_args.pretrain_mm_mlp_adapter, map_location='cpu')
            def get_w(weights, keyword):
                return {k.split(keyword + '.')[1]: v for k, v in weights.items() if keyword in k}
            self.mm_projector.load_state_dict(get_w(mm_projector_weights, 'mm_projector'), strict=True)


class LamedMetaForCausalLM(ABC):
    @abstractmethod
    def get_model(self):
        pass

    def get_vision_tower(self):
        return self.get_model().get_vision_tower()

    def encode_images(self, images):
        image_features = self.get_model().get_vision_tower()(images)
        image_features = self.get_model().mm_projector(image_features)
        return image_features

    def prepare_inputs_for_multimodal(self, input_ids, position_ids, attention_mask, past_key_values, labels, images):
        vision_tower = self.get_vision_tower()
        if vision_tower is None or images is None or input_ids.shape[1] == 1:
            return input_ids, position_ids, attention_mask, past_key_values, None, labels
        else:
            image_features = self.encode_images(images)
            inputs_embeds = self.get_model().embed_tokens(input_ids)
            inputs_embeds = torch.cat((inputs_embeds[:, :1, :], image_features, inputs_embeds[:, (image_features.shape[1] + 1):, :]), dim=1)
        return None, position_ids, attention_mask, past_key_values, inputs_embeds, labels

    def initialize_vision_tokenizer(self, model_args, tokenizer):
        num_new_tokens = model_args.num_new_tokens

        self.resize_token_embeddings(len(tokenizer))

        if num_new_tokens > 0:
            input_embeddings = self.get_input_embeddings().weight.data
            output_embeddings = self.get_output_embeddings().weight.data

            input_embeddings_avg = input_embeddings[:-num_new_tokens].mean(
                dim=0, keepdim=True)
            output_embeddings_avg = output_embeddings[:-num_new_tokens].mean(
                dim=0, keepdim=True)

            input_embeddings[-num_new_tokens:] = input_embeddings_avg
            output_embeddings[-num_new_tokens:] = output_embeddings_avg

            if model_args.tune_mm_mlp_adapter:
                for p in self.get_input_embeddings().parameters():
                    p.requires_grad = True
                for p in self.get_output_embeddings().parameters():
                    p.requires_grad = False
            else:
                # we add 4 new tokens
                # if new tokens need input, please train input_embeddings
                for p in self.get_input_embeddings().parameters():
                    p.requires_grad = True
                # if new tokens need predict, please train output_embeddings
                for p in self.get_output_embeddings().parameters():
                    p.requires_grad = True

        if model_args.pretrain_mm_mlp_adapter:
            mm_projector_weights = torch.load(model_args.pretrain_mm_mlp_adapter, map_location='cpu')
            embed_tokens_weight = mm_projector_weights['model.embed_tokens.weight']

            if input_embeddings.shape == embed_tokens_weight.shape:
                input_embeddings = embed_tokens_weight
            elif embed_tokens_weight.shape[0] == num_new_tokens:
                input_embeddings[-num_new_tokens:] = embed_tokens_weight
            else:
                raise ValueError(f"Unexpected embed_tokens_weight shape. Pretrained: {embed_tokens_weight.shape}. Current: {input_embeddings.shape}. Numer of new tokens: {num_new_tokens}.")


class LamedLlamaModel(LamedMetaModel, LlamaModel):
    config_class = LamedConfig
    def __init__(self, config: LlamaConfig):
        super(LamedLlamaModel, self).__init__(config)


class LamedLlamaForCausalLM(LamedMetaForCausalLM, LlamaForCausalLM):
    config_class = LamedConfig

    def __init__(self, config):
        super(LlamaForCausalLM, self).__init__(config)
        self.model = LamedLlamaModel(config)
        self.pretraining_tp = config.pretraining_tp
        self.vocab_size = config.vocab_size
        self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)

        # Initialize weights and apply final processing
        self.post_init()

    def get_model(self):
        return self.model

    def forward(
            self,
            images: Optional[torch.FloatTensor] = None,
            input_ids: torch.LongTensor = None,
            labels: Optional[torch.LongTensor] = None,
            attention_mask: Optional[torch.Tensor] = None,

            position_ids: Optional[torch.LongTensor] = None,
            past_key_values: Optional[List[torch.FloatTensor]] = None,
            inputs_embeds: Optional[torch.FloatTensor] = None,
            use_cache: Optional[bool] = None,
            output_attentions: Optional[bool] = None,
            output_hidden_states: Optional[bool] = None,
            return_dict: Optional[bool] = None,
            cache_position: Optional[torch.LongTensor] = None,
    ) -> Union[Tuple, CausalLMOutputWithPast]:

        input_ids_pre = input_ids

        if inputs_embeds is None:
            (
                input_ids,
                position_ids,
                attention_mask,
                past_key_values,
                inputs_embeds,
                labels
            ) = self.prepare_inputs_for_multimodal(
                input_ids,
                position_ids,
                attention_mask,
                past_key_values,
                labels,
                images,
            )

        return super().forward(
            input_ids=input_ids,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            labels=labels,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict
        )

    @torch.no_grad()
    def generate(
        self,
        images: Optional[torch.Tensor] = None,
        inputs: Optional[torch.Tensor] = None,
        **kwargs,
    ) -> Union[GenerateOutput, torch.LongTensor, Any]:
        position_ids = kwargs.pop("position_ids", None)
        attention_mask = kwargs.pop("attention_mask", None)
        if "inputs_embeds" in kwargs:
            raise NotImplementedError("`inputs_embeds` is not supported")

        if images is not None:
            (
                inputs,
                position_ids,
                attention_mask,
                _,
                inputs_embeds,
                _
            ) = self.prepare_inputs_for_multimodal(
                inputs,
                position_ids,
                attention_mask,
                None,
                None,
                images,
            )
        else:
            inputs_embeds = self.get_model().embed_tokens(inputs)

        return super().generate(
            position_ids=position_ids,
            attention_mask=attention_mask,
            inputs_embeds=inputs_embeds,
            **kwargs
        )


    def prepare_inputs_for_generation(self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs):
        images = kwargs.pop("images", None)
        inputs = super().prepare_inputs_for_generation(input_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, **kwargs)
        if images is not None:
            inputs['images'] = images
        return inputs