Commit
·
de2749f
1
Parent(s):
55f1387
Added Solution 2
Browse files- added_tokens.json +3 -0
- config.json +63 -0
- configuration_m3d_lamed.py +5 -0
- generation_config.json +12 -0
- merged_model.bin +3 -0
- model-00001-of-00007.safetensors +3 -0
- model-00002-of-00007.safetensors +3 -0
- model-00003-of-00007.safetensors +3 -0
- model-00004-of-00007.safetensors +3 -0
- model-00005-of-00007.safetensors +3 -0
- model-00006-of-00007.safetensors +3 -0
- model-00007-of-00007.safetensors +3 -0
- model.safetensors.index.json +440 -0
- modeling_m3d_lamed.py +1188 -0
- special_tokens_map.json +26 -0
- tokenizer.json +0 -0
- tokenizer_config.json +2075 -0
added_tokens.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"<im_patch>": 128256
|
3 |
+
}
|
config.json
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "/workspace/0.Challenge/MICCAI2024_AMOSMM/M3D/pretrained_weight/Meta-Llama-3.1-8B-Instruct",
|
3 |
+
"architectures": [
|
4 |
+
"LamedLlamaForCausalLM"
|
5 |
+
],
|
6 |
+
"attention_bias": false,
|
7 |
+
"attention_dropout": 0.0,
|
8 |
+
"auto_map": {
|
9 |
+
"AutoConfig": "configuration_m3d_lamed.LamedConfig",
|
10 |
+
"AutoModelForCausalLM": "modeling_m3d_lamed.LamedLlamaForCausalLM"
|
11 |
+
},
|
12 |
+
"bos_token_id": 128000,
|
13 |
+
"eos_token_id": [
|
14 |
+
128001,
|
15 |
+
128008,
|
16 |
+
128009
|
17 |
+
],
|
18 |
+
"hidden_act": "silu",
|
19 |
+
"hidden_size": 4096,
|
20 |
+
"image_channel": 1,
|
21 |
+
"image_size": [
|
22 |
+
32,
|
23 |
+
256,
|
24 |
+
256
|
25 |
+
],
|
26 |
+
"initializer_range": 0.02,
|
27 |
+
"intermediate_size": 14336,
|
28 |
+
"max_position_embeddings": 131072,
|
29 |
+
"mlp_bias": false,
|
30 |
+
"mm_hidden_size": 768,
|
31 |
+
"mm_projector_type": "spp",
|
32 |
+
"model_type": "lamed_llama",
|
33 |
+
"num_attention_heads": 32,
|
34 |
+
"num_hidden_layers": 32,
|
35 |
+
"num_key_value_heads": 8,
|
36 |
+
"patch_size": [
|
37 |
+
4,
|
38 |
+
16,
|
39 |
+
16
|
40 |
+
],
|
41 |
+
"pretraining_tp": 1,
|
42 |
+
"proj_layer_num": 2,
|
43 |
+
"proj_layer_type": "mlp",
|
44 |
+
"proj_pooling_size": 2,
|
45 |
+
"proj_pooling_type": "spatial",
|
46 |
+
"rms_norm_eps": 1e-05,
|
47 |
+
"rope_scaling": {
|
48 |
+
"factor": 8.0,
|
49 |
+
"high_freq_factor": 4.0,
|
50 |
+
"low_freq_factor": 1.0,
|
51 |
+
"original_max_position_embeddings": 8192,
|
52 |
+
"rope_type": "llama3"
|
53 |
+
},
|
54 |
+
"rope_theta": 500000.0,
|
55 |
+
"tie_word_embeddings": false,
|
56 |
+
"torch_dtype": "float32",
|
57 |
+
"transformers_version": "4.43.4",
|
58 |
+
"use_cache": true,
|
59 |
+
"vision_select_feature": "patch",
|
60 |
+
"vision_select_layer": -1,
|
61 |
+
"vision_tower": "vit3d",
|
62 |
+
"vocab_size": 128257
|
63 |
+
}
|
configuration_m3d_lamed.py
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import LlamaConfig
|
2 |
+
|
3 |
+
|
4 |
+
class LamedConfig(LlamaConfig):
|
5 |
+
model_type = "lamed_llama"
|
generation_config.json
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token_id": 128000,
|
3 |
+
"do_sample": true,
|
4 |
+
"eos_token_id": [
|
5 |
+
128001,
|
6 |
+
128008,
|
7 |
+
128009
|
8 |
+
],
|
9 |
+
"temperature": 0.6,
|
10 |
+
"top_p": 0.9,
|
11 |
+
"transformers_version": "4.43.4"
|
12 |
+
}
|
merged_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c35811e99d05e5968c8d4d3287c5a01778282df5c6cfc9151f37385508b257f0
|
3 |
+
size 32550545077
|
model-00001-of-00007.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:234103ef69286eb1baf30520825f20db593f5d137ddba261f8d96605b920510b
|
3 |
+
size 4886482552
|
model-00002-of-00007.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:73502d81fa073678f57715175b1585cd4c94d720f6db488f983f8ea437801292
|
3 |
+
size 4832007448
|
model-00003-of-00007.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7f9704c3df75c185dc2829acfc32fbb98ca83d41d186d4be4c700ab4d755aea8
|
3 |
+
size 4999813112
|
model-00004-of-00007.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2da458d47ecfbffc700d3c107cd8fb60de98df5ab9be245cf080794b744ea281
|
3 |
+
size 4999813128
|
model-00005-of-00007.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b7f28120aa52c7e913fe7f2e2593a909cc4e4cab6f9e861c6997a13dbf9b5254
|
3 |
+
size 4832007496
|
model-00006-of-00007.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cb62cb4ca2a4855f387b8b667e6c37a3c54675535769841dd6d6a2b083f25e6a
|
3 |
+
size 4999813120
|
model-00007-of-00007.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:11a83cd08ed3b932007141248395ae54bc84ddd9f58951546e49d51afc607b1a
|
3 |
+
size 3000474232
|
model.safetensors.index.json
ADDED
@@ -0,0 +1,440 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 32550359040
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"lm_head.weight": "model-00007-of-00007.safetensors",
|
7 |
+
"model.embed_tokens.weight": "model-00001-of-00007.safetensors",
|
8 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00007.safetensors",
|
9 |
+
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00007.safetensors",
|
10 |
+
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00007.safetensors",
|
11 |
+
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00007.safetensors",
|
12 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00007.safetensors",
|
13 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00007.safetensors",
|
14 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00007.safetensors",
|
15 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00007.safetensors",
|
16 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00007.safetensors",
|
17 |
+
"model.layers.1.input_layernorm.weight": "model-00001-of-00007.safetensors",
|
18 |
+
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00007.safetensors",
|
19 |
+
"model.layers.1.mlp.gate_proj.weight": "model-00001-of-00007.safetensors",
|
20 |
+
"model.layers.1.mlp.up_proj.weight": "model-00001-of-00007.safetensors",
|
21 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00007.safetensors",
|
22 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00007.safetensors",
|
23 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00007.safetensors",
|
24 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00007.safetensors",
|
25 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00007.safetensors",
|
26 |
+
"model.layers.10.input_layernorm.weight": "model-00003-of-00007.safetensors",
|
27 |
+
"model.layers.10.mlp.down_proj.weight": "model-00003-of-00007.safetensors",
|
28 |
+
"model.layers.10.mlp.gate_proj.weight": "model-00003-of-00007.safetensors",
|
29 |
+
"model.layers.10.mlp.up_proj.weight": "model-00003-of-00007.safetensors",
|
30 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00003-of-00007.safetensors",
|
31 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00003-of-00007.safetensors",
|
32 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00003-of-00007.safetensors",
|
33 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00003-of-00007.safetensors",
|
34 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00003-of-00007.safetensors",
|
35 |
+
"model.layers.11.input_layernorm.weight": "model-00003-of-00007.safetensors",
|
36 |
+
"model.layers.11.mlp.down_proj.weight": "model-00003-of-00007.safetensors",
|
37 |
+
"model.layers.11.mlp.gate_proj.weight": "model-00003-of-00007.safetensors",
|
38 |
+
"model.layers.11.mlp.up_proj.weight": "model-00003-of-00007.safetensors",
|
39 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00003-of-00007.safetensors",
|
40 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00003-of-00007.safetensors",
|
41 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00003-of-00007.safetensors",
|
42 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00003-of-00007.safetensors",
|
43 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00003-of-00007.safetensors",
|
44 |
+
"model.layers.12.input_layernorm.weight": "model-00003-of-00007.safetensors",
|
45 |
+
"model.layers.12.mlp.down_proj.weight": "model-00003-of-00007.safetensors",
|
46 |
+
"model.layers.12.mlp.gate_proj.weight": "model-00003-of-00007.safetensors",
|
47 |
+
"model.layers.12.mlp.up_proj.weight": "model-00003-of-00007.safetensors",
|
48 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00003-of-00007.safetensors",
|
49 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00003-of-00007.safetensors",
|
50 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00003-of-00007.safetensors",
|
51 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00003-of-00007.safetensors",
|
52 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00003-of-00007.safetensors",
|
53 |
+
"model.layers.13.input_layernorm.weight": "model-00003-of-00007.safetensors",
|
54 |
+
"model.layers.13.mlp.down_proj.weight": "model-00003-of-00007.safetensors",
|
55 |
+
"model.layers.13.mlp.gate_proj.weight": "model-00003-of-00007.safetensors",
|
56 |
+
"model.layers.13.mlp.up_proj.weight": "model-00003-of-00007.safetensors",
|
57 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00003-of-00007.safetensors",
|
58 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00003-of-00007.safetensors",
|
59 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00003-of-00007.safetensors",
|
60 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00003-of-00007.safetensors",
|
61 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00003-of-00007.safetensors",
|
62 |
+
"model.layers.14.input_layernorm.weight": "model-00004-of-00007.safetensors",
|
63 |
+
"model.layers.14.mlp.down_proj.weight": "model-00004-of-00007.safetensors",
|
64 |
+
"model.layers.14.mlp.gate_proj.weight": "model-00003-of-00007.safetensors",
|
65 |
+
"model.layers.14.mlp.up_proj.weight": "model-00004-of-00007.safetensors",
|
66 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00004-of-00007.safetensors",
|
67 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00003-of-00007.safetensors",
|
68 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00003-of-00007.safetensors",
|
69 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00003-of-00007.safetensors",
|
70 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00003-of-00007.safetensors",
|
71 |
+
"model.layers.15.input_layernorm.weight": "model-00004-of-00007.safetensors",
|
72 |
+
"model.layers.15.mlp.down_proj.weight": "model-00004-of-00007.safetensors",
|
73 |
+
"model.layers.15.mlp.gate_proj.weight": "model-00004-of-00007.safetensors",
|
74 |
+
"model.layers.15.mlp.up_proj.weight": "model-00004-of-00007.safetensors",
|
75 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00004-of-00007.safetensors",
|
76 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00004-of-00007.safetensors",
|
77 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00004-of-00007.safetensors",
|
78 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00004-of-00007.safetensors",
|
79 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00004-of-00007.safetensors",
|
80 |
+
"model.layers.16.input_layernorm.weight": "model-00004-of-00007.safetensors",
|
81 |
+
"model.layers.16.mlp.down_proj.weight": "model-00004-of-00007.safetensors",
|
82 |
+
"model.layers.16.mlp.gate_proj.weight": "model-00004-of-00007.safetensors",
|
83 |
+
"model.layers.16.mlp.up_proj.weight": "model-00004-of-00007.safetensors",
|
84 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00004-of-00007.safetensors",
|
85 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00004-of-00007.safetensors",
|
86 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00004-of-00007.safetensors",
|
87 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00004-of-00007.safetensors",
|
88 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00004-of-00007.safetensors",
|
89 |
+
"model.layers.17.input_layernorm.weight": "model-00004-of-00007.safetensors",
|
90 |
+
"model.layers.17.mlp.down_proj.weight": "model-00004-of-00007.safetensors",
|
91 |
+
"model.layers.17.mlp.gate_proj.weight": "model-00004-of-00007.safetensors",
|
92 |
+
"model.layers.17.mlp.up_proj.weight": "model-00004-of-00007.safetensors",
|
93 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00004-of-00007.safetensors",
|
94 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00004-of-00007.safetensors",
|
95 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00004-of-00007.safetensors",
|
96 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00004-of-00007.safetensors",
|
97 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00004-of-00007.safetensors",
|
98 |
+
"model.layers.18.input_layernorm.weight": "model-00004-of-00007.safetensors",
|
99 |
+
"model.layers.18.mlp.down_proj.weight": "model-00004-of-00007.safetensors",
|
100 |
+
"model.layers.18.mlp.gate_proj.weight": "model-00004-of-00007.safetensors",
|
101 |
+
"model.layers.18.mlp.up_proj.weight": "model-00004-of-00007.safetensors",
|
102 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00004-of-00007.safetensors",
|
103 |
+
"model.layers.18.self_attn.k_proj.weight": "model-00004-of-00007.safetensors",
|
104 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00004-of-00007.safetensors",
|
105 |
+
"model.layers.18.self_attn.q_proj.weight": "model-00004-of-00007.safetensors",
|
106 |
+
"model.layers.18.self_attn.v_proj.weight": "model-00004-of-00007.safetensors",
|
107 |
+
"model.layers.19.input_layernorm.weight": "model-00004-of-00007.safetensors",
|
108 |
+
"model.layers.19.mlp.down_proj.weight": "model-00004-of-00007.safetensors",
|
109 |
+
"model.layers.19.mlp.gate_proj.weight": "model-00004-of-00007.safetensors",
|
110 |
+
"model.layers.19.mlp.up_proj.weight": "model-00004-of-00007.safetensors",
|
111 |
+
"model.layers.19.post_attention_layernorm.weight": "model-00004-of-00007.safetensors",
|
112 |
+
"model.layers.19.self_attn.k_proj.weight": "model-00004-of-00007.safetensors",
|
113 |
+
"model.layers.19.self_attn.o_proj.weight": "model-00004-of-00007.safetensors",
|
114 |
+
"model.layers.19.self_attn.q_proj.weight": "model-00004-of-00007.safetensors",
|
115 |
+
"model.layers.19.self_attn.v_proj.weight": "model-00004-of-00007.safetensors",
|
116 |
+
"model.layers.2.input_layernorm.weight": "model-00001-of-00007.safetensors",
|
117 |
+
"model.layers.2.mlp.down_proj.weight": "model-00001-of-00007.safetensors",
|
118 |
+
"model.layers.2.mlp.gate_proj.weight": "model-00001-of-00007.safetensors",
|
119 |
+
"model.layers.2.mlp.up_proj.weight": "model-00001-of-00007.safetensors",
|
120 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00007.safetensors",
|
121 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00007.safetensors",
|
122 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00007.safetensors",
|
123 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00007.safetensors",
|
124 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00007.safetensors",
|
125 |
+
"model.layers.20.input_layernorm.weight": "model-00005-of-00007.safetensors",
|
126 |
+
"model.layers.20.mlp.down_proj.weight": "model-00005-of-00007.safetensors",
|
127 |
+
"model.layers.20.mlp.gate_proj.weight": "model-00005-of-00007.safetensors",
|
128 |
+
"model.layers.20.mlp.up_proj.weight": "model-00005-of-00007.safetensors",
|
129 |
+
"model.layers.20.post_attention_layernorm.weight": "model-00005-of-00007.safetensors",
|
130 |
+
"model.layers.20.self_attn.k_proj.weight": "model-00004-of-00007.safetensors",
|
131 |
+
"model.layers.20.self_attn.o_proj.weight": "model-00004-of-00007.safetensors",
|
132 |
+
"model.layers.20.self_attn.q_proj.weight": "model-00004-of-00007.safetensors",
|
133 |
+
"model.layers.20.self_attn.v_proj.weight": "model-00004-of-00007.safetensors",
|
134 |
+
"model.layers.21.input_layernorm.weight": "model-00005-of-00007.safetensors",
|
135 |
+
"model.layers.21.mlp.down_proj.weight": "model-00005-of-00007.safetensors",
|
136 |
+
"model.layers.21.mlp.gate_proj.weight": "model-00005-of-00007.safetensors",
|
137 |
+
"model.layers.21.mlp.up_proj.weight": "model-00005-of-00007.safetensors",
|
138 |
+
"model.layers.21.post_attention_layernorm.weight": "model-00005-of-00007.safetensors",
|
139 |
+
"model.layers.21.self_attn.k_proj.weight": "model-00005-of-00007.safetensors",
|
140 |
+
"model.layers.21.self_attn.o_proj.weight": "model-00005-of-00007.safetensors",
|
141 |
+
"model.layers.21.self_attn.q_proj.weight": "model-00005-of-00007.safetensors",
|
142 |
+
"model.layers.21.self_attn.v_proj.weight": "model-00005-of-00007.safetensors",
|
143 |
+
"model.layers.22.input_layernorm.weight": "model-00005-of-00007.safetensors",
|
144 |
+
"model.layers.22.mlp.down_proj.weight": "model-00005-of-00007.safetensors",
|
145 |
+
"model.layers.22.mlp.gate_proj.weight": "model-00005-of-00007.safetensors",
|
146 |
+
"model.layers.22.mlp.up_proj.weight": "model-00005-of-00007.safetensors",
|
147 |
+
"model.layers.22.post_attention_layernorm.weight": "model-00005-of-00007.safetensors",
|
148 |
+
"model.layers.22.self_attn.k_proj.weight": "model-00005-of-00007.safetensors",
|
149 |
+
"model.layers.22.self_attn.o_proj.weight": "model-00005-of-00007.safetensors",
|
150 |
+
"model.layers.22.self_attn.q_proj.weight": "model-00005-of-00007.safetensors",
|
151 |
+
"model.layers.22.self_attn.v_proj.weight": "model-00005-of-00007.safetensors",
|
152 |
+
"model.layers.23.input_layernorm.weight": "model-00005-of-00007.safetensors",
|
153 |
+
"model.layers.23.mlp.down_proj.weight": "model-00005-of-00007.safetensors",
|
154 |
+
"model.layers.23.mlp.gate_proj.weight": "model-00005-of-00007.safetensors",
|
155 |
+
"model.layers.23.mlp.up_proj.weight": "model-00005-of-00007.safetensors",
|
156 |
+
"model.layers.23.post_attention_layernorm.weight": "model-00005-of-00007.safetensors",
|
157 |
+
"model.layers.23.self_attn.k_proj.weight": "model-00005-of-00007.safetensors",
|
158 |
+
"model.layers.23.self_attn.o_proj.weight": "model-00005-of-00007.safetensors",
|
159 |
+
"model.layers.23.self_attn.q_proj.weight": "model-00005-of-00007.safetensors",
|
160 |
+
"model.layers.23.self_attn.v_proj.weight": "model-00005-of-00007.safetensors",
|
161 |
+
"model.layers.24.input_layernorm.weight": "model-00005-of-00007.safetensors",
|
162 |
+
"model.layers.24.mlp.down_proj.weight": "model-00005-of-00007.safetensors",
|
163 |
+
"model.layers.24.mlp.gate_proj.weight": "model-00005-of-00007.safetensors",
|
164 |
+
"model.layers.24.mlp.up_proj.weight": "model-00005-of-00007.safetensors",
|
165 |
+
"model.layers.24.post_attention_layernorm.weight": "model-00005-of-00007.safetensors",
|
166 |
+
"model.layers.24.self_attn.k_proj.weight": "model-00005-of-00007.safetensors",
|
167 |
+
"model.layers.24.self_attn.o_proj.weight": "model-00005-of-00007.safetensors",
|
168 |
+
"model.layers.24.self_attn.q_proj.weight": "model-00005-of-00007.safetensors",
|
169 |
+
"model.layers.24.self_attn.v_proj.weight": "model-00005-of-00007.safetensors",
|
170 |
+
"model.layers.25.input_layernorm.weight": "model-00006-of-00007.safetensors",
|
171 |
+
"model.layers.25.mlp.down_proj.weight": "model-00006-of-00007.safetensors",
|
172 |
+
"model.layers.25.mlp.gate_proj.weight": "model-00005-of-00007.safetensors",
|
173 |
+
"model.layers.25.mlp.up_proj.weight": "model-00005-of-00007.safetensors",
|
174 |
+
"model.layers.25.post_attention_layernorm.weight": "model-00006-of-00007.safetensors",
|
175 |
+
"model.layers.25.self_attn.k_proj.weight": "model-00005-of-00007.safetensors",
|
176 |
+
"model.layers.25.self_attn.o_proj.weight": "model-00005-of-00007.safetensors",
|
177 |
+
"model.layers.25.self_attn.q_proj.weight": "model-00005-of-00007.safetensors",
|
178 |
+
"model.layers.25.self_attn.v_proj.weight": "model-00005-of-00007.safetensors",
|
179 |
+
"model.layers.26.input_layernorm.weight": "model-00006-of-00007.safetensors",
|
180 |
+
"model.layers.26.mlp.down_proj.weight": "model-00006-of-00007.safetensors",
|
181 |
+
"model.layers.26.mlp.gate_proj.weight": "model-00006-of-00007.safetensors",
|
182 |
+
"model.layers.26.mlp.up_proj.weight": "model-00006-of-00007.safetensors",
|
183 |
+
"model.layers.26.post_attention_layernorm.weight": "model-00006-of-00007.safetensors",
|
184 |
+
"model.layers.26.self_attn.k_proj.weight": "model-00006-of-00007.safetensors",
|
185 |
+
"model.layers.26.self_attn.o_proj.weight": "model-00006-of-00007.safetensors",
|
186 |
+
"model.layers.26.self_attn.q_proj.weight": "model-00006-of-00007.safetensors",
|
187 |
+
"model.layers.26.self_attn.v_proj.weight": "model-00006-of-00007.safetensors",
|
188 |
+
"model.layers.27.input_layernorm.weight": "model-00006-of-00007.safetensors",
|
189 |
+
"model.layers.27.mlp.down_proj.weight": "model-00006-of-00007.safetensors",
|
190 |
+
"model.layers.27.mlp.gate_proj.weight": "model-00006-of-00007.safetensors",
|
191 |
+
"model.layers.27.mlp.up_proj.weight": "model-00006-of-00007.safetensors",
|
192 |
+
"model.layers.27.post_attention_layernorm.weight": "model-00006-of-00007.safetensors",
|
193 |
+
"model.layers.27.self_attn.k_proj.weight": "model-00006-of-00007.safetensors",
|
194 |
+
"model.layers.27.self_attn.o_proj.weight": "model-00006-of-00007.safetensors",
|
195 |
+
"model.layers.27.self_attn.q_proj.weight": "model-00006-of-00007.safetensors",
|
196 |
+
"model.layers.27.self_attn.v_proj.weight": "model-00006-of-00007.safetensors",
|
197 |
+
"model.layers.28.input_layernorm.weight": "model-00006-of-00007.safetensors",
|
198 |
+
"model.layers.28.mlp.down_proj.weight": "model-00006-of-00007.safetensors",
|
199 |
+
"model.layers.28.mlp.gate_proj.weight": "model-00006-of-00007.safetensors",
|
200 |
+
"model.layers.28.mlp.up_proj.weight": "model-00006-of-00007.safetensors",
|
201 |
+
"model.layers.28.post_attention_layernorm.weight": "model-00006-of-00007.safetensors",
|
202 |
+
"model.layers.28.self_attn.k_proj.weight": "model-00006-of-00007.safetensors",
|
203 |
+
"model.layers.28.self_attn.o_proj.weight": "model-00006-of-00007.safetensors",
|
204 |
+
"model.layers.28.self_attn.q_proj.weight": "model-00006-of-00007.safetensors",
|
205 |
+
"model.layers.28.self_attn.v_proj.weight": "model-00006-of-00007.safetensors",
|
206 |
+
"model.layers.29.input_layernorm.weight": "model-00006-of-00007.safetensors",
|
207 |
+
"model.layers.29.mlp.down_proj.weight": "model-00006-of-00007.safetensors",
|
208 |
+
"model.layers.29.mlp.gate_proj.weight": "model-00006-of-00007.safetensors",
|
209 |
+
"model.layers.29.mlp.up_proj.weight": "model-00006-of-00007.safetensors",
|
210 |
+
"model.layers.29.post_attention_layernorm.weight": "model-00006-of-00007.safetensors",
|
211 |
+
"model.layers.29.self_attn.k_proj.weight": "model-00006-of-00007.safetensors",
|
212 |
+
"model.layers.29.self_attn.o_proj.weight": "model-00006-of-00007.safetensors",
|
213 |
+
"model.layers.29.self_attn.q_proj.weight": "model-00006-of-00007.safetensors",
|
214 |
+
"model.layers.29.self_attn.v_proj.weight": "model-00006-of-00007.safetensors",
|
215 |
+
"model.layers.3.input_layernorm.weight": "model-00002-of-00007.safetensors",
|
216 |
+
"model.layers.3.mlp.down_proj.weight": "model-00002-of-00007.safetensors",
|
217 |
+
"model.layers.3.mlp.gate_proj.weight": "model-00002-of-00007.safetensors",
|
218 |
+
"model.layers.3.mlp.up_proj.weight": "model-00002-of-00007.safetensors",
|
219 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00002-of-00007.safetensors",
|
220 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00001-of-00007.safetensors",
|
221 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00001-of-00007.safetensors",
|
222 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00001-of-00007.safetensors",
|
223 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00001-of-00007.safetensors",
|
224 |
+
"model.layers.30.input_layernorm.weight": "model-00006-of-00007.safetensors",
|
225 |
+
"model.layers.30.mlp.down_proj.weight": "model-00006-of-00007.safetensors",
|
226 |
+
"model.layers.30.mlp.gate_proj.weight": "model-00006-of-00007.safetensors",
|
227 |
+
"model.layers.30.mlp.up_proj.weight": "model-00006-of-00007.safetensors",
|
228 |
+
"model.layers.30.post_attention_layernorm.weight": "model-00006-of-00007.safetensors",
|
229 |
+
"model.layers.30.self_attn.k_proj.weight": "model-00006-of-00007.safetensors",
|
230 |
+
"model.layers.30.self_attn.o_proj.weight": "model-00006-of-00007.safetensors",
|
231 |
+
"model.layers.30.self_attn.q_proj.weight": "model-00006-of-00007.safetensors",
|
232 |
+
"model.layers.30.self_attn.v_proj.weight": "model-00006-of-00007.safetensors",
|
233 |
+
"model.layers.31.input_layernorm.weight": "model-00007-of-00007.safetensors",
|
234 |
+
"model.layers.31.mlp.down_proj.weight": "model-00007-of-00007.safetensors",
|
235 |
+
"model.layers.31.mlp.gate_proj.weight": "model-00006-of-00007.safetensors",
|
236 |
+
"model.layers.31.mlp.up_proj.weight": "model-00007-of-00007.safetensors",
|
237 |
+
"model.layers.31.post_attention_layernorm.weight": "model-00007-of-00007.safetensors",
|
238 |
+
"model.layers.31.self_attn.k_proj.weight": "model-00006-of-00007.safetensors",
|
239 |
+
"model.layers.31.self_attn.o_proj.weight": "model-00006-of-00007.safetensors",
|
240 |
+
"model.layers.31.self_attn.q_proj.weight": "model-00006-of-00007.safetensors",
|
241 |
+
"model.layers.31.self_attn.v_proj.weight": "model-00006-of-00007.safetensors",
|
242 |
+
"model.layers.4.input_layernorm.weight": "model-00002-of-00007.safetensors",
|
243 |
+
"model.layers.4.mlp.down_proj.weight": "model-00002-of-00007.safetensors",
|
244 |
+
"model.layers.4.mlp.gate_proj.weight": "model-00002-of-00007.safetensors",
|
245 |
+
"model.layers.4.mlp.up_proj.weight": "model-00002-of-00007.safetensors",
|
246 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00002-of-00007.safetensors",
|
247 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00002-of-00007.safetensors",
|
248 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00002-of-00007.safetensors",
|
249 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00002-of-00007.safetensors",
|
250 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00002-of-00007.safetensors",
|
251 |
+
"model.layers.5.input_layernorm.weight": "model-00002-of-00007.safetensors",
|
252 |
+
"model.layers.5.mlp.down_proj.weight": "model-00002-of-00007.safetensors",
|
253 |
+
"model.layers.5.mlp.gate_proj.weight": "model-00002-of-00007.safetensors",
|
254 |
+
"model.layers.5.mlp.up_proj.weight": "model-00002-of-00007.safetensors",
|
255 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00002-of-00007.safetensors",
|
256 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00002-of-00007.safetensors",
|
257 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00002-of-00007.safetensors",
|
258 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00002-of-00007.safetensors",
|
259 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00002-of-00007.safetensors",
|
260 |
+
"model.layers.6.input_layernorm.weight": "model-00002-of-00007.safetensors",
|
261 |
+
"model.layers.6.mlp.down_proj.weight": "model-00002-of-00007.safetensors",
|
262 |
+
"model.layers.6.mlp.gate_proj.weight": "model-00002-of-00007.safetensors",
|
263 |
+
"model.layers.6.mlp.up_proj.weight": "model-00002-of-00007.safetensors",
|
264 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00002-of-00007.safetensors",
|
265 |
+
"model.layers.6.self_attn.k_proj.weight": "model-00002-of-00007.safetensors",
|
266 |
+
"model.layers.6.self_attn.o_proj.weight": "model-00002-of-00007.safetensors",
|
267 |
+
"model.layers.6.self_attn.q_proj.weight": "model-00002-of-00007.safetensors",
|
268 |
+
"model.layers.6.self_attn.v_proj.weight": "model-00002-of-00007.safetensors",
|
269 |
+
"model.layers.7.input_layernorm.weight": "model-00002-of-00007.safetensors",
|
270 |
+
"model.layers.7.mlp.down_proj.weight": "model-00002-of-00007.safetensors",
|
271 |
+
"model.layers.7.mlp.gate_proj.weight": "model-00002-of-00007.safetensors",
|
272 |
+
"model.layers.7.mlp.up_proj.weight": "model-00002-of-00007.safetensors",
|
273 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00002-of-00007.safetensors",
|
274 |
+
"model.layers.7.self_attn.k_proj.weight": "model-00002-of-00007.safetensors",
|
275 |
+
"model.layers.7.self_attn.o_proj.weight": "model-00002-of-00007.safetensors",
|
276 |
+
"model.layers.7.self_attn.q_proj.weight": "model-00002-of-00007.safetensors",
|
277 |
+
"model.layers.7.self_attn.v_proj.weight": "model-00002-of-00007.safetensors",
|
278 |
+
"model.layers.8.input_layernorm.weight": "model-00003-of-00007.safetensors",
|
279 |
+
"model.layers.8.mlp.down_proj.weight": "model-00003-of-00007.safetensors",
|
280 |
+
"model.layers.8.mlp.gate_proj.weight": "model-00002-of-00007.safetensors",
|
281 |
+
"model.layers.8.mlp.up_proj.weight": "model-00002-of-00007.safetensors",
|
282 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00003-of-00007.safetensors",
|
283 |
+
"model.layers.8.self_attn.k_proj.weight": "model-00002-of-00007.safetensors",
|
284 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00002-of-00007.safetensors",
|
285 |
+
"model.layers.8.self_attn.q_proj.weight": "model-00002-of-00007.safetensors",
|
286 |
+
"model.layers.8.self_attn.v_proj.weight": "model-00002-of-00007.safetensors",
|
287 |
+
"model.layers.9.input_layernorm.weight": "model-00003-of-00007.safetensors",
|
288 |
+
"model.layers.9.mlp.down_proj.weight": "model-00003-of-00007.safetensors",
|
289 |
+
"model.layers.9.mlp.gate_proj.weight": "model-00003-of-00007.safetensors",
|
290 |
+
"model.layers.9.mlp.up_proj.weight": "model-00003-of-00007.safetensors",
|
291 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00003-of-00007.safetensors",
|
292 |
+
"model.layers.9.self_attn.k_proj.weight": "model-00003-of-00007.safetensors",
|
293 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00003-of-00007.safetensors",
|
294 |
+
"model.layers.9.self_attn.q_proj.weight": "model-00003-of-00007.safetensors",
|
295 |
+
"model.layers.9.self_attn.v_proj.weight": "model-00003-of-00007.safetensors",
|
296 |
+
"model.mm_projector.projector.0.bias": "model-00007-of-00007.safetensors",
|
297 |
+
"model.mm_projector.projector.0.weight": "model-00007-of-00007.safetensors",
|
298 |
+
"model.mm_projector.projector.2.bias": "model-00007-of-00007.safetensors",
|
299 |
+
"model.mm_projector.projector.2.weight": "model-00007-of-00007.safetensors",
|
300 |
+
"model.norm.weight": "model-00007-of-00007.safetensors",
|
301 |
+
"model.vision_tower.vision_tower.blocks.0.attn.out_proj.bias": "model-00007-of-00007.safetensors",
|
302 |
+
"model.vision_tower.vision_tower.blocks.0.attn.out_proj.weight": "model-00007-of-00007.safetensors",
|
303 |
+
"model.vision_tower.vision_tower.blocks.0.attn.qkv.weight": "model-00007-of-00007.safetensors",
|
304 |
+
"model.vision_tower.vision_tower.blocks.0.mlp.linear1.bias": "model-00007-of-00007.safetensors",
|
305 |
+
"model.vision_tower.vision_tower.blocks.0.mlp.linear1.weight": "model-00007-of-00007.safetensors",
|
306 |
+
"model.vision_tower.vision_tower.blocks.0.mlp.linear2.bias": "model-00007-of-00007.safetensors",
|
307 |
+
"model.vision_tower.vision_tower.blocks.0.mlp.linear2.weight": "model-00007-of-00007.safetensors",
|
308 |
+
"model.vision_tower.vision_tower.blocks.0.norm1.bias": "model-00007-of-00007.safetensors",
|
309 |
+
"model.vision_tower.vision_tower.blocks.0.norm1.weight": "model-00007-of-00007.safetensors",
|
310 |
+
"model.vision_tower.vision_tower.blocks.0.norm2.bias": "model-00007-of-00007.safetensors",
|
311 |
+
"model.vision_tower.vision_tower.blocks.0.norm2.weight": "model-00007-of-00007.safetensors",
|
312 |
+
"model.vision_tower.vision_tower.blocks.1.attn.out_proj.bias": "model-00007-of-00007.safetensors",
|
313 |
+
"model.vision_tower.vision_tower.blocks.1.attn.out_proj.weight": "model-00007-of-00007.safetensors",
|
314 |
+
"model.vision_tower.vision_tower.blocks.1.attn.qkv.weight": "model-00007-of-00007.safetensors",
|
315 |
+
"model.vision_tower.vision_tower.blocks.1.mlp.linear1.bias": "model-00007-of-00007.safetensors",
|
316 |
+
"model.vision_tower.vision_tower.blocks.1.mlp.linear1.weight": "model-00007-of-00007.safetensors",
|
317 |
+
"model.vision_tower.vision_tower.blocks.1.mlp.linear2.bias": "model-00007-of-00007.safetensors",
|
318 |
+
"model.vision_tower.vision_tower.blocks.1.mlp.linear2.weight": "model-00007-of-00007.safetensors",
|
319 |
+
"model.vision_tower.vision_tower.blocks.1.norm1.bias": "model-00007-of-00007.safetensors",
|
320 |
+
"model.vision_tower.vision_tower.blocks.1.norm1.weight": "model-00007-of-00007.safetensors",
|
321 |
+
"model.vision_tower.vision_tower.blocks.1.norm2.bias": "model-00007-of-00007.safetensors",
|
322 |
+
"model.vision_tower.vision_tower.blocks.1.norm2.weight": "model-00007-of-00007.safetensors",
|
323 |
+
"model.vision_tower.vision_tower.blocks.10.attn.out_proj.bias": "model-00007-of-00007.safetensors",
|
324 |
+
"model.vision_tower.vision_tower.blocks.10.attn.out_proj.weight": "model-00007-of-00007.safetensors",
|
325 |
+
"model.vision_tower.vision_tower.blocks.10.attn.qkv.weight": "model-00007-of-00007.safetensors",
|
326 |
+
"model.vision_tower.vision_tower.blocks.10.mlp.linear1.bias": "model-00007-of-00007.safetensors",
|
327 |
+
"model.vision_tower.vision_tower.blocks.10.mlp.linear1.weight": "model-00007-of-00007.safetensors",
|
328 |
+
"model.vision_tower.vision_tower.blocks.10.mlp.linear2.bias": "model-00007-of-00007.safetensors",
|
329 |
+
"model.vision_tower.vision_tower.blocks.10.mlp.linear2.weight": "model-00007-of-00007.safetensors",
|
330 |
+
"model.vision_tower.vision_tower.blocks.10.norm1.bias": "model-00007-of-00007.safetensors",
|
331 |
+
"model.vision_tower.vision_tower.blocks.10.norm1.weight": "model-00007-of-00007.safetensors",
|
332 |
+
"model.vision_tower.vision_tower.blocks.10.norm2.bias": "model-00007-of-00007.safetensors",
|
333 |
+
"model.vision_tower.vision_tower.blocks.10.norm2.weight": "model-00007-of-00007.safetensors",
|
334 |
+
"model.vision_tower.vision_tower.blocks.11.attn.out_proj.bias": "model-00007-of-00007.safetensors",
|
335 |
+
"model.vision_tower.vision_tower.blocks.11.attn.out_proj.weight": "model-00007-of-00007.safetensors",
|
336 |
+
"model.vision_tower.vision_tower.blocks.11.attn.qkv.weight": "model-00007-of-00007.safetensors",
|
337 |
+
"model.vision_tower.vision_tower.blocks.11.mlp.linear1.bias": "model-00007-of-00007.safetensors",
|
338 |
+
"model.vision_tower.vision_tower.blocks.11.mlp.linear1.weight": "model-00007-of-00007.safetensors",
|
339 |
+
"model.vision_tower.vision_tower.blocks.11.mlp.linear2.bias": "model-00007-of-00007.safetensors",
|
340 |
+
"model.vision_tower.vision_tower.blocks.11.mlp.linear2.weight": "model-00007-of-00007.safetensors",
|
341 |
+
"model.vision_tower.vision_tower.blocks.11.norm1.bias": "model-00007-of-00007.safetensors",
|
342 |
+
"model.vision_tower.vision_tower.blocks.11.norm1.weight": "model-00007-of-00007.safetensors",
|
343 |
+
"model.vision_tower.vision_tower.blocks.11.norm2.bias": "model-00007-of-00007.safetensors",
|
344 |
+
"model.vision_tower.vision_tower.blocks.11.norm2.weight": "model-00007-of-00007.safetensors",
|
345 |
+
"model.vision_tower.vision_tower.blocks.2.attn.out_proj.bias": "model-00007-of-00007.safetensors",
|
346 |
+
"model.vision_tower.vision_tower.blocks.2.attn.out_proj.weight": "model-00007-of-00007.safetensors",
|
347 |
+
"model.vision_tower.vision_tower.blocks.2.attn.qkv.weight": "model-00007-of-00007.safetensors",
|
348 |
+
"model.vision_tower.vision_tower.blocks.2.mlp.linear1.bias": "model-00007-of-00007.safetensors",
|
349 |
+
"model.vision_tower.vision_tower.blocks.2.mlp.linear1.weight": "model-00007-of-00007.safetensors",
|
350 |
+
"model.vision_tower.vision_tower.blocks.2.mlp.linear2.bias": "model-00007-of-00007.safetensors",
|
351 |
+
"model.vision_tower.vision_tower.blocks.2.mlp.linear2.weight": "model-00007-of-00007.safetensors",
|
352 |
+
"model.vision_tower.vision_tower.blocks.2.norm1.bias": "model-00007-of-00007.safetensors",
|
353 |
+
"model.vision_tower.vision_tower.blocks.2.norm1.weight": "model-00007-of-00007.safetensors",
|
354 |
+
"model.vision_tower.vision_tower.blocks.2.norm2.bias": "model-00007-of-00007.safetensors",
|
355 |
+
"model.vision_tower.vision_tower.blocks.2.norm2.weight": "model-00007-of-00007.safetensors",
|
356 |
+
"model.vision_tower.vision_tower.blocks.3.attn.out_proj.bias": "model-00007-of-00007.safetensors",
|
357 |
+
"model.vision_tower.vision_tower.blocks.3.attn.out_proj.weight": "model-00007-of-00007.safetensors",
|
358 |
+
"model.vision_tower.vision_tower.blocks.3.attn.qkv.weight": "model-00007-of-00007.safetensors",
|
359 |
+
"model.vision_tower.vision_tower.blocks.3.mlp.linear1.bias": "model-00007-of-00007.safetensors",
|
360 |
+
"model.vision_tower.vision_tower.blocks.3.mlp.linear1.weight": "model-00007-of-00007.safetensors",
|
361 |
+
"model.vision_tower.vision_tower.blocks.3.mlp.linear2.bias": "model-00007-of-00007.safetensors",
|
362 |
+
"model.vision_tower.vision_tower.blocks.3.mlp.linear2.weight": "model-00007-of-00007.safetensors",
|
363 |
+
"model.vision_tower.vision_tower.blocks.3.norm1.bias": "model-00007-of-00007.safetensors",
|
364 |
+
"model.vision_tower.vision_tower.blocks.3.norm1.weight": "model-00007-of-00007.safetensors",
|
365 |
+
"model.vision_tower.vision_tower.blocks.3.norm2.bias": "model-00007-of-00007.safetensors",
|
366 |
+
"model.vision_tower.vision_tower.blocks.3.norm2.weight": "model-00007-of-00007.safetensors",
|
367 |
+
"model.vision_tower.vision_tower.blocks.4.attn.out_proj.bias": "model-00007-of-00007.safetensors",
|
368 |
+
"model.vision_tower.vision_tower.blocks.4.attn.out_proj.weight": "model-00007-of-00007.safetensors",
|
369 |
+
"model.vision_tower.vision_tower.blocks.4.attn.qkv.weight": "model-00007-of-00007.safetensors",
|
370 |
+
"model.vision_tower.vision_tower.blocks.4.mlp.linear1.bias": "model-00007-of-00007.safetensors",
|
371 |
+
"model.vision_tower.vision_tower.blocks.4.mlp.linear1.weight": "model-00007-of-00007.safetensors",
|
372 |
+
"model.vision_tower.vision_tower.blocks.4.mlp.linear2.bias": "model-00007-of-00007.safetensors",
|
373 |
+
"model.vision_tower.vision_tower.blocks.4.mlp.linear2.weight": "model-00007-of-00007.safetensors",
|
374 |
+
"model.vision_tower.vision_tower.blocks.4.norm1.bias": "model-00007-of-00007.safetensors",
|
375 |
+
"model.vision_tower.vision_tower.blocks.4.norm1.weight": "model-00007-of-00007.safetensors",
|
376 |
+
"model.vision_tower.vision_tower.blocks.4.norm2.bias": "model-00007-of-00007.safetensors",
|
377 |
+
"model.vision_tower.vision_tower.blocks.4.norm2.weight": "model-00007-of-00007.safetensors",
|
378 |
+
"model.vision_tower.vision_tower.blocks.5.attn.out_proj.bias": "model-00007-of-00007.safetensors",
|
379 |
+
"model.vision_tower.vision_tower.blocks.5.attn.out_proj.weight": "model-00007-of-00007.safetensors",
|
380 |
+
"model.vision_tower.vision_tower.blocks.5.attn.qkv.weight": "model-00007-of-00007.safetensors",
|
381 |
+
"model.vision_tower.vision_tower.blocks.5.mlp.linear1.bias": "model-00007-of-00007.safetensors",
|
382 |
+
"model.vision_tower.vision_tower.blocks.5.mlp.linear1.weight": "model-00007-of-00007.safetensors",
|
383 |
+
"model.vision_tower.vision_tower.blocks.5.mlp.linear2.bias": "model-00007-of-00007.safetensors",
|
384 |
+
"model.vision_tower.vision_tower.blocks.5.mlp.linear2.weight": "model-00007-of-00007.safetensors",
|
385 |
+
"model.vision_tower.vision_tower.blocks.5.norm1.bias": "model-00007-of-00007.safetensors",
|
386 |
+
"model.vision_tower.vision_tower.blocks.5.norm1.weight": "model-00007-of-00007.safetensors",
|
387 |
+
"model.vision_tower.vision_tower.blocks.5.norm2.bias": "model-00007-of-00007.safetensors",
|
388 |
+
"model.vision_tower.vision_tower.blocks.5.norm2.weight": "model-00007-of-00007.safetensors",
|
389 |
+
"model.vision_tower.vision_tower.blocks.6.attn.out_proj.bias": "model-00007-of-00007.safetensors",
|
390 |
+
"model.vision_tower.vision_tower.blocks.6.attn.out_proj.weight": "model-00007-of-00007.safetensors",
|
391 |
+
"model.vision_tower.vision_tower.blocks.6.attn.qkv.weight": "model-00007-of-00007.safetensors",
|
392 |
+
"model.vision_tower.vision_tower.blocks.6.mlp.linear1.bias": "model-00007-of-00007.safetensors",
|
393 |
+
"model.vision_tower.vision_tower.blocks.6.mlp.linear1.weight": "model-00007-of-00007.safetensors",
|
394 |
+
"model.vision_tower.vision_tower.blocks.6.mlp.linear2.bias": "model-00007-of-00007.safetensors",
|
395 |
+
"model.vision_tower.vision_tower.blocks.6.mlp.linear2.weight": "model-00007-of-00007.safetensors",
|
396 |
+
"model.vision_tower.vision_tower.blocks.6.norm1.bias": "model-00007-of-00007.safetensors",
|
397 |
+
"model.vision_tower.vision_tower.blocks.6.norm1.weight": "model-00007-of-00007.safetensors",
|
398 |
+
"model.vision_tower.vision_tower.blocks.6.norm2.bias": "model-00007-of-00007.safetensors",
|
399 |
+
"model.vision_tower.vision_tower.blocks.6.norm2.weight": "model-00007-of-00007.safetensors",
|
400 |
+
"model.vision_tower.vision_tower.blocks.7.attn.out_proj.bias": "model-00007-of-00007.safetensors",
|
401 |
+
"model.vision_tower.vision_tower.blocks.7.attn.out_proj.weight": "model-00007-of-00007.safetensors",
|
402 |
+
"model.vision_tower.vision_tower.blocks.7.attn.qkv.weight": "model-00007-of-00007.safetensors",
|
403 |
+
"model.vision_tower.vision_tower.blocks.7.mlp.linear1.bias": "model-00007-of-00007.safetensors",
|
404 |
+
"model.vision_tower.vision_tower.blocks.7.mlp.linear1.weight": "model-00007-of-00007.safetensors",
|
405 |
+
"model.vision_tower.vision_tower.blocks.7.mlp.linear2.bias": "model-00007-of-00007.safetensors",
|
406 |
+
"model.vision_tower.vision_tower.blocks.7.mlp.linear2.weight": "model-00007-of-00007.safetensors",
|
407 |
+
"model.vision_tower.vision_tower.blocks.7.norm1.bias": "model-00007-of-00007.safetensors",
|
408 |
+
"model.vision_tower.vision_tower.blocks.7.norm1.weight": "model-00007-of-00007.safetensors",
|
409 |
+
"model.vision_tower.vision_tower.blocks.7.norm2.bias": "model-00007-of-00007.safetensors",
|
410 |
+
"model.vision_tower.vision_tower.blocks.7.norm2.weight": "model-00007-of-00007.safetensors",
|
411 |
+
"model.vision_tower.vision_tower.blocks.8.attn.out_proj.bias": "model-00007-of-00007.safetensors",
|
412 |
+
"model.vision_tower.vision_tower.blocks.8.attn.out_proj.weight": "model-00007-of-00007.safetensors",
|
413 |
+
"model.vision_tower.vision_tower.blocks.8.attn.qkv.weight": "model-00007-of-00007.safetensors",
|
414 |
+
"model.vision_tower.vision_tower.blocks.8.mlp.linear1.bias": "model-00007-of-00007.safetensors",
|
415 |
+
"model.vision_tower.vision_tower.blocks.8.mlp.linear1.weight": "model-00007-of-00007.safetensors",
|
416 |
+
"model.vision_tower.vision_tower.blocks.8.mlp.linear2.bias": "model-00007-of-00007.safetensors",
|
417 |
+
"model.vision_tower.vision_tower.blocks.8.mlp.linear2.weight": "model-00007-of-00007.safetensors",
|
418 |
+
"model.vision_tower.vision_tower.blocks.8.norm1.bias": "model-00007-of-00007.safetensors",
|
419 |
+
"model.vision_tower.vision_tower.blocks.8.norm1.weight": "model-00007-of-00007.safetensors",
|
420 |
+
"model.vision_tower.vision_tower.blocks.8.norm2.bias": "model-00007-of-00007.safetensors",
|
421 |
+
"model.vision_tower.vision_tower.blocks.8.norm2.weight": "model-00007-of-00007.safetensors",
|
422 |
+
"model.vision_tower.vision_tower.blocks.9.attn.out_proj.bias": "model-00007-of-00007.safetensors",
|
423 |
+
"model.vision_tower.vision_tower.blocks.9.attn.out_proj.weight": "model-00007-of-00007.safetensors",
|
424 |
+
"model.vision_tower.vision_tower.blocks.9.attn.qkv.weight": "model-00007-of-00007.safetensors",
|
425 |
+
"model.vision_tower.vision_tower.blocks.9.mlp.linear1.bias": "model-00007-of-00007.safetensors",
|
426 |
+
"model.vision_tower.vision_tower.blocks.9.mlp.linear1.weight": "model-00007-of-00007.safetensors",
|
427 |
+
"model.vision_tower.vision_tower.blocks.9.mlp.linear2.bias": "model-00007-of-00007.safetensors",
|
428 |
+
"model.vision_tower.vision_tower.blocks.9.mlp.linear2.weight": "model-00007-of-00007.safetensors",
|
429 |
+
"model.vision_tower.vision_tower.blocks.9.norm1.bias": "model-00007-of-00007.safetensors",
|
430 |
+
"model.vision_tower.vision_tower.blocks.9.norm1.weight": "model-00007-of-00007.safetensors",
|
431 |
+
"model.vision_tower.vision_tower.blocks.9.norm2.bias": "model-00007-of-00007.safetensors",
|
432 |
+
"model.vision_tower.vision_tower.blocks.9.norm2.weight": "model-00007-of-00007.safetensors",
|
433 |
+
"model.vision_tower.vision_tower.cls_token": "model-00007-of-00007.safetensors",
|
434 |
+
"model.vision_tower.vision_tower.norm.bias": "model-00007-of-00007.safetensors",
|
435 |
+
"model.vision_tower.vision_tower.norm.weight": "model-00007-of-00007.safetensors",
|
436 |
+
"model.vision_tower.vision_tower.patch_embedding.patch_embeddings.1.bias": "model-00007-of-00007.safetensors",
|
437 |
+
"model.vision_tower.vision_tower.patch_embedding.patch_embeddings.1.weight": "model-00007-of-00007.safetensors",
|
438 |
+
"model.vision_tower.vision_tower.patch_embedding.position_embeddings": "model-00007-of-00007.safetensors"
|
439 |
+
}
|
440 |
+
}
|
modeling_m3d_lamed.py
ADDED
@@ -0,0 +1,1188 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import annotations
|
2 |
+
from typing import Union
|
3 |
+
from transformers import LlamaConfig, LlamaModel, LlamaForCausalLM
|
4 |
+
from transformers.modeling_outputs import CausalLMOutputWithPast
|
5 |
+
from transformers.generation.utils import GenerateOutput
|
6 |
+
from .configuration_m3d_lamed import LamedConfig
|
7 |
+
from abc import ABC, abstractmethod
|
8 |
+
from torch import Tensor
|
9 |
+
import math
|
10 |
+
from typing import Any, Dict, List
|
11 |
+
import torch
|
12 |
+
import torch.nn as nn
|
13 |
+
from typing import Optional, Tuple, Type
|
14 |
+
from monai.networks.blocks import PatchEmbed
|
15 |
+
import numpy as np
|
16 |
+
import torch.nn.functional as F
|
17 |
+
|
18 |
+
from einops import rearrange
|
19 |
+
from einops.layers.torch import Rearrange
|
20 |
+
from collections.abc import Sequence
|
21 |
+
from monai.networks.blocks.patchembedding import PatchEmbeddingBlock
|
22 |
+
from monai.networks.blocks.transformerblock import TransformerBlock
|
23 |
+
from monai.networks.nets import ViT
|
24 |
+
|
25 |
+
|
26 |
+
|
27 |
+
|
28 |
+
|
29 |
+
class LayerNorm2d(nn.Module):
|
30 |
+
def __init__(self, num_channels: int, eps: float = 1e-6) -> None:
|
31 |
+
super().__init__()
|
32 |
+
self.weight = nn.Parameter(torch.ones(num_channels))
|
33 |
+
self.bias = nn.Parameter(torch.zeros(num_channels))
|
34 |
+
self.eps = eps
|
35 |
+
|
36 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
37 |
+
u = x.mean(1, keepdim=True)
|
38 |
+
s = (x - u).pow(2).mean(1, keepdim=True)
|
39 |
+
x = (x - u) / torch.sqrt(s + self.eps)
|
40 |
+
x = self.weight[:, None, None] * x + self.bias[:, None, None]
|
41 |
+
return x
|
42 |
+
|
43 |
+
|
44 |
+
class MLPBlock(nn.Module):
|
45 |
+
def __init__(
|
46 |
+
self,
|
47 |
+
embedding_dim: int,
|
48 |
+
mlp_dim: int,
|
49 |
+
act: Type[nn.Module] = nn.GELU,
|
50 |
+
) -> None:
|
51 |
+
super().__init__()
|
52 |
+
self.lin1 = nn.Linear(embedding_dim, mlp_dim)
|
53 |
+
self.lin2 = nn.Linear(mlp_dim, embedding_dim)
|
54 |
+
self.act = act()
|
55 |
+
|
56 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
57 |
+
return self.lin2(self.act(self.lin1(x)))
|
58 |
+
|
59 |
+
|
60 |
+
class TwoWayTransformer(nn.Module):
|
61 |
+
def __init__(
|
62 |
+
self,
|
63 |
+
depth: int,
|
64 |
+
embedding_dim: int,
|
65 |
+
num_heads: int,
|
66 |
+
mlp_dim: int,
|
67 |
+
activation: Type[nn.Module] = nn.ReLU,
|
68 |
+
attention_downsample_rate: int = 2,
|
69 |
+
) -> None:
|
70 |
+
"""
|
71 |
+
A transformer decoder that attends to an input image using
|
72 |
+
queries whose positional embedding is supplied.
|
73 |
+
|
74 |
+
Args:
|
75 |
+
depth (int): number of layers in the transformer
|
76 |
+
embedding_dim (int): the channel dimension for the input embeddings
|
77 |
+
num_heads (int): the number of heads for multihead attention. Must
|
78 |
+
divide embedding_dim
|
79 |
+
mlp_dim (int): the channel dimension internal to the MLP block
|
80 |
+
activation (nn.Module): the activation to use in the MLP block
|
81 |
+
"""
|
82 |
+
super().__init__()
|
83 |
+
self.depth = depth
|
84 |
+
self.embedding_dim = embedding_dim
|
85 |
+
self.num_heads = num_heads
|
86 |
+
self.mlp_dim = mlp_dim
|
87 |
+
self.layers = nn.ModuleList()
|
88 |
+
|
89 |
+
for i in range(depth):
|
90 |
+
self.layers.append(
|
91 |
+
TwoWayAttentionBlock(
|
92 |
+
embedding_dim=embedding_dim,
|
93 |
+
num_heads=num_heads,
|
94 |
+
mlp_dim=mlp_dim,
|
95 |
+
activation=activation,
|
96 |
+
attention_downsample_rate=attention_downsample_rate,
|
97 |
+
skip_first_layer_pe=(i == 0),
|
98 |
+
)
|
99 |
+
)
|
100 |
+
|
101 |
+
self.final_attn_token_to_image = Attention(
|
102 |
+
embedding_dim, num_heads, downsample_rate=attention_downsample_rate
|
103 |
+
)
|
104 |
+
self.norm_final_attn = nn.LayerNorm(embedding_dim)
|
105 |
+
|
106 |
+
def forward(
|
107 |
+
self,
|
108 |
+
image_embedding: Tensor,
|
109 |
+
image_pe: Tensor,
|
110 |
+
point_embedding: Tensor,
|
111 |
+
) -> Tuple[Tensor, Tensor]:
|
112 |
+
"""
|
113 |
+
Args:
|
114 |
+
image_embedding (torch.Tensor): image to attend to. Should be shape
|
115 |
+
B x embedding_dim x h x w for any h and w.
|
116 |
+
image_pe (torch.Tensor): the positional encoding to add to the image. Must
|
117 |
+
have the same shape as image_embedding.
|
118 |
+
point_embedding (torch.Tensor): the embedding to add to the query points.
|
119 |
+
Must have shape B x N_points x embedding_dim for any N_points.
|
120 |
+
|
121 |
+
Returns:
|
122 |
+
torch.Tensor: the processed point_embedding
|
123 |
+
torch.Tensor: the processed image_embedding
|
124 |
+
"""
|
125 |
+
# BxCxHxW -> BxHWxC == B x N_image_tokens x C
|
126 |
+
bs, c, h, w, d = image_embedding.shape
|
127 |
+
image_embedding = image_embedding.flatten(2).permute(0, 2, 1)
|
128 |
+
image_pe = image_pe.flatten(2).permute(0, 2, 1)
|
129 |
+
|
130 |
+
# Prepare queries
|
131 |
+
queries = point_embedding
|
132 |
+
keys = image_embedding
|
133 |
+
|
134 |
+
# Apply transformer blocks and final layernorm
|
135 |
+
for layer in self.layers:
|
136 |
+
queries, keys = layer(
|
137 |
+
queries=queries,
|
138 |
+
keys=keys,
|
139 |
+
query_pe=point_embedding,
|
140 |
+
key_pe=image_pe,
|
141 |
+
)
|
142 |
+
|
143 |
+
# Apply the final attention layer from the points to the image
|
144 |
+
q = queries + point_embedding
|
145 |
+
k = keys + image_pe
|
146 |
+
attn_out = self.final_attn_token_to_image(q=q, k=k, v=keys)
|
147 |
+
queries = queries + attn_out
|
148 |
+
queries = self.norm_final_attn(queries)
|
149 |
+
|
150 |
+
return queries, keys
|
151 |
+
|
152 |
+
|
153 |
+
class TwoWayAttentionBlock(nn.Module):
|
154 |
+
def __init__(
|
155 |
+
self,
|
156 |
+
embedding_dim: int,
|
157 |
+
num_heads: int,
|
158 |
+
mlp_dim: int = 2048,
|
159 |
+
activation: Type[nn.Module] = nn.ReLU,
|
160 |
+
attention_downsample_rate: int = 2,
|
161 |
+
skip_first_layer_pe: bool = False,
|
162 |
+
) -> None:
|
163 |
+
"""
|
164 |
+
A transformer block with four layers: (1) self-attention of sparse
|
165 |
+
inputs, (2) cross attention of sparse inputs to dense inputs, (3) mlp
|
166 |
+
block on sparse inputs, and (4) cross attention of dense inputs to sparse
|
167 |
+
inputs.
|
168 |
+
|
169 |
+
Arguments:
|
170 |
+
embedding_dim (int): the channel dimension of the embeddings
|
171 |
+
num_heads (int): the number of heads in the attention layers
|
172 |
+
mlp_dim (int): the hidden dimension of the mlp block
|
173 |
+
activation (nn.Module): the activation of the mlp block
|
174 |
+
skip_first_layer_pe (bool): skip the PE on the first layer
|
175 |
+
"""
|
176 |
+
super().__init__()
|
177 |
+
self.self_attn = Attention(embedding_dim, num_heads)
|
178 |
+
self.norm1 = nn.LayerNorm(embedding_dim)
|
179 |
+
|
180 |
+
self.cross_attn_token_to_image = Attention(
|
181 |
+
embedding_dim, num_heads, downsample_rate=attention_downsample_rate
|
182 |
+
)
|
183 |
+
self.norm2 = nn.LayerNorm(embedding_dim)
|
184 |
+
|
185 |
+
self.mlp = MLPBlock(embedding_dim, mlp_dim, activation)
|
186 |
+
self.norm3 = nn.LayerNorm(embedding_dim)
|
187 |
+
|
188 |
+
self.norm4 = nn.LayerNorm(embedding_dim)
|
189 |
+
self.cross_attn_image_to_token = Attention(
|
190 |
+
embedding_dim, num_heads, downsample_rate=attention_downsample_rate
|
191 |
+
)
|
192 |
+
|
193 |
+
self.skip_first_layer_pe = skip_first_layer_pe
|
194 |
+
|
195 |
+
def forward(
|
196 |
+
self, queries: Tensor, keys: Tensor, query_pe: Tensor, key_pe: Tensor
|
197 |
+
) -> Tuple[Tensor, Tensor]:
|
198 |
+
# Self attention block
|
199 |
+
if self.skip_first_layer_pe:
|
200 |
+
queries = self.self_attn(q=queries, k=queries, v=queries)
|
201 |
+
else:
|
202 |
+
q = queries + query_pe
|
203 |
+
attn_out = self.self_attn(q=q, k=q, v=queries)
|
204 |
+
queries = queries + attn_out
|
205 |
+
queries = self.norm1(queries)
|
206 |
+
|
207 |
+
# Cross attention block, tokens attending to image embedding
|
208 |
+
q = queries + query_pe
|
209 |
+
k = keys + key_pe
|
210 |
+
attn_out = self.cross_attn_token_to_image(q=q, k=k, v=keys)
|
211 |
+
queries = queries + attn_out
|
212 |
+
queries = self.norm2(queries)
|
213 |
+
|
214 |
+
# MLP block
|
215 |
+
mlp_out = self.mlp(queries)
|
216 |
+
queries = queries + mlp_out
|
217 |
+
queries = self.norm3(queries)
|
218 |
+
|
219 |
+
# Cross attention block, image embedding attending to tokens
|
220 |
+
q = queries + query_pe
|
221 |
+
k = keys + key_pe
|
222 |
+
attn_out = self.cross_attn_image_to_token(q=k, k=q, v=queries)
|
223 |
+
keys = keys + attn_out
|
224 |
+
keys = self.norm4(keys)
|
225 |
+
|
226 |
+
return queries, keys
|
227 |
+
|
228 |
+
|
229 |
+
class Attention(nn.Module):
|
230 |
+
"""
|
231 |
+
An attention layer that allows for downscaling the size of the embedding
|
232 |
+
after projection to queries, keys, and values.
|
233 |
+
"""
|
234 |
+
|
235 |
+
def __init__(
|
236 |
+
self,
|
237 |
+
embedding_dim: int,
|
238 |
+
num_heads: int,
|
239 |
+
downsample_rate: int = 1,
|
240 |
+
) -> None:
|
241 |
+
super().__init__()
|
242 |
+
self.embedding_dim = embedding_dim
|
243 |
+
self.internal_dim = embedding_dim // downsample_rate
|
244 |
+
self.num_heads = num_heads
|
245 |
+
assert self.internal_dim % num_heads == 0, "num_heads must divide embedding_dim."
|
246 |
+
|
247 |
+
self.q_proj = nn.Linear(embedding_dim, self.internal_dim)
|
248 |
+
self.k_proj = nn.Linear(embedding_dim, self.internal_dim)
|
249 |
+
self.v_proj = nn.Linear(embedding_dim, self.internal_dim)
|
250 |
+
self.out_proj = nn.Linear(self.internal_dim, embedding_dim)
|
251 |
+
|
252 |
+
def _separate_heads(self, x: Tensor, num_heads: int) -> Tensor:
|
253 |
+
b, n, c = x.shape
|
254 |
+
x = x.reshape(b, n, num_heads, c // num_heads)
|
255 |
+
return x.transpose(1, 2) # B x N_heads x N_tokens x C_per_head
|
256 |
+
|
257 |
+
def _recombine_heads(self, x: Tensor) -> Tensor:
|
258 |
+
b, n_heads, n_tokens, c_per_head = x.shape
|
259 |
+
x = x.transpose(1, 2)
|
260 |
+
return x.reshape(b, n_tokens, n_heads * c_per_head) # B x N_tokens x C
|
261 |
+
|
262 |
+
def forward(self, q: Tensor, k: Tensor, v: Tensor) -> Tensor:
|
263 |
+
# Input projections
|
264 |
+
q = self.q_proj(q)
|
265 |
+
k = self.k_proj(k)
|
266 |
+
v = self.v_proj(v)
|
267 |
+
|
268 |
+
# Separate into heads
|
269 |
+
q = self._separate_heads(q, self.num_heads)
|
270 |
+
k = self._separate_heads(k, self.num_heads)
|
271 |
+
v = self._separate_heads(v, self.num_heads)
|
272 |
+
|
273 |
+
# Attention
|
274 |
+
_, _, _, c_per_head = q.shape
|
275 |
+
attn = q @ k.permute(0, 1, 3, 2) # B x N_heads x N_tokens x N_tokens
|
276 |
+
attn = attn / math.sqrt(c_per_head)
|
277 |
+
attn = torch.softmax(attn, dim=-1)
|
278 |
+
|
279 |
+
# Get output
|
280 |
+
out = attn @ v
|
281 |
+
out = self._recombine_heads(out)
|
282 |
+
out = self.out_proj(out)
|
283 |
+
|
284 |
+
return out
|
285 |
+
|
286 |
+
|
287 |
+
|
288 |
+
# This class and its supporting functions below lightly adapted from the ViTDet backbone available at: https://github.com/facebookresearch/detectron2/blob/main/detectron2/modeling/backbone/vit.py # noqa
|
289 |
+
class ImageEncoderViT(nn.Module):
|
290 |
+
def __init__(
|
291 |
+
self,
|
292 |
+
img_size: int = 1024,
|
293 |
+
patch_size: int = 16,
|
294 |
+
in_chans: int = 1,
|
295 |
+
embed_dim: int = 768,
|
296 |
+
depth: int = 12,
|
297 |
+
num_heads: int = 12,
|
298 |
+
mlp_ratio: float = 4.0,
|
299 |
+
out_chans: int = 256,
|
300 |
+
qkv_bias: bool = True,
|
301 |
+
norm_layer: Type[nn.Module] = nn.LayerNorm,
|
302 |
+
act_layer: Type[nn.Module] = nn.GELU,
|
303 |
+
use_abs_pos: bool = True,
|
304 |
+
use_rel_pos: bool = False,
|
305 |
+
rel_pos_zero_init: bool = True,
|
306 |
+
window_size: int = 0,
|
307 |
+
global_attn_indexes: Tuple[int, ...] = (),
|
308 |
+
) -> None:
|
309 |
+
"""
|
310 |
+
Args:
|
311 |
+
img_size (int): Input image size.
|
312 |
+
patch_size (int): Patch size.
|
313 |
+
in_chans (int): Number of input image channels.
|
314 |
+
embed_dim (int): Patch embedding dimension.
|
315 |
+
depth (int): Depth of ViT.
|
316 |
+
num_heads (int): Number of attention heads in each ViT block.
|
317 |
+
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
|
318 |
+
qkv_bias (bool): If True, add a learnable bias to query, key, value.
|
319 |
+
norm_layer (nn.Module): Normalization layer.
|
320 |
+
act_layer (nn.Module): Activation layer.
|
321 |
+
use_abs_pos (bool): If True, use absolute positional embeddings.
|
322 |
+
use_rel_pos (bool): If True, add relative positional embeddings to the attention map.
|
323 |
+
rel_pos_zero_init (bool): If True, zero initialize relative positional parameters.
|
324 |
+
window_size (int): Window size for window attention blocks.
|
325 |
+
global_attn_indexes (list): Indexes for blocks using global attention.
|
326 |
+
"""
|
327 |
+
super().__init__()
|
328 |
+
self.img_size = img_size
|
329 |
+
|
330 |
+
# self.patch_embed = PatchEmbed(
|
331 |
+
# kernel_size=(patch_size, patch_size),
|
332 |
+
# stride=(patch_size, patch_size),
|
333 |
+
# in_chans=in_chans,
|
334 |
+
# embed_dim=embed_dim,
|
335 |
+
# )
|
336 |
+
|
337 |
+
self.patch_embed = PatchEmbed(
|
338 |
+
patch_size=patch_size,
|
339 |
+
in_chans=in_chans,
|
340 |
+
embed_dim=embed_dim,
|
341 |
+
spatial_dims=3,
|
342 |
+
)
|
343 |
+
|
344 |
+
self.pos_embed: Optional[nn.Parameter] = None
|
345 |
+
if use_abs_pos:
|
346 |
+
# Initialize absolute positional embedding with pretrain image size.
|
347 |
+
self.pos_embed = nn.Parameter(
|
348 |
+
torch.zeros(1, img_size // patch_size, img_size // patch_size, img_size // patch_size, embed_dim)
|
349 |
+
)
|
350 |
+
|
351 |
+
self.blocks = nn.ModuleList()
|
352 |
+
for i in range(depth):
|
353 |
+
block = Block(
|
354 |
+
dim=embed_dim,
|
355 |
+
num_heads=num_heads,
|
356 |
+
mlp_ratio=mlp_ratio,
|
357 |
+
qkv_bias=qkv_bias,
|
358 |
+
norm_layer=norm_layer,
|
359 |
+
act_layer=act_layer,
|
360 |
+
use_rel_pos=use_rel_pos,
|
361 |
+
rel_pos_zero_init=rel_pos_zero_init,
|
362 |
+
window_size=window_size if i not in global_attn_indexes else 0,
|
363 |
+
input_size=(img_size // patch_size, img_size // patch_size),
|
364 |
+
)
|
365 |
+
self.blocks.append(block)
|
366 |
+
|
367 |
+
self.neck = nn.Sequential(
|
368 |
+
nn.Conv2d(
|
369 |
+
embed_dim,
|
370 |
+
out_chans,
|
371 |
+
kernel_size=1,
|
372 |
+
bias=False,
|
373 |
+
),
|
374 |
+
LayerNorm2d(out_chans),
|
375 |
+
nn.Conv2d(
|
376 |
+
out_chans,
|
377 |
+
out_chans,
|
378 |
+
kernel_size=3,
|
379 |
+
padding=1,
|
380 |
+
bias=False,
|
381 |
+
),
|
382 |
+
LayerNorm2d(out_chans),
|
383 |
+
)
|
384 |
+
|
385 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
386 |
+
x = self.patch_embed(x)
|
387 |
+
print('patch embedded shape: ', x.shape) # embedded: [8, 768, 6, 6, 6]
|
388 |
+
if self.pos_embed is not None:
|
389 |
+
x = x + self.pos_embed
|
390 |
+
|
391 |
+
for blk in self.blocks:
|
392 |
+
x = blk(x)
|
393 |
+
|
394 |
+
x = self.neck(x.permute(0, 3, 1, 2))
|
395 |
+
|
396 |
+
return x
|
397 |
+
|
398 |
+
|
399 |
+
class Block(nn.Module):
|
400 |
+
"""Transformer blocks with support of window attention and residual propagation blocks"""
|
401 |
+
|
402 |
+
def __init__(
|
403 |
+
self,
|
404 |
+
dim: int,
|
405 |
+
num_heads: int,
|
406 |
+
mlp_ratio: float = 4.0,
|
407 |
+
qkv_bias: bool = True,
|
408 |
+
norm_layer: Type[nn.Module] = nn.LayerNorm,
|
409 |
+
act_layer: Type[nn.Module] = nn.GELU,
|
410 |
+
use_rel_pos: bool = False,
|
411 |
+
rel_pos_zero_init: bool = True,
|
412 |
+
window_size: int = 0,
|
413 |
+
input_size: Optional[Tuple[int, int]] = None,
|
414 |
+
) -> None:
|
415 |
+
"""
|
416 |
+
Args:
|
417 |
+
dim (int): Number of input channels.
|
418 |
+
num_heads (int): Number of attention heads in each ViT block.
|
419 |
+
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
|
420 |
+
qkv_bias (bool): If True, add a learnable bias to query, key, value.
|
421 |
+
norm_layer (nn.Module): Normalization layer.
|
422 |
+
act_layer (nn.Module): Activation layer.
|
423 |
+
use_rel_pos (bool): If True, add relative positional embeddings to the attention map.
|
424 |
+
rel_pos_zero_init (bool): If True, zero initialize relative positional parameters.
|
425 |
+
window_size (int): Window size for window attention blocks. If it equals 0, then
|
426 |
+
use global attention.
|
427 |
+
input_size (tuple(int, int) or None): Input resolution for calculating the relative
|
428 |
+
positional parameter size.
|
429 |
+
"""
|
430 |
+
super().__init__()
|
431 |
+
self.norm1 = norm_layer(dim)
|
432 |
+
self.attn = Attention2(
|
433 |
+
dim,
|
434 |
+
num_heads=num_heads,
|
435 |
+
qkv_bias=qkv_bias,
|
436 |
+
use_rel_pos=use_rel_pos,
|
437 |
+
rel_pos_zero_init=rel_pos_zero_init,
|
438 |
+
input_size=input_size if window_size == 0 else (window_size, window_size),
|
439 |
+
)
|
440 |
+
|
441 |
+
self.norm2 = norm_layer(dim)
|
442 |
+
self.mlp = MLPBlock(embedding_dim=dim, mlp_dim=int(dim * mlp_ratio), act=act_layer)
|
443 |
+
|
444 |
+
self.window_size = window_size
|
445 |
+
|
446 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
447 |
+
shortcut = x
|
448 |
+
x = self.norm1(x)
|
449 |
+
# Window partition
|
450 |
+
if self.window_size > 0:
|
451 |
+
H, W = x.shape[1], x.shape[2]
|
452 |
+
x, pad_hw = window_partition(x, self.window_size)
|
453 |
+
|
454 |
+
x = self.attn(x)
|
455 |
+
# Reverse window partition
|
456 |
+
if self.window_size > 0:
|
457 |
+
x = window_unpartition(x, self.window_size, pad_hw, (H, W))
|
458 |
+
|
459 |
+
x = shortcut + x
|
460 |
+
x = x + self.mlp(self.norm2(x))
|
461 |
+
|
462 |
+
return x
|
463 |
+
|
464 |
+
|
465 |
+
class Attention2(nn.Module):
|
466 |
+
"""Multi-head Attention block with relative position embeddings."""
|
467 |
+
|
468 |
+
def __init__(
|
469 |
+
self,
|
470 |
+
dim: int,
|
471 |
+
num_heads: int = 8,
|
472 |
+
qkv_bias: bool = True,
|
473 |
+
use_rel_pos: bool = False,
|
474 |
+
rel_pos_zero_init: bool = True,
|
475 |
+
input_size: Optional[Tuple[int, int]] = None,
|
476 |
+
) -> None:
|
477 |
+
"""
|
478 |
+
Args:
|
479 |
+
dim (int): Number of input channels.
|
480 |
+
num_heads (int): Number of attention heads.
|
481 |
+
qkv_bias (bool): If True, add a learnable bias to query, key, value.
|
482 |
+
rel_pos (bool): If True, add relative positional embeddings to the attention map.
|
483 |
+
rel_pos_zero_init (bool): If True, zero initialize relative positional parameters.
|
484 |
+
input_size (tuple(int, int) or None): Input resolution for calculating the relative
|
485 |
+
positional parameter size.
|
486 |
+
"""
|
487 |
+
super().__init__()
|
488 |
+
self.num_heads = num_heads
|
489 |
+
head_dim = dim // num_heads
|
490 |
+
self.scale = head_dim ** -0.5
|
491 |
+
|
492 |
+
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
493 |
+
self.proj = nn.Linear(dim, dim)
|
494 |
+
|
495 |
+
self.use_rel_pos = use_rel_pos
|
496 |
+
if self.use_rel_pos:
|
497 |
+
assert (
|
498 |
+
input_size is not None
|
499 |
+
), "Input size must be provided if using relative positional encoding."
|
500 |
+
# initialize relative positional embeddings
|
501 |
+
self.rel_pos_h = nn.Parameter(torch.zeros(2 * input_size[0] - 1, head_dim))
|
502 |
+
self.rel_pos_w = nn.Parameter(torch.zeros(2 * input_size[1] - 1, head_dim))
|
503 |
+
|
504 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
505 |
+
B, H, W, _ = x.shape
|
506 |
+
# qkv with shape (3, B, nHead, H * W, C)
|
507 |
+
qkv = self.qkv(x).reshape(B, H * W, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
|
508 |
+
# q, k, v with shape (B * nHead, H * W, C)
|
509 |
+
q, k, v = qkv.reshape(3, B * self.num_heads, H * W, -1).unbind(0)
|
510 |
+
|
511 |
+
attn = (q * self.scale) @ k.transpose(-2, -1)
|
512 |
+
|
513 |
+
if self.use_rel_pos:
|
514 |
+
attn = add_decomposed_rel_pos(attn, q, self.rel_pos_h, self.rel_pos_w, (H, W), (H, W))
|
515 |
+
|
516 |
+
attn = attn.softmax(dim=-1)
|
517 |
+
x = (attn @ v).view(B, self.num_heads, H, W, -1).permute(0, 2, 3, 1, 4).reshape(B, H, W, -1)
|
518 |
+
x = self.proj(x)
|
519 |
+
|
520 |
+
return x
|
521 |
+
|
522 |
+
|
523 |
+
def window_partition(x: torch.Tensor, window_size: int) -> Tuple[torch.Tensor, Tuple[int, int]]:
|
524 |
+
"""
|
525 |
+
Partition into non-overlapping windows with padding if needed.
|
526 |
+
Args:
|
527 |
+
x (tensor): input tokens with [B, H, W, C].
|
528 |
+
window_size (int): window size.
|
529 |
+
|
530 |
+
Returns:
|
531 |
+
windows: windows after partition with [B * num_windows, window_size, window_size, C].
|
532 |
+
(Hp, Wp): padded height and width before partition
|
533 |
+
"""
|
534 |
+
B, H, W, C = x.shape
|
535 |
+
|
536 |
+
pad_h = (window_size - H % window_size) % window_size
|
537 |
+
pad_w = (window_size - W % window_size) % window_size
|
538 |
+
if pad_h > 0 or pad_w > 0:
|
539 |
+
x = F.pad(x, (0, 0, 0, pad_w, 0, pad_h))
|
540 |
+
Hp, Wp = H + pad_h, W + pad_w
|
541 |
+
|
542 |
+
x = x.view(B, Hp // window_size, window_size, Wp // window_size, window_size, C)
|
543 |
+
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
|
544 |
+
return windows, (Hp, Wp)
|
545 |
+
|
546 |
+
|
547 |
+
def window_unpartition(windows: torch.Tensor, window_size: int, pad_hw: Tuple[int, int], hw: Tuple[int, int]) -> torch.Tensor:
|
548 |
+
"""
|
549 |
+
Window unpartition into original sequences and removing padding.
|
550 |
+
Args:
|
551 |
+
windows (tensor): input tokens with [B * num_windows, window_size, window_size, C].
|
552 |
+
window_size (int): window size.
|
553 |
+
pad_hw (Tuple): padded height and width (Hp, Wp).
|
554 |
+
hw (Tuple): original height and width (H, W) before padding.
|
555 |
+
|
556 |
+
Returns:
|
557 |
+
x: unpartitioned sequences with [B, H, W, C].
|
558 |
+
"""
|
559 |
+
Hp, Wp = pad_hw
|
560 |
+
H, W = hw
|
561 |
+
B = windows.shape[0] // (Hp * Wp // window_size // window_size)
|
562 |
+
x = windows.view(B, Hp // window_size, Wp // window_size, window_size, window_size, -1)
|
563 |
+
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, Hp, Wp, -1)
|
564 |
+
|
565 |
+
if Hp > H or Wp > W:
|
566 |
+
x = x[:, :H, :W, :].contiguous()
|
567 |
+
return x
|
568 |
+
|
569 |
+
|
570 |
+
def get_rel_pos(q_size: int, k_size: int, rel_pos: torch.Tensor) -> torch.Tensor:
|
571 |
+
"""
|
572 |
+
Get relative positional embeddings according to the relative positions of
|
573 |
+
query and key sizes.
|
574 |
+
Args:
|
575 |
+
q_size (int): size of query q.
|
576 |
+
k_size (int): size of key k.
|
577 |
+
rel_pos (Tensor): relative position embeddings (L, C).
|
578 |
+
|
579 |
+
Returns:
|
580 |
+
Extracted positional embeddings according to relative positions.
|
581 |
+
"""
|
582 |
+
max_rel_dist = int(2 * max(q_size, k_size) - 1)
|
583 |
+
# Interpolate rel pos if needed.
|
584 |
+
if rel_pos.shape[0] != max_rel_dist:
|
585 |
+
# Interpolate rel pos.
|
586 |
+
rel_pos_resized = F.interpolate(
|
587 |
+
rel_pos.reshape(1, rel_pos.shape[0], -1).permute(0, 2, 1),
|
588 |
+
size=max_rel_dist,
|
589 |
+
mode="linear",
|
590 |
+
)
|
591 |
+
rel_pos_resized = rel_pos_resized.reshape(-1, max_rel_dist).permute(1, 0)
|
592 |
+
else:
|
593 |
+
rel_pos_resized = rel_pos
|
594 |
+
|
595 |
+
# Scale the coords with short length if shapes for q and k are different.
|
596 |
+
q_coords = torch.arange(q_size)[:, None] * max(k_size / q_size, 1.0)
|
597 |
+
k_coords = torch.arange(k_size)[None, :] * max(q_size / k_size, 1.0)
|
598 |
+
relative_coords = (q_coords - k_coords) + (k_size - 1) * max(q_size / k_size, 1.0)
|
599 |
+
|
600 |
+
return rel_pos_resized[relative_coords.long()]
|
601 |
+
|
602 |
+
|
603 |
+
def add_decomposed_rel_pos(
|
604 |
+
attn: torch.Tensor,
|
605 |
+
q: torch.Tensor,
|
606 |
+
rel_pos_h: torch.Tensor,
|
607 |
+
rel_pos_w: torch.Tensor,
|
608 |
+
q_size: Tuple[int, int],
|
609 |
+
k_size: Tuple[int, int],
|
610 |
+
) -> torch.Tensor:
|
611 |
+
"""
|
612 |
+
Calculate decomposed Relative Positional Embeddings from :paper:`mvitv2`.
|
613 |
+
https://github.com/facebookresearch/mvit/blob/19786631e330df9f3622e5402b4a419a263a2c80/mvit/models/attention.py # noqa B950
|
614 |
+
Args:
|
615 |
+
attn (Tensor): attention map.
|
616 |
+
q (Tensor): query q in the attention layer with shape (B, q_h * q_w, C).
|
617 |
+
rel_pos_h (Tensor): relative position embeddings (Lh, C) for height axis.
|
618 |
+
rel_pos_w (Tensor): relative position embeddings (Lw, C) for width axis.
|
619 |
+
q_size (Tuple): spatial sequence size of query q with (q_h, q_w).
|
620 |
+
k_size (Tuple): spatial sequence size of key k with (k_h, k_w).
|
621 |
+
|
622 |
+
Returns:
|
623 |
+
attn (Tensor): attention map with added relative positional embeddings.
|
624 |
+
"""
|
625 |
+
q_h, q_w = q_size
|
626 |
+
k_h, k_w = k_size
|
627 |
+
Rh = get_rel_pos(q_h, k_h, rel_pos_h)
|
628 |
+
Rw = get_rel_pos(q_w, k_w, rel_pos_w)
|
629 |
+
|
630 |
+
B, _, dim = q.shape
|
631 |
+
r_q = q.reshape(B, q_h, q_w, dim)
|
632 |
+
rel_h = torch.einsum("bhwc,hkc->bhwk", r_q, Rh)
|
633 |
+
rel_w = torch.einsum("bhwc,wkc->bhwk", r_q, Rw)
|
634 |
+
|
635 |
+
attn = (
|
636 |
+
attn.view(B, q_h, q_w, k_h, k_w) + rel_h[:, :, :, :, None] + rel_w[:, :, :, None, :]
|
637 |
+
).view(B, q_h * q_w, k_h * k_w)
|
638 |
+
|
639 |
+
return attn
|
640 |
+
|
641 |
+
|
642 |
+
|
643 |
+
|
644 |
+
|
645 |
+
|
646 |
+
|
647 |
+
|
648 |
+
|
649 |
+
|
650 |
+
|
651 |
+
class IdentityMap(nn.Module):
|
652 |
+
def __init__(self):
|
653 |
+
super().__init__()
|
654 |
+
|
655 |
+
def forward(self, x, *args, **kwargs):
|
656 |
+
return x
|
657 |
+
|
658 |
+
@property
|
659 |
+
def config(self):
|
660 |
+
return {"mm_projector_type": 'identity'}
|
661 |
+
|
662 |
+
|
663 |
+
class SpatialPoolingProjector(nn.Module):
|
664 |
+
def __init__(self, image_size, patch_size, in_dim, out_dim, layer_type, layer_num, pooling_type='spatial', pooling_size=2):
|
665 |
+
super().__init__()
|
666 |
+
self.in_dim = in_dim
|
667 |
+
self.pooling_size = pooling_size
|
668 |
+
|
669 |
+
self.num_patches_pre = [img // pch for img, pch in zip(image_size, patch_size)]
|
670 |
+
self.num_patches_post = [num // pooling_size for num in self.num_patches_pre]
|
671 |
+
|
672 |
+
if layer_type == 'linear':
|
673 |
+
depth = int(layer_num)
|
674 |
+
modules = [nn.Linear(in_dim, out_dim)]
|
675 |
+
for _ in range(1, depth):
|
676 |
+
modules.append(nn.Linear(out_dim, out_dim))
|
677 |
+
self.projector = nn.Sequential(*modules)
|
678 |
+
elif layer_type == 'mlp':
|
679 |
+
depth = int(layer_num)
|
680 |
+
modules = [nn.Linear(in_dim, out_dim)]
|
681 |
+
for _ in range(1, depth):
|
682 |
+
modules.append(nn.GELU())
|
683 |
+
modules.append(nn.Linear(out_dim, out_dim))
|
684 |
+
self.projector = nn.Sequential(*modules)
|
685 |
+
else:
|
686 |
+
print("Projector error!")
|
687 |
+
|
688 |
+
self.pooling_type = pooling_type
|
689 |
+
|
690 |
+
def forward(self, x):
|
691 |
+
B = x.shape[0] # B*N*D
|
692 |
+
|
693 |
+
if self.pooling_type == 'spatial':
|
694 |
+
to_3d = Rearrange("b (p1 p2 p3) d -> b d p1 p2 p3", b=B, d=self.in_dim, p1=self.num_patches_pre[0], p2=self.num_patches_pre[1], p3=self.num_patches_pre[2])
|
695 |
+
x = to_3d(x)
|
696 |
+
x = F.avg_pool3d(x, kernel_size=self.pooling_size, stride=self.pooling_size)
|
697 |
+
to_seq = Rearrange("b d p1 p2 p3 -> b (p1 p2 p3) d", b=B, d=self.in_dim, p1=self.num_patches_post[0], p2=self.num_patches_post[1], p3=self.num_patches_post[2])
|
698 |
+
x = to_seq(x)
|
699 |
+
elif self.pooling_type == 'sequence':
|
700 |
+
x = x.permute(0, 2, 1) #b d n
|
701 |
+
x = F.avg_pool1d(x, kernel_size=self.pooling_size**3, stride=self.pooling_size**3)
|
702 |
+
x = x.permute(0, 2, 1) #b n d
|
703 |
+
|
704 |
+
x = rearrange(x, "b n d -> (b n) d")
|
705 |
+
x = self.projector(x)
|
706 |
+
x = rearrange(x, "(b n) d -> b n d", b=B)
|
707 |
+
|
708 |
+
return x
|
709 |
+
|
710 |
+
@property
|
711 |
+
def proj_out_num(self):
|
712 |
+
num = 1
|
713 |
+
for n in self.num_patches_post:
|
714 |
+
num *= n
|
715 |
+
return num
|
716 |
+
|
717 |
+
|
718 |
+
class Minigpt(nn.Module):
|
719 |
+
def __init__(self, config=None):
|
720 |
+
super(Minigpt, self).__init__()
|
721 |
+
# c*4 is the input size, and c is the output size for the linear layer
|
722 |
+
inc, ouc = config.mm_hidden_size, config.hidden_size
|
723 |
+
self.linear = nn.Linear(inc * 4, ouc)
|
724 |
+
|
725 |
+
def forward(self, x):
|
726 |
+
# x is the input tensor with shape [b, num_tokens, c]
|
727 |
+
b, num_tokens, c = x.shape
|
728 |
+
|
729 |
+
# Check if num_tokens is divisible by 4
|
730 |
+
if num_tokens % 4 != 0:
|
731 |
+
raise ValueError("num_tokens must be divisible by 4")
|
732 |
+
|
733 |
+
# Reshape x to [b, num_tokens/4, c*4]
|
734 |
+
x = x.view(b, num_tokens // 4, c * 4)
|
735 |
+
|
736 |
+
# Apply the linear transformation
|
737 |
+
x = self.linear(x)
|
738 |
+
return x
|
739 |
+
|
740 |
+
|
741 |
+
class Vanilla(nn.Module):
|
742 |
+
def __init__(self, config=None):
|
743 |
+
super(Vanilla, self).__init__()
|
744 |
+
# c*4 is the input size, and c is the output size for the linear layer
|
745 |
+
inc, ouc = config.mm_hidden_size, config.hidden_size
|
746 |
+
self.linear = nn.Linear(inc * 4, ouc)
|
747 |
+
|
748 |
+
def forward(self, x):
|
749 |
+
b, num_tokens, c = x.shape
|
750 |
+
|
751 |
+
# Check if num_tokens is divisible by 4
|
752 |
+
if num_tokens % 4 != 0:
|
753 |
+
raise ValueError("num_tokens must be divisible by 4")
|
754 |
+
|
755 |
+
# First, reshape to [b, num_tokens//4, 4, c]
|
756 |
+
x = x.view(b, num_tokens // 4, 4, c)
|
757 |
+
|
758 |
+
# Then, permute to interleave the tokens
|
759 |
+
x = x.permute(0, 1, 3, 2).contiguous()
|
760 |
+
|
761 |
+
# Finally, reshape to [b, num_tokens//4, c*4] to interleave features of 4 tokens
|
762 |
+
x = x.view(b, num_tokens // 4, c * 4)
|
763 |
+
|
764 |
+
# Apply the linear transformation
|
765 |
+
x = self.linear(x)
|
766 |
+
return x
|
767 |
+
|
768 |
+
|
769 |
+
def build_mm_projector(config, delay_load=False, **kwargs):
|
770 |
+
projector_type = getattr(config, 'mm_projector_type')
|
771 |
+
|
772 |
+
if projector_type == 'linear':
|
773 |
+
return nn.Linear(config.mm_hidden_size, config.hidden_size)
|
774 |
+
|
775 |
+
|
776 |
+
elif projector_type == 'spp':
|
777 |
+
return SpatialPoolingProjector(image_size=config.image_size,
|
778 |
+
patch_size=config.patch_size,
|
779 |
+
in_dim=config.mm_hidden_size,
|
780 |
+
out_dim=config.hidden_size,
|
781 |
+
layer_type=config.proj_layer_type,
|
782 |
+
layer_num=config.proj_layer_num,
|
783 |
+
pooling_type=config.proj_pooling_type,
|
784 |
+
pooling_size=config.proj_pooling_size)
|
785 |
+
|
786 |
+
|
787 |
+
elif projector_type == 'identity':
|
788 |
+
return IdentityMap()
|
789 |
+
else:
|
790 |
+
raise ValueError(f'Unknown projector type: {projector_type}')
|
791 |
+
|
792 |
+
|
793 |
+
class myViT(nn.Module):
|
794 |
+
"""
|
795 |
+
Vision Transformer (ViT), based on: "Dosovitskiy et al.,
|
796 |
+
An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale <https://arxiv.org/abs/2010.11929>"
|
797 |
+
|
798 |
+
ViT supports Torchscript but only works for Pytorch after 1.8.
|
799 |
+
"""
|
800 |
+
|
801 |
+
def __init__(
|
802 |
+
self,
|
803 |
+
in_channels: int,
|
804 |
+
img_size: Sequence[int] | int,
|
805 |
+
patch_size: Sequence[int] | int,
|
806 |
+
hidden_size: int = 768,
|
807 |
+
mlp_dim: int = 3072,
|
808 |
+
num_layers: int = 12,
|
809 |
+
num_heads: int = 12,
|
810 |
+
pos_embed: str = "conv",
|
811 |
+
classification: bool = False,
|
812 |
+
num_classes: int = 2,
|
813 |
+
dropout_rate: float = 0.0,
|
814 |
+
spatial_dims: int = 3,
|
815 |
+
post_activation="Tanh",
|
816 |
+
qkv_bias: bool = False,
|
817 |
+
save_attn: bool = False,
|
818 |
+
) -> None:
|
819 |
+
"""
|
820 |
+
Args:
|
821 |
+
in_channels (int): dimension of input channels.
|
822 |
+
img_size (Union[Sequence[int], int]): dimension of input image.
|
823 |
+
patch_size (Union[Sequence[int], int]): dimension of patch size.
|
824 |
+
hidden_size (int, optional): dimension of hidden layer. Defaults to 768.
|
825 |
+
mlp_dim (int, optional): dimension of feedforward layer. Defaults to 3072.
|
826 |
+
num_layers (int, optional): number of transformer blocks. Defaults to 12.
|
827 |
+
num_heads (int, optional): number of attention heads. Defaults to 12.
|
828 |
+
pos_embed (str, optional): position embedding layer type. Defaults to "conv".
|
829 |
+
classification (bool, optional): bool argument to determine if classification is used. Defaults to False.
|
830 |
+
num_classes (int, optional): number of classes if classification is used. Defaults to 2.
|
831 |
+
dropout_rate (float, optional): faction of the input units to drop. Defaults to 0.0.
|
832 |
+
spatial_dims (int, optional): number of spatial dimensions. Defaults to 3.
|
833 |
+
post_activation (str, optional): add a final acivation function to the classification head
|
834 |
+
when `classification` is True. Default to "Tanh" for `nn.Tanh()`.
|
835 |
+
Set to other values to remove this function.
|
836 |
+
qkv_bias (bool, optional): apply bias to the qkv linear layer in self attention block. Defaults to False.
|
837 |
+
save_attn (bool, optional): to make accessible the attention in self attention block. Defaults to False.
|
838 |
+
|
839 |
+
Examples::
|
840 |
+
|
841 |
+
# for single channel input with image size of (96,96,96), conv position embedding and segmentation backbone
|
842 |
+
>>> net = ViT(in_channels=1, img_size=(96,96,96), pos_embed='conv')
|
843 |
+
|
844 |
+
# for 3-channel with image size of (128,128,128), 24 layers and classification backbone
|
845 |
+
>>> net = ViT(in_channels=3, img_size=(128,128,128), pos_embed='conv', classification=True)
|
846 |
+
|
847 |
+
# for 3-channel with image size of (224,224), 12 layers and classification backbone
|
848 |
+
>>> net = ViT(in_channels=3, img_size=(224,224), pos_embed='conv', classification=True, spatial_dims=2)
|
849 |
+
|
850 |
+
"""
|
851 |
+
|
852 |
+
super().__init__()
|
853 |
+
|
854 |
+
if not (0 <= dropout_rate <= 1):
|
855 |
+
raise ValueError("dropout_rate should be between 0 and 1.")
|
856 |
+
|
857 |
+
if hidden_size % num_heads != 0:
|
858 |
+
raise ValueError("hidden_size should be divisible by num_heads.")
|
859 |
+
self.hidden_size = hidden_size
|
860 |
+
self.classification = classification
|
861 |
+
self.patch_embedding = PatchEmbeddingBlock(
|
862 |
+
in_channels=in_channels,
|
863 |
+
img_size=img_size,
|
864 |
+
patch_size=patch_size,
|
865 |
+
hidden_size=hidden_size,
|
866 |
+
num_heads=num_heads,
|
867 |
+
pos_embed=pos_embed,
|
868 |
+
dropout_rate=dropout_rate,
|
869 |
+
spatial_dims=spatial_dims,
|
870 |
+
)
|
871 |
+
self.blocks = nn.ModuleList(
|
872 |
+
[
|
873 |
+
TransformerBlock(hidden_size, mlp_dim, num_heads, dropout_rate, qkv_bias, save_attn)
|
874 |
+
for i in range(num_layers)
|
875 |
+
]
|
876 |
+
)
|
877 |
+
self.norm = nn.LayerNorm(hidden_size)
|
878 |
+
if self.classification:
|
879 |
+
self.cls_token = nn.Parameter(torch.zeros(1, 1, hidden_size))
|
880 |
+
# if post_activation == "Tanh":
|
881 |
+
# self.classification_head = nn.Sequential(nn.Linear(hidden_size, num_classes), nn.Tanh())
|
882 |
+
# else:
|
883 |
+
# self.classification_head = nn.Linear(hidden_size, num_classes) # type: ignore
|
884 |
+
|
885 |
+
def forward(self, x):
|
886 |
+
x = self.patch_embedding(x)
|
887 |
+
if hasattr(self, "cls_token"):
|
888 |
+
cls_token = self.cls_token.expand(x.shape[0], -1, -1)
|
889 |
+
x = torch.cat((cls_token, x), dim=1)
|
890 |
+
hidden_states_out = []
|
891 |
+
for blk in self.blocks:
|
892 |
+
x = blk(x)
|
893 |
+
hidden_states_out.append(x)
|
894 |
+
x = self.norm(x)
|
895 |
+
# if hasattr(self, "classification_head"):
|
896 |
+
# x = self.classification_head(x[:, 0])
|
897 |
+
return x, hidden_states_out
|
898 |
+
|
899 |
+
|
900 |
+
class ViT3DTower(nn.Module):
|
901 |
+
def __init__(self, config):
|
902 |
+
super().__init__()
|
903 |
+
self.config = config
|
904 |
+
self.select_layer = config.vision_select_layer
|
905 |
+
self.select_feature = config.vision_select_feature
|
906 |
+
|
907 |
+
self.vision_tower = myViT(
|
908 |
+
in_channels=self.config.image_channel,
|
909 |
+
img_size=self.config.image_size,
|
910 |
+
patch_size=self.config.patch_size,
|
911 |
+
pos_embed="perceptron",
|
912 |
+
spatial_dims=len(self.config.patch_size),
|
913 |
+
classification=True,
|
914 |
+
)
|
915 |
+
|
916 |
+
def forward(self, images):
|
917 |
+
last_feature, hidden_states = self.vision_tower(images)
|
918 |
+
if self.select_layer == -1:
|
919 |
+
image_features = last_feature
|
920 |
+
elif self.select_layer < -1:
|
921 |
+
image_features = hidden_states[self.select_feature]
|
922 |
+
else:
|
923 |
+
raise ValueError(f'Unexpected select layer: {self.select_layer}')
|
924 |
+
|
925 |
+
if self.select_feature == 'patch':
|
926 |
+
image_features = image_features[:, 1:]
|
927 |
+
elif self.select_feature == 'cls_patch':
|
928 |
+
image_features = image_features
|
929 |
+
else:
|
930 |
+
raise ValueError(f'Unexpected select feature: {self.select_feature}')
|
931 |
+
|
932 |
+
return image_features
|
933 |
+
|
934 |
+
@property
|
935 |
+
def dtype(self):
|
936 |
+
return self.vision_tower.dtype
|
937 |
+
|
938 |
+
@property
|
939 |
+
def device(self):
|
940 |
+
return self.vision_tower.device
|
941 |
+
|
942 |
+
@property
|
943 |
+
def hidden_size(self):
|
944 |
+
return self.vision_tower.hidden_size
|
945 |
+
|
946 |
+
|
947 |
+
def build_vision_tower(config, **kwargs):
|
948 |
+
vision_tower = getattr(config, 'vision_tower', None)
|
949 |
+
if 'vit3d' in vision_tower.lower():
|
950 |
+
return ViT3DTower(config, **kwargs)
|
951 |
+
else:
|
952 |
+
raise ValueError(f'Unknown vision tower: {vision_tower}')
|
953 |
+
|
954 |
+
|
955 |
+
class LamedMetaModel:
|
956 |
+
def __init__(self, config):
|
957 |
+
super(LamedMetaModel, self).__init__(config)
|
958 |
+
|
959 |
+
self.config = config
|
960 |
+
|
961 |
+
if hasattr(config, "vision_tower"):
|
962 |
+
self.vision_tower = build_vision_tower(config)
|
963 |
+
self.mm_projector = build_mm_projector(config)
|
964 |
+
|
965 |
+
def get_vision_tower(self):
|
966 |
+
vision_tower = getattr(self, 'vision_tower', None)
|
967 |
+
return vision_tower
|
968 |
+
|
969 |
+
def initialize_vision_modules(self, model_args):
|
970 |
+
self.config.image_channel = model_args.image_channel
|
971 |
+
self.config.image_size = model_args.image_size
|
972 |
+
self.config.patch_size = model_args.patch_size
|
973 |
+
|
974 |
+
self.config.vision_tower = model_args.vision_tower
|
975 |
+
self.config.vision_select_layer = model_args.vision_select_layer
|
976 |
+
self.config.vision_select_feature = model_args.vision_select_feature
|
977 |
+
|
978 |
+
self.config.mm_projector_type = model_args.mm_projector_type
|
979 |
+
self.config.proj_layer_type = model_args.proj_layer_type
|
980 |
+
self.config.proj_layer_num = model_args.proj_layer_num
|
981 |
+
self.config.proj_pooling_type = model_args.proj_pooling_type
|
982 |
+
self.config.proj_pooling_size = model_args.proj_pooling_size
|
983 |
+
|
984 |
+
# vision tower
|
985 |
+
if self.get_vision_tower() is None:
|
986 |
+
self.vision_tower = build_vision_tower(self.config)
|
987 |
+
# If you have a more robust vision encoder, try freezing the vision tower by requires_grad_(False)
|
988 |
+
|
989 |
+
|
990 |
+
if model_args.pretrain_vision_model is not None:
|
991 |
+
vision_model_weights = torch.load(model_args.pretrain_vision_model, map_location='cpu')
|
992 |
+
self.vision_tower.vision_tower.load_state_dict(vision_model_weights, strict=True)
|
993 |
+
|
994 |
+
self.config.mm_hidden_size = self.vision_tower.hidden_size
|
995 |
+
|
996 |
+
# mm_projector
|
997 |
+
if getattr(self, 'mm_projector', None) is None:
|
998 |
+
self.mm_projector = build_mm_projector(self.config)
|
999 |
+
|
1000 |
+
if model_args.pretrain_mm_mlp_adapter is not None:
|
1001 |
+
mm_projector_weights = torch.load(model_args.pretrain_mm_mlp_adapter, map_location='cpu')
|
1002 |
+
def get_w(weights, keyword):
|
1003 |
+
return {k.split(keyword + '.')[1]: v for k, v in weights.items() if keyword in k}
|
1004 |
+
self.mm_projector.load_state_dict(get_w(mm_projector_weights, 'mm_projector'), strict=True)
|
1005 |
+
|
1006 |
+
|
1007 |
+
class LamedMetaForCausalLM(ABC):
|
1008 |
+
@abstractmethod
|
1009 |
+
def get_model(self):
|
1010 |
+
pass
|
1011 |
+
|
1012 |
+
def get_vision_tower(self):
|
1013 |
+
return self.get_model().get_vision_tower()
|
1014 |
+
|
1015 |
+
def encode_images(self, images):
|
1016 |
+
image_features = self.get_model().get_vision_tower()(images)
|
1017 |
+
image_features = self.get_model().mm_projector(image_features)
|
1018 |
+
return image_features
|
1019 |
+
|
1020 |
+
def prepare_inputs_for_multimodal(self, input_ids, position_ids, attention_mask, past_key_values, labels, images):
|
1021 |
+
vision_tower = self.get_vision_tower()
|
1022 |
+
if vision_tower is None or images is None or input_ids.shape[1] == 1:
|
1023 |
+
return input_ids, position_ids, attention_mask, past_key_values, None, labels
|
1024 |
+
else:
|
1025 |
+
image_features = self.encode_images(images)
|
1026 |
+
inputs_embeds = self.get_model().embed_tokens(input_ids)
|
1027 |
+
inputs_embeds = torch.cat((inputs_embeds[:, :1, :], image_features, inputs_embeds[:, (image_features.shape[1] + 1):, :]), dim=1)
|
1028 |
+
return None, position_ids, attention_mask, past_key_values, inputs_embeds, labels
|
1029 |
+
|
1030 |
+
def initialize_vision_tokenizer(self, model_args, tokenizer):
|
1031 |
+
num_new_tokens = model_args.num_new_tokens
|
1032 |
+
|
1033 |
+
self.resize_token_embeddings(len(tokenizer))
|
1034 |
+
|
1035 |
+
if num_new_tokens > 0:
|
1036 |
+
input_embeddings = self.get_input_embeddings().weight.data
|
1037 |
+
output_embeddings = self.get_output_embeddings().weight.data
|
1038 |
+
|
1039 |
+
input_embeddings_avg = input_embeddings[:-num_new_tokens].mean(
|
1040 |
+
dim=0, keepdim=True)
|
1041 |
+
output_embeddings_avg = output_embeddings[:-num_new_tokens].mean(
|
1042 |
+
dim=0, keepdim=True)
|
1043 |
+
|
1044 |
+
input_embeddings[-num_new_tokens:] = input_embeddings_avg
|
1045 |
+
output_embeddings[-num_new_tokens:] = output_embeddings_avg
|
1046 |
+
|
1047 |
+
if model_args.tune_mm_mlp_adapter:
|
1048 |
+
for p in self.get_input_embeddings().parameters():
|
1049 |
+
p.requires_grad = True
|
1050 |
+
for p in self.get_output_embeddings().parameters():
|
1051 |
+
p.requires_grad = False
|
1052 |
+
else:
|
1053 |
+
# we add 4 new tokens
|
1054 |
+
# if new tokens need input, please train input_embeddings
|
1055 |
+
for p in self.get_input_embeddings().parameters():
|
1056 |
+
p.requires_grad = True
|
1057 |
+
# if new tokens need predict, please train output_embeddings
|
1058 |
+
for p in self.get_output_embeddings().parameters():
|
1059 |
+
p.requires_grad = True
|
1060 |
+
|
1061 |
+
if model_args.pretrain_mm_mlp_adapter:
|
1062 |
+
mm_projector_weights = torch.load(model_args.pretrain_mm_mlp_adapter, map_location='cpu')
|
1063 |
+
embed_tokens_weight = mm_projector_weights['model.embed_tokens.weight']
|
1064 |
+
|
1065 |
+
if input_embeddings.shape == embed_tokens_weight.shape:
|
1066 |
+
input_embeddings = embed_tokens_weight
|
1067 |
+
elif embed_tokens_weight.shape[0] == num_new_tokens:
|
1068 |
+
input_embeddings[-num_new_tokens:] = embed_tokens_weight
|
1069 |
+
else:
|
1070 |
+
raise ValueError(f"Unexpected embed_tokens_weight shape. Pretrained: {embed_tokens_weight.shape}. Current: {input_embeddings.shape}. Numer of new tokens: {num_new_tokens}.")
|
1071 |
+
|
1072 |
+
|
1073 |
+
class LamedLlamaModel(LamedMetaModel, LlamaModel):
|
1074 |
+
config_class = LamedConfig
|
1075 |
+
def __init__(self, config: LlamaConfig):
|
1076 |
+
super(LamedLlamaModel, self).__init__(config)
|
1077 |
+
|
1078 |
+
|
1079 |
+
class LamedLlamaForCausalLM(LamedMetaForCausalLM, LlamaForCausalLM):
|
1080 |
+
config_class = LamedConfig
|
1081 |
+
|
1082 |
+
def __init__(self, config):
|
1083 |
+
super(LlamaForCausalLM, self).__init__(config)
|
1084 |
+
self.model = LamedLlamaModel(config)
|
1085 |
+
self.pretraining_tp = config.pretraining_tp
|
1086 |
+
self.vocab_size = config.vocab_size
|
1087 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
1088 |
+
|
1089 |
+
# Initialize weights and apply final processing
|
1090 |
+
self.post_init()
|
1091 |
+
|
1092 |
+
def get_model(self):
|
1093 |
+
return self.model
|
1094 |
+
|
1095 |
+
def forward(
|
1096 |
+
self,
|
1097 |
+
images: Optional[torch.FloatTensor] = None,
|
1098 |
+
input_ids: torch.LongTensor = None,
|
1099 |
+
labels: Optional[torch.LongTensor] = None,
|
1100 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1101 |
+
|
1102 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1103 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1104 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1105 |
+
use_cache: Optional[bool] = None,
|
1106 |
+
output_attentions: Optional[bool] = None,
|
1107 |
+
output_hidden_states: Optional[bool] = None,
|
1108 |
+
return_dict: Optional[bool] = None,
|
1109 |
+
cache_position: Optional[torch.LongTensor] = None,
|
1110 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
1111 |
+
|
1112 |
+
input_ids_pre = input_ids
|
1113 |
+
|
1114 |
+
if inputs_embeds is None:
|
1115 |
+
(
|
1116 |
+
input_ids,
|
1117 |
+
position_ids,
|
1118 |
+
attention_mask,
|
1119 |
+
past_key_values,
|
1120 |
+
inputs_embeds,
|
1121 |
+
labels
|
1122 |
+
) = self.prepare_inputs_for_multimodal(
|
1123 |
+
input_ids,
|
1124 |
+
position_ids,
|
1125 |
+
attention_mask,
|
1126 |
+
past_key_values,
|
1127 |
+
labels,
|
1128 |
+
images,
|
1129 |
+
)
|
1130 |
+
|
1131 |
+
return super().forward(
|
1132 |
+
input_ids=input_ids,
|
1133 |
+
attention_mask=attention_mask,
|
1134 |
+
position_ids=position_ids,
|
1135 |
+
past_key_values=past_key_values,
|
1136 |
+
inputs_embeds=inputs_embeds,
|
1137 |
+
labels=labels,
|
1138 |
+
use_cache=use_cache,
|
1139 |
+
output_attentions=output_attentions,
|
1140 |
+
output_hidden_states=output_hidden_states,
|
1141 |
+
return_dict=return_dict
|
1142 |
+
)
|
1143 |
+
|
1144 |
+
@torch.no_grad()
|
1145 |
+
def generate(
|
1146 |
+
self,
|
1147 |
+
images: Optional[torch.Tensor] = None,
|
1148 |
+
inputs: Optional[torch.Tensor] = None,
|
1149 |
+
**kwargs,
|
1150 |
+
) -> Union[GenerateOutput, torch.LongTensor, Any]:
|
1151 |
+
position_ids = kwargs.pop("position_ids", None)
|
1152 |
+
attention_mask = kwargs.pop("attention_mask", None)
|
1153 |
+
if "inputs_embeds" in kwargs:
|
1154 |
+
raise NotImplementedError("`inputs_embeds` is not supported")
|
1155 |
+
|
1156 |
+
if images is not None:
|
1157 |
+
(
|
1158 |
+
inputs,
|
1159 |
+
position_ids,
|
1160 |
+
attention_mask,
|
1161 |
+
_,
|
1162 |
+
inputs_embeds,
|
1163 |
+
_
|
1164 |
+
) = self.prepare_inputs_for_multimodal(
|
1165 |
+
inputs,
|
1166 |
+
position_ids,
|
1167 |
+
attention_mask,
|
1168 |
+
None,
|
1169 |
+
None,
|
1170 |
+
images,
|
1171 |
+
)
|
1172 |
+
else:
|
1173 |
+
inputs_embeds = self.get_model().embed_tokens(inputs)
|
1174 |
+
|
1175 |
+
return super().generate(
|
1176 |
+
position_ids=position_ids,
|
1177 |
+
attention_mask=attention_mask,
|
1178 |
+
inputs_embeds=inputs_embeds,
|
1179 |
+
**kwargs
|
1180 |
+
)
|
1181 |
+
|
1182 |
+
|
1183 |
+
def prepare_inputs_for_generation(self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs):
|
1184 |
+
images = kwargs.pop("images", None)
|
1185 |
+
inputs = super().prepare_inputs_for_generation(input_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, **kwargs)
|
1186 |
+
if images is not None:
|
1187 |
+
inputs['images'] = images
|
1188 |
+
return inputs
|
special_tokens_map.json
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
{
|
4 |
+
"content": "<im_patch>",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false
|
9 |
+
}
|
10 |
+
],
|
11 |
+
"bos_token": {
|
12 |
+
"content": "<|begin_of_text|>",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false
|
17 |
+
},
|
18 |
+
"eos_token": {
|
19 |
+
"content": "<|eot_id|>",
|
20 |
+
"lstrip": false,
|
21 |
+
"normalized": false,
|
22 |
+
"rstrip": false,
|
23 |
+
"single_word": false
|
24 |
+
},
|
25 |
+
"pad_token": "<|eot_id|>"
|
26 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,2075 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"128000": {
|
4 |
+
"content": "<|begin_of_text|>",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"128001": {
|
12 |
+
"content": "<|end_of_text|>",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"128002": {
|
20 |
+
"content": "<|reserved_special_token_0|>",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"128003": {
|
28 |
+
"content": "<|reserved_special_token_1|>",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"128004": {
|
36 |
+
"content": "<|finetune_right_pad_id|>",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
},
|
43 |
+
"128005": {
|
44 |
+
"content": "<|reserved_special_token_2|>",
|
45 |
+
"lstrip": false,
|
46 |
+
"normalized": false,
|
47 |
+
"rstrip": false,
|
48 |
+
"single_word": false,
|
49 |
+
"special": true
|
50 |
+
},
|
51 |
+
"128006": {
|
52 |
+
"content": "<|start_header_id|>",
|
53 |
+
"lstrip": false,
|
54 |
+
"normalized": false,
|
55 |
+
"rstrip": false,
|
56 |
+
"single_word": false,
|
57 |
+
"special": true
|
58 |
+
},
|
59 |
+
"128007": {
|
60 |
+
"content": "<|end_header_id|>",
|
61 |
+
"lstrip": false,
|
62 |
+
"normalized": false,
|
63 |
+
"rstrip": false,
|
64 |
+
"single_word": false,
|
65 |
+
"special": true
|
66 |
+
},
|
67 |
+
"128008": {
|
68 |
+
"content": "<|eom_id|>",
|
69 |
+
"lstrip": false,
|
70 |
+
"normalized": false,
|
71 |
+
"rstrip": false,
|
72 |
+
"single_word": false,
|
73 |
+
"special": true
|
74 |
+
},
|
75 |
+
"128009": {
|
76 |
+
"content": "<|eot_id|>",
|
77 |
+
"lstrip": false,
|
78 |
+
"normalized": false,
|
79 |
+
"rstrip": false,
|
80 |
+
"single_word": false,
|
81 |
+
"special": true
|
82 |
+
},
|
83 |
+
"128010": {
|
84 |
+
"content": "<|python_tag|>",
|
85 |
+
"lstrip": false,
|
86 |
+
"normalized": false,
|
87 |
+
"rstrip": false,
|
88 |
+
"single_word": false,
|
89 |
+
"special": true
|
90 |
+
},
|
91 |
+
"128011": {
|
92 |
+
"content": "<|reserved_special_token_3|>",
|
93 |
+
"lstrip": false,
|
94 |
+
"normalized": false,
|
95 |
+
"rstrip": false,
|
96 |
+
"single_word": false,
|
97 |
+
"special": true
|
98 |
+
},
|
99 |
+
"128012": {
|
100 |
+
"content": "<|reserved_special_token_4|>",
|
101 |
+
"lstrip": false,
|
102 |
+
"normalized": false,
|
103 |
+
"rstrip": false,
|
104 |
+
"single_word": false,
|
105 |
+
"special": true
|
106 |
+
},
|
107 |
+
"128013": {
|
108 |
+
"content": "<|reserved_special_token_5|>",
|
109 |
+
"lstrip": false,
|
110 |
+
"normalized": false,
|
111 |
+
"rstrip": false,
|
112 |
+
"single_word": false,
|
113 |
+
"special": true
|
114 |
+
},
|
115 |
+
"128014": {
|
116 |
+
"content": "<|reserved_special_token_6|>",
|
117 |
+
"lstrip": false,
|
118 |
+
"normalized": false,
|
119 |
+
"rstrip": false,
|
120 |
+
"single_word": false,
|
121 |
+
"special": true
|
122 |
+
},
|
123 |
+
"128015": {
|
124 |
+
"content": "<|reserved_special_token_7|>",
|
125 |
+
"lstrip": false,
|
126 |
+
"normalized": false,
|
127 |
+
"rstrip": false,
|
128 |
+
"single_word": false,
|
129 |
+
"special": true
|
130 |
+
},
|
131 |
+
"128016": {
|
132 |
+
"content": "<|reserved_special_token_8|>",
|
133 |
+
"lstrip": false,
|
134 |
+
"normalized": false,
|
135 |
+
"rstrip": false,
|
136 |
+
"single_word": false,
|
137 |
+
"special": true
|
138 |
+
},
|
139 |
+
"128017": {
|
140 |
+
"content": "<|reserved_special_token_9|>",
|
141 |
+
"lstrip": false,
|
142 |
+
"normalized": false,
|
143 |
+
"rstrip": false,
|
144 |
+
"single_word": false,
|
145 |
+
"special": true
|
146 |
+
},
|
147 |
+
"128018": {
|
148 |
+
"content": "<|reserved_special_token_10|>",
|
149 |
+
"lstrip": false,
|
150 |
+
"normalized": false,
|
151 |
+
"rstrip": false,
|
152 |
+
"single_word": false,
|
153 |
+
"special": true
|
154 |
+
},
|
155 |
+
"128019": {
|
156 |
+
"content": "<|reserved_special_token_11|>",
|
157 |
+
"lstrip": false,
|
158 |
+
"normalized": false,
|
159 |
+
"rstrip": false,
|
160 |
+
"single_word": false,
|
161 |
+
"special": true
|
162 |
+
},
|
163 |
+
"128020": {
|
164 |
+
"content": "<|reserved_special_token_12|>",
|
165 |
+
"lstrip": false,
|
166 |
+
"normalized": false,
|
167 |
+
"rstrip": false,
|
168 |
+
"single_word": false,
|
169 |
+
"special": true
|
170 |
+
},
|
171 |
+
"128021": {
|
172 |
+
"content": "<|reserved_special_token_13|>",
|
173 |
+
"lstrip": false,
|
174 |
+
"normalized": false,
|
175 |
+
"rstrip": false,
|
176 |
+
"single_word": false,
|
177 |
+
"special": true
|
178 |
+
},
|
179 |
+
"128022": {
|
180 |
+
"content": "<|reserved_special_token_14|>",
|
181 |
+
"lstrip": false,
|
182 |
+
"normalized": false,
|
183 |
+
"rstrip": false,
|
184 |
+
"single_word": false,
|
185 |
+
"special": true
|
186 |
+
},
|
187 |
+
"128023": {
|
188 |
+
"content": "<|reserved_special_token_15|>",
|
189 |
+
"lstrip": false,
|
190 |
+
"normalized": false,
|
191 |
+
"rstrip": false,
|
192 |
+
"single_word": false,
|
193 |
+
"special": true
|
194 |
+
},
|
195 |
+
"128024": {
|
196 |
+
"content": "<|reserved_special_token_16|>",
|
197 |
+
"lstrip": false,
|
198 |
+
"normalized": false,
|
199 |
+
"rstrip": false,
|
200 |
+
"single_word": false,
|
201 |
+
"special": true
|
202 |
+
},
|
203 |
+
"128025": {
|
204 |
+
"content": "<|reserved_special_token_17|>",
|
205 |
+
"lstrip": false,
|
206 |
+
"normalized": false,
|
207 |
+
"rstrip": false,
|
208 |
+
"single_word": false,
|
209 |
+
"special": true
|
210 |
+
},
|
211 |
+
"128026": {
|
212 |
+
"content": "<|reserved_special_token_18|>",
|
213 |
+
"lstrip": false,
|
214 |
+
"normalized": false,
|
215 |
+
"rstrip": false,
|
216 |
+
"single_word": false,
|
217 |
+
"special": true
|
218 |
+
},
|
219 |
+
"128027": {
|
220 |
+
"content": "<|reserved_special_token_19|>",
|
221 |
+
"lstrip": false,
|
222 |
+
"normalized": false,
|
223 |
+
"rstrip": false,
|
224 |
+
"single_word": false,
|
225 |
+
"special": true
|
226 |
+
},
|
227 |
+
"128028": {
|
228 |
+
"content": "<|reserved_special_token_20|>",
|
229 |
+
"lstrip": false,
|
230 |
+
"normalized": false,
|
231 |
+
"rstrip": false,
|
232 |
+
"single_word": false,
|
233 |
+
"special": true
|
234 |
+
},
|
235 |
+
"128029": {
|
236 |
+
"content": "<|reserved_special_token_21|>",
|
237 |
+
"lstrip": false,
|
238 |
+
"normalized": false,
|
239 |
+
"rstrip": false,
|
240 |
+
"single_word": false,
|
241 |
+
"special": true
|
242 |
+
},
|
243 |
+
"128030": {
|
244 |
+
"content": "<|reserved_special_token_22|>",
|
245 |
+
"lstrip": false,
|
246 |
+
"normalized": false,
|
247 |
+
"rstrip": false,
|
248 |
+
"single_word": false,
|
249 |
+
"special": true
|
250 |
+
},
|
251 |
+
"128031": {
|
252 |
+
"content": "<|reserved_special_token_23|>",
|
253 |
+
"lstrip": false,
|
254 |
+
"normalized": false,
|
255 |
+
"rstrip": false,
|
256 |
+
"single_word": false,
|
257 |
+
"special": true
|
258 |
+
},
|
259 |
+
"128032": {
|
260 |
+
"content": "<|reserved_special_token_24|>",
|
261 |
+
"lstrip": false,
|
262 |
+
"normalized": false,
|
263 |
+
"rstrip": false,
|
264 |
+
"single_word": false,
|
265 |
+
"special": true
|
266 |
+
},
|
267 |
+
"128033": {
|
268 |
+
"content": "<|reserved_special_token_25|>",
|
269 |
+
"lstrip": false,
|
270 |
+
"normalized": false,
|
271 |
+
"rstrip": false,
|
272 |
+
"single_word": false,
|
273 |
+
"special": true
|
274 |
+
},
|
275 |
+
"128034": {
|
276 |
+
"content": "<|reserved_special_token_26|>",
|
277 |
+
"lstrip": false,
|
278 |
+
"normalized": false,
|
279 |
+
"rstrip": false,
|
280 |
+
"single_word": false,
|
281 |
+
"special": true
|
282 |
+
},
|
283 |
+
"128035": {
|
284 |
+
"content": "<|reserved_special_token_27|>",
|
285 |
+
"lstrip": false,
|
286 |
+
"normalized": false,
|
287 |
+
"rstrip": false,
|
288 |
+
"single_word": false,
|
289 |
+
"special": true
|
290 |
+
},
|
291 |
+
"128036": {
|
292 |
+
"content": "<|reserved_special_token_28|>",
|
293 |
+
"lstrip": false,
|
294 |
+
"normalized": false,
|
295 |
+
"rstrip": false,
|
296 |
+
"single_word": false,
|
297 |
+
"special": true
|
298 |
+
},
|
299 |
+
"128037": {
|
300 |
+
"content": "<|reserved_special_token_29|>",
|
301 |
+
"lstrip": false,
|
302 |
+
"normalized": false,
|
303 |
+
"rstrip": false,
|
304 |
+
"single_word": false,
|
305 |
+
"special": true
|
306 |
+
},
|
307 |
+
"128038": {
|
308 |
+
"content": "<|reserved_special_token_30|>",
|
309 |
+
"lstrip": false,
|
310 |
+
"normalized": false,
|
311 |
+
"rstrip": false,
|
312 |
+
"single_word": false,
|
313 |
+
"special": true
|
314 |
+
},
|
315 |
+
"128039": {
|
316 |
+
"content": "<|reserved_special_token_31|>",
|
317 |
+
"lstrip": false,
|
318 |
+
"normalized": false,
|
319 |
+
"rstrip": false,
|
320 |
+
"single_word": false,
|
321 |
+
"special": true
|
322 |
+
},
|
323 |
+
"128040": {
|
324 |
+
"content": "<|reserved_special_token_32|>",
|
325 |
+
"lstrip": false,
|
326 |
+
"normalized": false,
|
327 |
+
"rstrip": false,
|
328 |
+
"single_word": false,
|
329 |
+
"special": true
|
330 |
+
},
|
331 |
+
"128041": {
|
332 |
+
"content": "<|reserved_special_token_33|>",
|
333 |
+
"lstrip": false,
|
334 |
+
"normalized": false,
|
335 |
+
"rstrip": false,
|
336 |
+
"single_word": false,
|
337 |
+
"special": true
|
338 |
+
},
|
339 |
+
"128042": {
|
340 |
+
"content": "<|reserved_special_token_34|>",
|
341 |
+
"lstrip": false,
|
342 |
+
"normalized": false,
|
343 |
+
"rstrip": false,
|
344 |
+
"single_word": false,
|
345 |
+
"special": true
|
346 |
+
},
|
347 |
+
"128043": {
|
348 |
+
"content": "<|reserved_special_token_35|>",
|
349 |
+
"lstrip": false,
|
350 |
+
"normalized": false,
|
351 |
+
"rstrip": false,
|
352 |
+
"single_word": false,
|
353 |
+
"special": true
|
354 |
+
},
|
355 |
+
"128044": {
|
356 |
+
"content": "<|reserved_special_token_36|>",
|
357 |
+
"lstrip": false,
|
358 |
+
"normalized": false,
|
359 |
+
"rstrip": false,
|
360 |
+
"single_word": false,
|
361 |
+
"special": true
|
362 |
+
},
|
363 |
+
"128045": {
|
364 |
+
"content": "<|reserved_special_token_37|>",
|
365 |
+
"lstrip": false,
|
366 |
+
"normalized": false,
|
367 |
+
"rstrip": false,
|
368 |
+
"single_word": false,
|
369 |
+
"special": true
|
370 |
+
},
|
371 |
+
"128046": {
|
372 |
+
"content": "<|reserved_special_token_38|>",
|
373 |
+
"lstrip": false,
|
374 |
+
"normalized": false,
|
375 |
+
"rstrip": false,
|
376 |
+
"single_word": false,
|
377 |
+
"special": true
|
378 |
+
},
|
379 |
+
"128047": {
|
380 |
+
"content": "<|reserved_special_token_39|>",
|
381 |
+
"lstrip": false,
|
382 |
+
"normalized": false,
|
383 |
+
"rstrip": false,
|
384 |
+
"single_word": false,
|
385 |
+
"special": true
|
386 |
+
},
|
387 |
+
"128048": {
|
388 |
+
"content": "<|reserved_special_token_40|>",
|
389 |
+
"lstrip": false,
|
390 |
+
"normalized": false,
|
391 |
+
"rstrip": false,
|
392 |
+
"single_word": false,
|
393 |
+
"special": true
|
394 |
+
},
|
395 |
+
"128049": {
|
396 |
+
"content": "<|reserved_special_token_41|>",
|
397 |
+
"lstrip": false,
|
398 |
+
"normalized": false,
|
399 |
+
"rstrip": false,
|
400 |
+
"single_word": false,
|
401 |
+
"special": true
|
402 |
+
},
|
403 |
+
"128050": {
|
404 |
+
"content": "<|reserved_special_token_42|>",
|
405 |
+
"lstrip": false,
|
406 |
+
"normalized": false,
|
407 |
+
"rstrip": false,
|
408 |
+
"single_word": false,
|
409 |
+
"special": true
|
410 |
+
},
|
411 |
+
"128051": {
|
412 |
+
"content": "<|reserved_special_token_43|>",
|
413 |
+
"lstrip": false,
|
414 |
+
"normalized": false,
|
415 |
+
"rstrip": false,
|
416 |
+
"single_word": false,
|
417 |
+
"special": true
|
418 |
+
},
|
419 |
+
"128052": {
|
420 |
+
"content": "<|reserved_special_token_44|>",
|
421 |
+
"lstrip": false,
|
422 |
+
"normalized": false,
|
423 |
+
"rstrip": false,
|
424 |
+
"single_word": false,
|
425 |
+
"special": true
|
426 |
+
},
|
427 |
+
"128053": {
|
428 |
+
"content": "<|reserved_special_token_45|>",
|
429 |
+
"lstrip": false,
|
430 |
+
"normalized": false,
|
431 |
+
"rstrip": false,
|
432 |
+
"single_word": false,
|
433 |
+
"special": true
|
434 |
+
},
|
435 |
+
"128054": {
|
436 |
+
"content": "<|reserved_special_token_46|>",
|
437 |
+
"lstrip": false,
|
438 |
+
"normalized": false,
|
439 |
+
"rstrip": false,
|
440 |
+
"single_word": false,
|
441 |
+
"special": true
|
442 |
+
},
|
443 |
+
"128055": {
|
444 |
+
"content": "<|reserved_special_token_47|>",
|
445 |
+
"lstrip": false,
|
446 |
+
"normalized": false,
|
447 |
+
"rstrip": false,
|
448 |
+
"single_word": false,
|
449 |
+
"special": true
|
450 |
+
},
|
451 |
+
"128056": {
|
452 |
+
"content": "<|reserved_special_token_48|>",
|
453 |
+
"lstrip": false,
|
454 |
+
"normalized": false,
|
455 |
+
"rstrip": false,
|
456 |
+
"single_word": false,
|
457 |
+
"special": true
|
458 |
+
},
|
459 |
+
"128057": {
|
460 |
+
"content": "<|reserved_special_token_49|>",
|
461 |
+
"lstrip": false,
|
462 |
+
"normalized": false,
|
463 |
+
"rstrip": false,
|
464 |
+
"single_word": false,
|
465 |
+
"special": true
|
466 |
+
},
|
467 |
+
"128058": {
|
468 |
+
"content": "<|reserved_special_token_50|>",
|
469 |
+
"lstrip": false,
|
470 |
+
"normalized": false,
|
471 |
+
"rstrip": false,
|
472 |
+
"single_word": false,
|
473 |
+
"special": true
|
474 |
+
},
|
475 |
+
"128059": {
|
476 |
+
"content": "<|reserved_special_token_51|>",
|
477 |
+
"lstrip": false,
|
478 |
+
"normalized": false,
|
479 |
+
"rstrip": false,
|
480 |
+
"single_word": false,
|
481 |
+
"special": true
|
482 |
+
},
|
483 |
+
"128060": {
|
484 |
+
"content": "<|reserved_special_token_52|>",
|
485 |
+
"lstrip": false,
|
486 |
+
"normalized": false,
|
487 |
+
"rstrip": false,
|
488 |
+
"single_word": false,
|
489 |
+
"special": true
|
490 |
+
},
|
491 |
+
"128061": {
|
492 |
+
"content": "<|reserved_special_token_53|>",
|
493 |
+
"lstrip": false,
|
494 |
+
"normalized": false,
|
495 |
+
"rstrip": false,
|
496 |
+
"single_word": false,
|
497 |
+
"special": true
|
498 |
+
},
|
499 |
+
"128062": {
|
500 |
+
"content": "<|reserved_special_token_54|>",
|
501 |
+
"lstrip": false,
|
502 |
+
"normalized": false,
|
503 |
+
"rstrip": false,
|
504 |
+
"single_word": false,
|
505 |
+
"special": true
|
506 |
+
},
|
507 |
+
"128063": {
|
508 |
+
"content": "<|reserved_special_token_55|>",
|
509 |
+
"lstrip": false,
|
510 |
+
"normalized": false,
|
511 |
+
"rstrip": false,
|
512 |
+
"single_word": false,
|
513 |
+
"special": true
|
514 |
+
},
|
515 |
+
"128064": {
|
516 |
+
"content": "<|reserved_special_token_56|>",
|
517 |
+
"lstrip": false,
|
518 |
+
"normalized": false,
|
519 |
+
"rstrip": false,
|
520 |
+
"single_word": false,
|
521 |
+
"special": true
|
522 |
+
},
|
523 |
+
"128065": {
|
524 |
+
"content": "<|reserved_special_token_57|>",
|
525 |
+
"lstrip": false,
|
526 |
+
"normalized": false,
|
527 |
+
"rstrip": false,
|
528 |
+
"single_word": false,
|
529 |
+
"special": true
|
530 |
+
},
|
531 |
+
"128066": {
|
532 |
+
"content": "<|reserved_special_token_58|>",
|
533 |
+
"lstrip": false,
|
534 |
+
"normalized": false,
|
535 |
+
"rstrip": false,
|
536 |
+
"single_word": false,
|
537 |
+
"special": true
|
538 |
+
},
|
539 |
+
"128067": {
|
540 |
+
"content": "<|reserved_special_token_59|>",
|
541 |
+
"lstrip": false,
|
542 |
+
"normalized": false,
|
543 |
+
"rstrip": false,
|
544 |
+
"single_word": false,
|
545 |
+
"special": true
|
546 |
+
},
|
547 |
+
"128068": {
|
548 |
+
"content": "<|reserved_special_token_60|>",
|
549 |
+
"lstrip": false,
|
550 |
+
"normalized": false,
|
551 |
+
"rstrip": false,
|
552 |
+
"single_word": false,
|
553 |
+
"special": true
|
554 |
+
},
|
555 |
+
"128069": {
|
556 |
+
"content": "<|reserved_special_token_61|>",
|
557 |
+
"lstrip": false,
|
558 |
+
"normalized": false,
|
559 |
+
"rstrip": false,
|
560 |
+
"single_word": false,
|
561 |
+
"special": true
|
562 |
+
},
|
563 |
+
"128070": {
|
564 |
+
"content": "<|reserved_special_token_62|>",
|
565 |
+
"lstrip": false,
|
566 |
+
"normalized": false,
|
567 |
+
"rstrip": false,
|
568 |
+
"single_word": false,
|
569 |
+
"special": true
|
570 |
+
},
|
571 |
+
"128071": {
|
572 |
+
"content": "<|reserved_special_token_63|>",
|
573 |
+
"lstrip": false,
|
574 |
+
"normalized": false,
|
575 |
+
"rstrip": false,
|
576 |
+
"single_word": false,
|
577 |
+
"special": true
|
578 |
+
},
|
579 |
+
"128072": {
|
580 |
+
"content": "<|reserved_special_token_64|>",
|
581 |
+
"lstrip": false,
|
582 |
+
"normalized": false,
|
583 |
+
"rstrip": false,
|
584 |
+
"single_word": false,
|
585 |
+
"special": true
|
586 |
+
},
|
587 |
+
"128073": {
|
588 |
+
"content": "<|reserved_special_token_65|>",
|
589 |
+
"lstrip": false,
|
590 |
+
"normalized": false,
|
591 |
+
"rstrip": false,
|
592 |
+
"single_word": false,
|
593 |
+
"special": true
|
594 |
+
},
|
595 |
+
"128074": {
|
596 |
+
"content": "<|reserved_special_token_66|>",
|
597 |
+
"lstrip": false,
|
598 |
+
"normalized": false,
|
599 |
+
"rstrip": false,
|
600 |
+
"single_word": false,
|
601 |
+
"special": true
|
602 |
+
},
|
603 |
+
"128075": {
|
604 |
+
"content": "<|reserved_special_token_67|>",
|
605 |
+
"lstrip": false,
|
606 |
+
"normalized": false,
|
607 |
+
"rstrip": false,
|
608 |
+
"single_word": false,
|
609 |
+
"special": true
|
610 |
+
},
|
611 |
+
"128076": {
|
612 |
+
"content": "<|reserved_special_token_68|>",
|
613 |
+
"lstrip": false,
|
614 |
+
"normalized": false,
|
615 |
+
"rstrip": false,
|
616 |
+
"single_word": false,
|
617 |
+
"special": true
|
618 |
+
},
|
619 |
+
"128077": {
|
620 |
+
"content": "<|reserved_special_token_69|>",
|
621 |
+
"lstrip": false,
|
622 |
+
"normalized": false,
|
623 |
+
"rstrip": false,
|
624 |
+
"single_word": false,
|
625 |
+
"special": true
|
626 |
+
},
|
627 |
+
"128078": {
|
628 |
+
"content": "<|reserved_special_token_70|>",
|
629 |
+
"lstrip": false,
|
630 |
+
"normalized": false,
|
631 |
+
"rstrip": false,
|
632 |
+
"single_word": false,
|
633 |
+
"special": true
|
634 |
+
},
|
635 |
+
"128079": {
|
636 |
+
"content": "<|reserved_special_token_71|>",
|
637 |
+
"lstrip": false,
|
638 |
+
"normalized": false,
|
639 |
+
"rstrip": false,
|
640 |
+
"single_word": false,
|
641 |
+
"special": true
|
642 |
+
},
|
643 |
+
"128080": {
|
644 |
+
"content": "<|reserved_special_token_72|>",
|
645 |
+
"lstrip": false,
|
646 |
+
"normalized": false,
|
647 |
+
"rstrip": false,
|
648 |
+
"single_word": false,
|
649 |
+
"special": true
|
650 |
+
},
|
651 |
+
"128081": {
|
652 |
+
"content": "<|reserved_special_token_73|>",
|
653 |
+
"lstrip": false,
|
654 |
+
"normalized": false,
|
655 |
+
"rstrip": false,
|
656 |
+
"single_word": false,
|
657 |
+
"special": true
|
658 |
+
},
|
659 |
+
"128082": {
|
660 |
+
"content": "<|reserved_special_token_74|>",
|
661 |
+
"lstrip": false,
|
662 |
+
"normalized": false,
|
663 |
+
"rstrip": false,
|
664 |
+
"single_word": false,
|
665 |
+
"special": true
|
666 |
+
},
|
667 |
+
"128083": {
|
668 |
+
"content": "<|reserved_special_token_75|>",
|
669 |
+
"lstrip": false,
|
670 |
+
"normalized": false,
|
671 |
+
"rstrip": false,
|
672 |
+
"single_word": false,
|
673 |
+
"special": true
|
674 |
+
},
|
675 |
+
"128084": {
|
676 |
+
"content": "<|reserved_special_token_76|>",
|
677 |
+
"lstrip": false,
|
678 |
+
"normalized": false,
|
679 |
+
"rstrip": false,
|
680 |
+
"single_word": false,
|
681 |
+
"special": true
|
682 |
+
},
|
683 |
+
"128085": {
|
684 |
+
"content": "<|reserved_special_token_77|>",
|
685 |
+
"lstrip": false,
|
686 |
+
"normalized": false,
|
687 |
+
"rstrip": false,
|
688 |
+
"single_word": false,
|
689 |
+
"special": true
|
690 |
+
},
|
691 |
+
"128086": {
|
692 |
+
"content": "<|reserved_special_token_78|>",
|
693 |
+
"lstrip": false,
|
694 |
+
"normalized": false,
|
695 |
+
"rstrip": false,
|
696 |
+
"single_word": false,
|
697 |
+
"special": true
|
698 |
+
},
|
699 |
+
"128087": {
|
700 |
+
"content": "<|reserved_special_token_79|>",
|
701 |
+
"lstrip": false,
|
702 |
+
"normalized": false,
|
703 |
+
"rstrip": false,
|
704 |
+
"single_word": false,
|
705 |
+
"special": true
|
706 |
+
},
|
707 |
+
"128088": {
|
708 |
+
"content": "<|reserved_special_token_80|>",
|
709 |
+
"lstrip": false,
|
710 |
+
"normalized": false,
|
711 |
+
"rstrip": false,
|
712 |
+
"single_word": false,
|
713 |
+
"special": true
|
714 |
+
},
|
715 |
+
"128089": {
|
716 |
+
"content": "<|reserved_special_token_81|>",
|
717 |
+
"lstrip": false,
|
718 |
+
"normalized": false,
|
719 |
+
"rstrip": false,
|
720 |
+
"single_word": false,
|
721 |
+
"special": true
|
722 |
+
},
|
723 |
+
"128090": {
|
724 |
+
"content": "<|reserved_special_token_82|>",
|
725 |
+
"lstrip": false,
|
726 |
+
"normalized": false,
|
727 |
+
"rstrip": false,
|
728 |
+
"single_word": false,
|
729 |
+
"special": true
|
730 |
+
},
|
731 |
+
"128091": {
|
732 |
+
"content": "<|reserved_special_token_83|>",
|
733 |
+
"lstrip": false,
|
734 |
+
"normalized": false,
|
735 |
+
"rstrip": false,
|
736 |
+
"single_word": false,
|
737 |
+
"special": true
|
738 |
+
},
|
739 |
+
"128092": {
|
740 |
+
"content": "<|reserved_special_token_84|>",
|
741 |
+
"lstrip": false,
|
742 |
+
"normalized": false,
|
743 |
+
"rstrip": false,
|
744 |
+
"single_word": false,
|
745 |
+
"special": true
|
746 |
+
},
|
747 |
+
"128093": {
|
748 |
+
"content": "<|reserved_special_token_85|>",
|
749 |
+
"lstrip": false,
|
750 |
+
"normalized": false,
|
751 |
+
"rstrip": false,
|
752 |
+
"single_word": false,
|
753 |
+
"special": true
|
754 |
+
},
|
755 |
+
"128094": {
|
756 |
+
"content": "<|reserved_special_token_86|>",
|
757 |
+
"lstrip": false,
|
758 |
+
"normalized": false,
|
759 |
+
"rstrip": false,
|
760 |
+
"single_word": false,
|
761 |
+
"special": true
|
762 |
+
},
|
763 |
+
"128095": {
|
764 |
+
"content": "<|reserved_special_token_87|>",
|
765 |
+
"lstrip": false,
|
766 |
+
"normalized": false,
|
767 |
+
"rstrip": false,
|
768 |
+
"single_word": false,
|
769 |
+
"special": true
|
770 |
+
},
|
771 |
+
"128096": {
|
772 |
+
"content": "<|reserved_special_token_88|>",
|
773 |
+
"lstrip": false,
|
774 |
+
"normalized": false,
|
775 |
+
"rstrip": false,
|
776 |
+
"single_word": false,
|
777 |
+
"special": true
|
778 |
+
},
|
779 |
+
"128097": {
|
780 |
+
"content": "<|reserved_special_token_89|>",
|
781 |
+
"lstrip": false,
|
782 |
+
"normalized": false,
|
783 |
+
"rstrip": false,
|
784 |
+
"single_word": false,
|
785 |
+
"special": true
|
786 |
+
},
|
787 |
+
"128098": {
|
788 |
+
"content": "<|reserved_special_token_90|>",
|
789 |
+
"lstrip": false,
|
790 |
+
"normalized": false,
|
791 |
+
"rstrip": false,
|
792 |
+
"single_word": false,
|
793 |
+
"special": true
|
794 |
+
},
|
795 |
+
"128099": {
|
796 |
+
"content": "<|reserved_special_token_91|>",
|
797 |
+
"lstrip": false,
|
798 |
+
"normalized": false,
|
799 |
+
"rstrip": false,
|
800 |
+
"single_word": false,
|
801 |
+
"special": true
|
802 |
+
},
|
803 |
+
"128100": {
|
804 |
+
"content": "<|reserved_special_token_92|>",
|
805 |
+
"lstrip": false,
|
806 |
+
"normalized": false,
|
807 |
+
"rstrip": false,
|
808 |
+
"single_word": false,
|
809 |
+
"special": true
|
810 |
+
},
|
811 |
+
"128101": {
|
812 |
+
"content": "<|reserved_special_token_93|>",
|
813 |
+
"lstrip": false,
|
814 |
+
"normalized": false,
|
815 |
+
"rstrip": false,
|
816 |
+
"single_word": false,
|
817 |
+
"special": true
|
818 |
+
},
|
819 |
+
"128102": {
|
820 |
+
"content": "<|reserved_special_token_94|>",
|
821 |
+
"lstrip": false,
|
822 |
+
"normalized": false,
|
823 |
+
"rstrip": false,
|
824 |
+
"single_word": false,
|
825 |
+
"special": true
|
826 |
+
},
|
827 |
+
"128103": {
|
828 |
+
"content": "<|reserved_special_token_95|>",
|
829 |
+
"lstrip": false,
|
830 |
+
"normalized": false,
|
831 |
+
"rstrip": false,
|
832 |
+
"single_word": false,
|
833 |
+
"special": true
|
834 |
+
},
|
835 |
+
"128104": {
|
836 |
+
"content": "<|reserved_special_token_96|>",
|
837 |
+
"lstrip": false,
|
838 |
+
"normalized": false,
|
839 |
+
"rstrip": false,
|
840 |
+
"single_word": false,
|
841 |
+
"special": true
|
842 |
+
},
|
843 |
+
"128105": {
|
844 |
+
"content": "<|reserved_special_token_97|>",
|
845 |
+
"lstrip": false,
|
846 |
+
"normalized": false,
|
847 |
+
"rstrip": false,
|
848 |
+
"single_word": false,
|
849 |
+
"special": true
|
850 |
+
},
|
851 |
+
"128106": {
|
852 |
+
"content": "<|reserved_special_token_98|>",
|
853 |
+
"lstrip": false,
|
854 |
+
"normalized": false,
|
855 |
+
"rstrip": false,
|
856 |
+
"single_word": false,
|
857 |
+
"special": true
|
858 |
+
},
|
859 |
+
"128107": {
|
860 |
+
"content": "<|reserved_special_token_99|>",
|
861 |
+
"lstrip": false,
|
862 |
+
"normalized": false,
|
863 |
+
"rstrip": false,
|
864 |
+
"single_word": false,
|
865 |
+
"special": true
|
866 |
+
},
|
867 |
+
"128108": {
|
868 |
+
"content": "<|reserved_special_token_100|>",
|
869 |
+
"lstrip": false,
|
870 |
+
"normalized": false,
|
871 |
+
"rstrip": false,
|
872 |
+
"single_word": false,
|
873 |
+
"special": true
|
874 |
+
},
|
875 |
+
"128109": {
|
876 |
+
"content": "<|reserved_special_token_101|>",
|
877 |
+
"lstrip": false,
|
878 |
+
"normalized": false,
|
879 |
+
"rstrip": false,
|
880 |
+
"single_word": false,
|
881 |
+
"special": true
|
882 |
+
},
|
883 |
+
"128110": {
|
884 |
+
"content": "<|reserved_special_token_102|>",
|
885 |
+
"lstrip": false,
|
886 |
+
"normalized": false,
|
887 |
+
"rstrip": false,
|
888 |
+
"single_word": false,
|
889 |
+
"special": true
|
890 |
+
},
|
891 |
+
"128111": {
|
892 |
+
"content": "<|reserved_special_token_103|>",
|
893 |
+
"lstrip": false,
|
894 |
+
"normalized": false,
|
895 |
+
"rstrip": false,
|
896 |
+
"single_word": false,
|
897 |
+
"special": true
|
898 |
+
},
|
899 |
+
"128112": {
|
900 |
+
"content": "<|reserved_special_token_104|>",
|
901 |
+
"lstrip": false,
|
902 |
+
"normalized": false,
|
903 |
+
"rstrip": false,
|
904 |
+
"single_word": false,
|
905 |
+
"special": true
|
906 |
+
},
|
907 |
+
"128113": {
|
908 |
+
"content": "<|reserved_special_token_105|>",
|
909 |
+
"lstrip": false,
|
910 |
+
"normalized": false,
|
911 |
+
"rstrip": false,
|
912 |
+
"single_word": false,
|
913 |
+
"special": true
|
914 |
+
},
|
915 |
+
"128114": {
|
916 |
+
"content": "<|reserved_special_token_106|>",
|
917 |
+
"lstrip": false,
|
918 |
+
"normalized": false,
|
919 |
+
"rstrip": false,
|
920 |
+
"single_word": false,
|
921 |
+
"special": true
|
922 |
+
},
|
923 |
+
"128115": {
|
924 |
+
"content": "<|reserved_special_token_107|>",
|
925 |
+
"lstrip": false,
|
926 |
+
"normalized": false,
|
927 |
+
"rstrip": false,
|
928 |
+
"single_word": false,
|
929 |
+
"special": true
|
930 |
+
},
|
931 |
+
"128116": {
|
932 |
+
"content": "<|reserved_special_token_108|>",
|
933 |
+
"lstrip": false,
|
934 |
+
"normalized": false,
|
935 |
+
"rstrip": false,
|
936 |
+
"single_word": false,
|
937 |
+
"special": true
|
938 |
+
},
|
939 |
+
"128117": {
|
940 |
+
"content": "<|reserved_special_token_109|>",
|
941 |
+
"lstrip": false,
|
942 |
+
"normalized": false,
|
943 |
+
"rstrip": false,
|
944 |
+
"single_word": false,
|
945 |
+
"special": true
|
946 |
+
},
|
947 |
+
"128118": {
|
948 |
+
"content": "<|reserved_special_token_110|>",
|
949 |
+
"lstrip": false,
|
950 |
+
"normalized": false,
|
951 |
+
"rstrip": false,
|
952 |
+
"single_word": false,
|
953 |
+
"special": true
|
954 |
+
},
|
955 |
+
"128119": {
|
956 |
+
"content": "<|reserved_special_token_111|>",
|
957 |
+
"lstrip": false,
|
958 |
+
"normalized": false,
|
959 |
+
"rstrip": false,
|
960 |
+
"single_word": false,
|
961 |
+
"special": true
|
962 |
+
},
|
963 |
+
"128120": {
|
964 |
+
"content": "<|reserved_special_token_112|>",
|
965 |
+
"lstrip": false,
|
966 |
+
"normalized": false,
|
967 |
+
"rstrip": false,
|
968 |
+
"single_word": false,
|
969 |
+
"special": true
|
970 |
+
},
|
971 |
+
"128121": {
|
972 |
+
"content": "<|reserved_special_token_113|>",
|
973 |
+
"lstrip": false,
|
974 |
+
"normalized": false,
|
975 |
+
"rstrip": false,
|
976 |
+
"single_word": false,
|
977 |
+
"special": true
|
978 |
+
},
|
979 |
+
"128122": {
|
980 |
+
"content": "<|reserved_special_token_114|>",
|
981 |
+
"lstrip": false,
|
982 |
+
"normalized": false,
|
983 |
+
"rstrip": false,
|
984 |
+
"single_word": false,
|
985 |
+
"special": true
|
986 |
+
},
|
987 |
+
"128123": {
|
988 |
+
"content": "<|reserved_special_token_115|>",
|
989 |
+
"lstrip": false,
|
990 |
+
"normalized": false,
|
991 |
+
"rstrip": false,
|
992 |
+
"single_word": false,
|
993 |
+
"special": true
|
994 |
+
},
|
995 |
+
"128124": {
|
996 |
+
"content": "<|reserved_special_token_116|>",
|
997 |
+
"lstrip": false,
|
998 |
+
"normalized": false,
|
999 |
+
"rstrip": false,
|
1000 |
+
"single_word": false,
|
1001 |
+
"special": true
|
1002 |
+
},
|
1003 |
+
"128125": {
|
1004 |
+
"content": "<|reserved_special_token_117|>",
|
1005 |
+
"lstrip": false,
|
1006 |
+
"normalized": false,
|
1007 |
+
"rstrip": false,
|
1008 |
+
"single_word": false,
|
1009 |
+
"special": true
|
1010 |
+
},
|
1011 |
+
"128126": {
|
1012 |
+
"content": "<|reserved_special_token_118|>",
|
1013 |
+
"lstrip": false,
|
1014 |
+
"normalized": false,
|
1015 |
+
"rstrip": false,
|
1016 |
+
"single_word": false,
|
1017 |
+
"special": true
|
1018 |
+
},
|
1019 |
+
"128127": {
|
1020 |
+
"content": "<|reserved_special_token_119|>",
|
1021 |
+
"lstrip": false,
|
1022 |
+
"normalized": false,
|
1023 |
+
"rstrip": false,
|
1024 |
+
"single_word": false,
|
1025 |
+
"special": true
|
1026 |
+
},
|
1027 |
+
"128128": {
|
1028 |
+
"content": "<|reserved_special_token_120|>",
|
1029 |
+
"lstrip": false,
|
1030 |
+
"normalized": false,
|
1031 |
+
"rstrip": false,
|
1032 |
+
"single_word": false,
|
1033 |
+
"special": true
|
1034 |
+
},
|
1035 |
+
"128129": {
|
1036 |
+
"content": "<|reserved_special_token_121|>",
|
1037 |
+
"lstrip": false,
|
1038 |
+
"normalized": false,
|
1039 |
+
"rstrip": false,
|
1040 |
+
"single_word": false,
|
1041 |
+
"special": true
|
1042 |
+
},
|
1043 |
+
"128130": {
|
1044 |
+
"content": "<|reserved_special_token_122|>",
|
1045 |
+
"lstrip": false,
|
1046 |
+
"normalized": false,
|
1047 |
+
"rstrip": false,
|
1048 |
+
"single_word": false,
|
1049 |
+
"special": true
|
1050 |
+
},
|
1051 |
+
"128131": {
|
1052 |
+
"content": "<|reserved_special_token_123|>",
|
1053 |
+
"lstrip": false,
|
1054 |
+
"normalized": false,
|
1055 |
+
"rstrip": false,
|
1056 |
+
"single_word": false,
|
1057 |
+
"special": true
|
1058 |
+
},
|
1059 |
+
"128132": {
|
1060 |
+
"content": "<|reserved_special_token_124|>",
|
1061 |
+
"lstrip": false,
|
1062 |
+
"normalized": false,
|
1063 |
+
"rstrip": false,
|
1064 |
+
"single_word": false,
|
1065 |
+
"special": true
|
1066 |
+
},
|
1067 |
+
"128133": {
|
1068 |
+
"content": "<|reserved_special_token_125|>",
|
1069 |
+
"lstrip": false,
|
1070 |
+
"normalized": false,
|
1071 |
+
"rstrip": false,
|
1072 |
+
"single_word": false,
|
1073 |
+
"special": true
|
1074 |
+
},
|
1075 |
+
"128134": {
|
1076 |
+
"content": "<|reserved_special_token_126|>",
|
1077 |
+
"lstrip": false,
|
1078 |
+
"normalized": false,
|
1079 |
+
"rstrip": false,
|
1080 |
+
"single_word": false,
|
1081 |
+
"special": true
|
1082 |
+
},
|
1083 |
+
"128135": {
|
1084 |
+
"content": "<|reserved_special_token_127|>",
|
1085 |
+
"lstrip": false,
|
1086 |
+
"normalized": false,
|
1087 |
+
"rstrip": false,
|
1088 |
+
"single_word": false,
|
1089 |
+
"special": true
|
1090 |
+
},
|
1091 |
+
"128136": {
|
1092 |
+
"content": "<|reserved_special_token_128|>",
|
1093 |
+
"lstrip": false,
|
1094 |
+
"normalized": false,
|
1095 |
+
"rstrip": false,
|
1096 |
+
"single_word": false,
|
1097 |
+
"special": true
|
1098 |
+
},
|
1099 |
+
"128137": {
|
1100 |
+
"content": "<|reserved_special_token_129|>",
|
1101 |
+
"lstrip": false,
|
1102 |
+
"normalized": false,
|
1103 |
+
"rstrip": false,
|
1104 |
+
"single_word": false,
|
1105 |
+
"special": true
|
1106 |
+
},
|
1107 |
+
"128138": {
|
1108 |
+
"content": "<|reserved_special_token_130|>",
|
1109 |
+
"lstrip": false,
|
1110 |
+
"normalized": false,
|
1111 |
+
"rstrip": false,
|
1112 |
+
"single_word": false,
|
1113 |
+
"special": true
|
1114 |
+
},
|
1115 |
+
"128139": {
|
1116 |
+
"content": "<|reserved_special_token_131|>",
|
1117 |
+
"lstrip": false,
|
1118 |
+
"normalized": false,
|
1119 |
+
"rstrip": false,
|
1120 |
+
"single_word": false,
|
1121 |
+
"special": true
|
1122 |
+
},
|
1123 |
+
"128140": {
|
1124 |
+
"content": "<|reserved_special_token_132|>",
|
1125 |
+
"lstrip": false,
|
1126 |
+
"normalized": false,
|
1127 |
+
"rstrip": false,
|
1128 |
+
"single_word": false,
|
1129 |
+
"special": true
|
1130 |
+
},
|
1131 |
+
"128141": {
|
1132 |
+
"content": "<|reserved_special_token_133|>",
|
1133 |
+
"lstrip": false,
|
1134 |
+
"normalized": false,
|
1135 |
+
"rstrip": false,
|
1136 |
+
"single_word": false,
|
1137 |
+
"special": true
|
1138 |
+
},
|
1139 |
+
"128142": {
|
1140 |
+
"content": "<|reserved_special_token_134|>",
|
1141 |
+
"lstrip": false,
|
1142 |
+
"normalized": false,
|
1143 |
+
"rstrip": false,
|
1144 |
+
"single_word": false,
|
1145 |
+
"special": true
|
1146 |
+
},
|
1147 |
+
"128143": {
|
1148 |
+
"content": "<|reserved_special_token_135|>",
|
1149 |
+
"lstrip": false,
|
1150 |
+
"normalized": false,
|
1151 |
+
"rstrip": false,
|
1152 |
+
"single_word": false,
|
1153 |
+
"special": true
|
1154 |
+
},
|
1155 |
+
"128144": {
|
1156 |
+
"content": "<|reserved_special_token_136|>",
|
1157 |
+
"lstrip": false,
|
1158 |
+
"normalized": false,
|
1159 |
+
"rstrip": false,
|
1160 |
+
"single_word": false,
|
1161 |
+
"special": true
|
1162 |
+
},
|
1163 |
+
"128145": {
|
1164 |
+
"content": "<|reserved_special_token_137|>",
|
1165 |
+
"lstrip": false,
|
1166 |
+
"normalized": false,
|
1167 |
+
"rstrip": false,
|
1168 |
+
"single_word": false,
|
1169 |
+
"special": true
|
1170 |
+
},
|
1171 |
+
"128146": {
|
1172 |
+
"content": "<|reserved_special_token_138|>",
|
1173 |
+
"lstrip": false,
|
1174 |
+
"normalized": false,
|
1175 |
+
"rstrip": false,
|
1176 |
+
"single_word": false,
|
1177 |
+
"special": true
|
1178 |
+
},
|
1179 |
+
"128147": {
|
1180 |
+
"content": "<|reserved_special_token_139|>",
|
1181 |
+
"lstrip": false,
|
1182 |
+
"normalized": false,
|
1183 |
+
"rstrip": false,
|
1184 |
+
"single_word": false,
|
1185 |
+
"special": true
|
1186 |
+
},
|
1187 |
+
"128148": {
|
1188 |
+
"content": "<|reserved_special_token_140|>",
|
1189 |
+
"lstrip": false,
|
1190 |
+
"normalized": false,
|
1191 |
+
"rstrip": false,
|
1192 |
+
"single_word": false,
|
1193 |
+
"special": true
|
1194 |
+
},
|
1195 |
+
"128149": {
|
1196 |
+
"content": "<|reserved_special_token_141|>",
|
1197 |
+
"lstrip": false,
|
1198 |
+
"normalized": false,
|
1199 |
+
"rstrip": false,
|
1200 |
+
"single_word": false,
|
1201 |
+
"special": true
|
1202 |
+
},
|
1203 |
+
"128150": {
|
1204 |
+
"content": "<|reserved_special_token_142|>",
|
1205 |
+
"lstrip": false,
|
1206 |
+
"normalized": false,
|
1207 |
+
"rstrip": false,
|
1208 |
+
"single_word": false,
|
1209 |
+
"special": true
|
1210 |
+
},
|
1211 |
+
"128151": {
|
1212 |
+
"content": "<|reserved_special_token_143|>",
|
1213 |
+
"lstrip": false,
|
1214 |
+
"normalized": false,
|
1215 |
+
"rstrip": false,
|
1216 |
+
"single_word": false,
|
1217 |
+
"special": true
|
1218 |
+
},
|
1219 |
+
"128152": {
|
1220 |
+
"content": "<|reserved_special_token_144|>",
|
1221 |
+
"lstrip": false,
|
1222 |
+
"normalized": false,
|
1223 |
+
"rstrip": false,
|
1224 |
+
"single_word": false,
|
1225 |
+
"special": true
|
1226 |
+
},
|
1227 |
+
"128153": {
|
1228 |
+
"content": "<|reserved_special_token_145|>",
|
1229 |
+
"lstrip": false,
|
1230 |
+
"normalized": false,
|
1231 |
+
"rstrip": false,
|
1232 |
+
"single_word": false,
|
1233 |
+
"special": true
|
1234 |
+
},
|
1235 |
+
"128154": {
|
1236 |
+
"content": "<|reserved_special_token_146|>",
|
1237 |
+
"lstrip": false,
|
1238 |
+
"normalized": false,
|
1239 |
+
"rstrip": false,
|
1240 |
+
"single_word": false,
|
1241 |
+
"special": true
|
1242 |
+
},
|
1243 |
+
"128155": {
|
1244 |
+
"content": "<|reserved_special_token_147|>",
|
1245 |
+
"lstrip": false,
|
1246 |
+
"normalized": false,
|
1247 |
+
"rstrip": false,
|
1248 |
+
"single_word": false,
|
1249 |
+
"special": true
|
1250 |
+
},
|
1251 |
+
"128156": {
|
1252 |
+
"content": "<|reserved_special_token_148|>",
|
1253 |
+
"lstrip": false,
|
1254 |
+
"normalized": false,
|
1255 |
+
"rstrip": false,
|
1256 |
+
"single_word": false,
|
1257 |
+
"special": true
|
1258 |
+
},
|
1259 |
+
"128157": {
|
1260 |
+
"content": "<|reserved_special_token_149|>",
|
1261 |
+
"lstrip": false,
|
1262 |
+
"normalized": false,
|
1263 |
+
"rstrip": false,
|
1264 |
+
"single_word": false,
|
1265 |
+
"special": true
|
1266 |
+
},
|
1267 |
+
"128158": {
|
1268 |
+
"content": "<|reserved_special_token_150|>",
|
1269 |
+
"lstrip": false,
|
1270 |
+
"normalized": false,
|
1271 |
+
"rstrip": false,
|
1272 |
+
"single_word": false,
|
1273 |
+
"special": true
|
1274 |
+
},
|
1275 |
+
"128159": {
|
1276 |
+
"content": "<|reserved_special_token_151|>",
|
1277 |
+
"lstrip": false,
|
1278 |
+
"normalized": false,
|
1279 |
+
"rstrip": false,
|
1280 |
+
"single_word": false,
|
1281 |
+
"special": true
|
1282 |
+
},
|
1283 |
+
"128160": {
|
1284 |
+
"content": "<|reserved_special_token_152|>",
|
1285 |
+
"lstrip": false,
|
1286 |
+
"normalized": false,
|
1287 |
+
"rstrip": false,
|
1288 |
+
"single_word": false,
|
1289 |
+
"special": true
|
1290 |
+
},
|
1291 |
+
"128161": {
|
1292 |
+
"content": "<|reserved_special_token_153|>",
|
1293 |
+
"lstrip": false,
|
1294 |
+
"normalized": false,
|
1295 |
+
"rstrip": false,
|
1296 |
+
"single_word": false,
|
1297 |
+
"special": true
|
1298 |
+
},
|
1299 |
+
"128162": {
|
1300 |
+
"content": "<|reserved_special_token_154|>",
|
1301 |
+
"lstrip": false,
|
1302 |
+
"normalized": false,
|
1303 |
+
"rstrip": false,
|
1304 |
+
"single_word": false,
|
1305 |
+
"special": true
|
1306 |
+
},
|
1307 |
+
"128163": {
|
1308 |
+
"content": "<|reserved_special_token_155|>",
|
1309 |
+
"lstrip": false,
|
1310 |
+
"normalized": false,
|
1311 |
+
"rstrip": false,
|
1312 |
+
"single_word": false,
|
1313 |
+
"special": true
|
1314 |
+
},
|
1315 |
+
"128164": {
|
1316 |
+
"content": "<|reserved_special_token_156|>",
|
1317 |
+
"lstrip": false,
|
1318 |
+
"normalized": false,
|
1319 |
+
"rstrip": false,
|
1320 |
+
"single_word": false,
|
1321 |
+
"special": true
|
1322 |
+
},
|
1323 |
+
"128165": {
|
1324 |
+
"content": "<|reserved_special_token_157|>",
|
1325 |
+
"lstrip": false,
|
1326 |
+
"normalized": false,
|
1327 |
+
"rstrip": false,
|
1328 |
+
"single_word": false,
|
1329 |
+
"special": true
|
1330 |
+
},
|
1331 |
+
"128166": {
|
1332 |
+
"content": "<|reserved_special_token_158|>",
|
1333 |
+
"lstrip": false,
|
1334 |
+
"normalized": false,
|
1335 |
+
"rstrip": false,
|
1336 |
+
"single_word": false,
|
1337 |
+
"special": true
|
1338 |
+
},
|
1339 |
+
"128167": {
|
1340 |
+
"content": "<|reserved_special_token_159|>",
|
1341 |
+
"lstrip": false,
|
1342 |
+
"normalized": false,
|
1343 |
+
"rstrip": false,
|
1344 |
+
"single_word": false,
|
1345 |
+
"special": true
|
1346 |
+
},
|
1347 |
+
"128168": {
|
1348 |
+
"content": "<|reserved_special_token_160|>",
|
1349 |
+
"lstrip": false,
|
1350 |
+
"normalized": false,
|
1351 |
+
"rstrip": false,
|
1352 |
+
"single_word": false,
|
1353 |
+
"special": true
|
1354 |
+
},
|
1355 |
+
"128169": {
|
1356 |
+
"content": "<|reserved_special_token_161|>",
|
1357 |
+
"lstrip": false,
|
1358 |
+
"normalized": false,
|
1359 |
+
"rstrip": false,
|
1360 |
+
"single_word": false,
|
1361 |
+
"special": true
|
1362 |
+
},
|
1363 |
+
"128170": {
|
1364 |
+
"content": "<|reserved_special_token_162|>",
|
1365 |
+
"lstrip": false,
|
1366 |
+
"normalized": false,
|
1367 |
+
"rstrip": false,
|
1368 |
+
"single_word": false,
|
1369 |
+
"special": true
|
1370 |
+
},
|
1371 |
+
"128171": {
|
1372 |
+
"content": "<|reserved_special_token_163|>",
|
1373 |
+
"lstrip": false,
|
1374 |
+
"normalized": false,
|
1375 |
+
"rstrip": false,
|
1376 |
+
"single_word": false,
|
1377 |
+
"special": true
|
1378 |
+
},
|
1379 |
+
"128172": {
|
1380 |
+
"content": "<|reserved_special_token_164|>",
|
1381 |
+
"lstrip": false,
|
1382 |
+
"normalized": false,
|
1383 |
+
"rstrip": false,
|
1384 |
+
"single_word": false,
|
1385 |
+
"special": true
|
1386 |
+
},
|
1387 |
+
"128173": {
|
1388 |
+
"content": "<|reserved_special_token_165|>",
|
1389 |
+
"lstrip": false,
|
1390 |
+
"normalized": false,
|
1391 |
+
"rstrip": false,
|
1392 |
+
"single_word": false,
|
1393 |
+
"special": true
|
1394 |
+
},
|
1395 |
+
"128174": {
|
1396 |
+
"content": "<|reserved_special_token_166|>",
|
1397 |
+
"lstrip": false,
|
1398 |
+
"normalized": false,
|
1399 |
+
"rstrip": false,
|
1400 |
+
"single_word": false,
|
1401 |
+
"special": true
|
1402 |
+
},
|
1403 |
+
"128175": {
|
1404 |
+
"content": "<|reserved_special_token_167|>",
|
1405 |
+
"lstrip": false,
|
1406 |
+
"normalized": false,
|
1407 |
+
"rstrip": false,
|
1408 |
+
"single_word": false,
|
1409 |
+
"special": true
|
1410 |
+
},
|
1411 |
+
"128176": {
|
1412 |
+
"content": "<|reserved_special_token_168|>",
|
1413 |
+
"lstrip": false,
|
1414 |
+
"normalized": false,
|
1415 |
+
"rstrip": false,
|
1416 |
+
"single_word": false,
|
1417 |
+
"special": true
|
1418 |
+
},
|
1419 |
+
"128177": {
|
1420 |
+
"content": "<|reserved_special_token_169|>",
|
1421 |
+
"lstrip": false,
|
1422 |
+
"normalized": false,
|
1423 |
+
"rstrip": false,
|
1424 |
+
"single_word": false,
|
1425 |
+
"special": true
|
1426 |
+
},
|
1427 |
+
"128178": {
|
1428 |
+
"content": "<|reserved_special_token_170|>",
|
1429 |
+
"lstrip": false,
|
1430 |
+
"normalized": false,
|
1431 |
+
"rstrip": false,
|
1432 |
+
"single_word": false,
|
1433 |
+
"special": true
|
1434 |
+
},
|
1435 |
+
"128179": {
|
1436 |
+
"content": "<|reserved_special_token_171|>",
|
1437 |
+
"lstrip": false,
|
1438 |
+
"normalized": false,
|
1439 |
+
"rstrip": false,
|
1440 |
+
"single_word": false,
|
1441 |
+
"special": true
|
1442 |
+
},
|
1443 |
+
"128180": {
|
1444 |
+
"content": "<|reserved_special_token_172|>",
|
1445 |
+
"lstrip": false,
|
1446 |
+
"normalized": false,
|
1447 |
+
"rstrip": false,
|
1448 |
+
"single_word": false,
|
1449 |
+
"special": true
|
1450 |
+
},
|
1451 |
+
"128181": {
|
1452 |
+
"content": "<|reserved_special_token_173|>",
|
1453 |
+
"lstrip": false,
|
1454 |
+
"normalized": false,
|
1455 |
+
"rstrip": false,
|
1456 |
+
"single_word": false,
|
1457 |
+
"special": true
|
1458 |
+
},
|
1459 |
+
"128182": {
|
1460 |
+
"content": "<|reserved_special_token_174|>",
|
1461 |
+
"lstrip": false,
|
1462 |
+
"normalized": false,
|
1463 |
+
"rstrip": false,
|
1464 |
+
"single_word": false,
|
1465 |
+
"special": true
|
1466 |
+
},
|
1467 |
+
"128183": {
|
1468 |
+
"content": "<|reserved_special_token_175|>",
|
1469 |
+
"lstrip": false,
|
1470 |
+
"normalized": false,
|
1471 |
+
"rstrip": false,
|
1472 |
+
"single_word": false,
|
1473 |
+
"special": true
|
1474 |
+
},
|
1475 |
+
"128184": {
|
1476 |
+
"content": "<|reserved_special_token_176|>",
|
1477 |
+
"lstrip": false,
|
1478 |
+
"normalized": false,
|
1479 |
+
"rstrip": false,
|
1480 |
+
"single_word": false,
|
1481 |
+
"special": true
|
1482 |
+
},
|
1483 |
+
"128185": {
|
1484 |
+
"content": "<|reserved_special_token_177|>",
|
1485 |
+
"lstrip": false,
|
1486 |
+
"normalized": false,
|
1487 |
+
"rstrip": false,
|
1488 |
+
"single_word": false,
|
1489 |
+
"special": true
|
1490 |
+
},
|
1491 |
+
"128186": {
|
1492 |
+
"content": "<|reserved_special_token_178|>",
|
1493 |
+
"lstrip": false,
|
1494 |
+
"normalized": false,
|
1495 |
+
"rstrip": false,
|
1496 |
+
"single_word": false,
|
1497 |
+
"special": true
|
1498 |
+
},
|
1499 |
+
"128187": {
|
1500 |
+
"content": "<|reserved_special_token_179|>",
|
1501 |
+
"lstrip": false,
|
1502 |
+
"normalized": false,
|
1503 |
+
"rstrip": false,
|
1504 |
+
"single_word": false,
|
1505 |
+
"special": true
|
1506 |
+
},
|
1507 |
+
"128188": {
|
1508 |
+
"content": "<|reserved_special_token_180|>",
|
1509 |
+
"lstrip": false,
|
1510 |
+
"normalized": false,
|
1511 |
+
"rstrip": false,
|
1512 |
+
"single_word": false,
|
1513 |
+
"special": true
|
1514 |
+
},
|
1515 |
+
"128189": {
|
1516 |
+
"content": "<|reserved_special_token_181|>",
|
1517 |
+
"lstrip": false,
|
1518 |
+
"normalized": false,
|
1519 |
+
"rstrip": false,
|
1520 |
+
"single_word": false,
|
1521 |
+
"special": true
|
1522 |
+
},
|
1523 |
+
"128190": {
|
1524 |
+
"content": "<|reserved_special_token_182|>",
|
1525 |
+
"lstrip": false,
|
1526 |
+
"normalized": false,
|
1527 |
+
"rstrip": false,
|
1528 |
+
"single_word": false,
|
1529 |
+
"special": true
|
1530 |
+
},
|
1531 |
+
"128191": {
|
1532 |
+
"content": "<|reserved_special_token_183|>",
|
1533 |
+
"lstrip": false,
|
1534 |
+
"normalized": false,
|
1535 |
+
"rstrip": false,
|
1536 |
+
"single_word": false,
|
1537 |
+
"special": true
|
1538 |
+
},
|
1539 |
+
"128192": {
|
1540 |
+
"content": "<|reserved_special_token_184|>",
|
1541 |
+
"lstrip": false,
|
1542 |
+
"normalized": false,
|
1543 |
+
"rstrip": false,
|
1544 |
+
"single_word": false,
|
1545 |
+
"special": true
|
1546 |
+
},
|
1547 |
+
"128193": {
|
1548 |
+
"content": "<|reserved_special_token_185|>",
|
1549 |
+
"lstrip": false,
|
1550 |
+
"normalized": false,
|
1551 |
+
"rstrip": false,
|
1552 |
+
"single_word": false,
|
1553 |
+
"special": true
|
1554 |
+
},
|
1555 |
+
"128194": {
|
1556 |
+
"content": "<|reserved_special_token_186|>",
|
1557 |
+
"lstrip": false,
|
1558 |
+
"normalized": false,
|
1559 |
+
"rstrip": false,
|
1560 |
+
"single_word": false,
|
1561 |
+
"special": true
|
1562 |
+
},
|
1563 |
+
"128195": {
|
1564 |
+
"content": "<|reserved_special_token_187|>",
|
1565 |
+
"lstrip": false,
|
1566 |
+
"normalized": false,
|
1567 |
+
"rstrip": false,
|
1568 |
+
"single_word": false,
|
1569 |
+
"special": true
|
1570 |
+
},
|
1571 |
+
"128196": {
|
1572 |
+
"content": "<|reserved_special_token_188|>",
|
1573 |
+
"lstrip": false,
|
1574 |
+
"normalized": false,
|
1575 |
+
"rstrip": false,
|
1576 |
+
"single_word": false,
|
1577 |
+
"special": true
|
1578 |
+
},
|
1579 |
+
"128197": {
|
1580 |
+
"content": "<|reserved_special_token_189|>",
|
1581 |
+
"lstrip": false,
|
1582 |
+
"normalized": false,
|
1583 |
+
"rstrip": false,
|
1584 |
+
"single_word": false,
|
1585 |
+
"special": true
|
1586 |
+
},
|
1587 |
+
"128198": {
|
1588 |
+
"content": "<|reserved_special_token_190|>",
|
1589 |
+
"lstrip": false,
|
1590 |
+
"normalized": false,
|
1591 |
+
"rstrip": false,
|
1592 |
+
"single_word": false,
|
1593 |
+
"special": true
|
1594 |
+
},
|
1595 |
+
"128199": {
|
1596 |
+
"content": "<|reserved_special_token_191|>",
|
1597 |
+
"lstrip": false,
|
1598 |
+
"normalized": false,
|
1599 |
+
"rstrip": false,
|
1600 |
+
"single_word": false,
|
1601 |
+
"special": true
|
1602 |
+
},
|
1603 |
+
"128200": {
|
1604 |
+
"content": "<|reserved_special_token_192|>",
|
1605 |
+
"lstrip": false,
|
1606 |
+
"normalized": false,
|
1607 |
+
"rstrip": false,
|
1608 |
+
"single_word": false,
|
1609 |
+
"special": true
|
1610 |
+
},
|
1611 |
+
"128201": {
|
1612 |
+
"content": "<|reserved_special_token_193|>",
|
1613 |
+
"lstrip": false,
|
1614 |
+
"normalized": false,
|
1615 |
+
"rstrip": false,
|
1616 |
+
"single_word": false,
|
1617 |
+
"special": true
|
1618 |
+
},
|
1619 |
+
"128202": {
|
1620 |
+
"content": "<|reserved_special_token_194|>",
|
1621 |
+
"lstrip": false,
|
1622 |
+
"normalized": false,
|
1623 |
+
"rstrip": false,
|
1624 |
+
"single_word": false,
|
1625 |
+
"special": true
|
1626 |
+
},
|
1627 |
+
"128203": {
|
1628 |
+
"content": "<|reserved_special_token_195|>",
|
1629 |
+
"lstrip": false,
|
1630 |
+
"normalized": false,
|
1631 |
+
"rstrip": false,
|
1632 |
+
"single_word": false,
|
1633 |
+
"special": true
|
1634 |
+
},
|
1635 |
+
"128204": {
|
1636 |
+
"content": "<|reserved_special_token_196|>",
|
1637 |
+
"lstrip": false,
|
1638 |
+
"normalized": false,
|
1639 |
+
"rstrip": false,
|
1640 |
+
"single_word": false,
|
1641 |
+
"special": true
|
1642 |
+
},
|
1643 |
+
"128205": {
|
1644 |
+
"content": "<|reserved_special_token_197|>",
|
1645 |
+
"lstrip": false,
|
1646 |
+
"normalized": false,
|
1647 |
+
"rstrip": false,
|
1648 |
+
"single_word": false,
|
1649 |
+
"special": true
|
1650 |
+
},
|
1651 |
+
"128206": {
|
1652 |
+
"content": "<|reserved_special_token_198|>",
|
1653 |
+
"lstrip": false,
|
1654 |
+
"normalized": false,
|
1655 |
+
"rstrip": false,
|
1656 |
+
"single_word": false,
|
1657 |
+
"special": true
|
1658 |
+
},
|
1659 |
+
"128207": {
|
1660 |
+
"content": "<|reserved_special_token_199|>",
|
1661 |
+
"lstrip": false,
|
1662 |
+
"normalized": false,
|
1663 |
+
"rstrip": false,
|
1664 |
+
"single_word": false,
|
1665 |
+
"special": true
|
1666 |
+
},
|
1667 |
+
"128208": {
|
1668 |
+
"content": "<|reserved_special_token_200|>",
|
1669 |
+
"lstrip": false,
|
1670 |
+
"normalized": false,
|
1671 |
+
"rstrip": false,
|
1672 |
+
"single_word": false,
|
1673 |
+
"special": true
|
1674 |
+
},
|
1675 |
+
"128209": {
|
1676 |
+
"content": "<|reserved_special_token_201|>",
|
1677 |
+
"lstrip": false,
|
1678 |
+
"normalized": false,
|
1679 |
+
"rstrip": false,
|
1680 |
+
"single_word": false,
|
1681 |
+
"special": true
|
1682 |
+
},
|
1683 |
+
"128210": {
|
1684 |
+
"content": "<|reserved_special_token_202|>",
|
1685 |
+
"lstrip": false,
|
1686 |
+
"normalized": false,
|
1687 |
+
"rstrip": false,
|
1688 |
+
"single_word": false,
|
1689 |
+
"special": true
|
1690 |
+
},
|
1691 |
+
"128211": {
|
1692 |
+
"content": "<|reserved_special_token_203|>",
|
1693 |
+
"lstrip": false,
|
1694 |
+
"normalized": false,
|
1695 |
+
"rstrip": false,
|
1696 |
+
"single_word": false,
|
1697 |
+
"special": true
|
1698 |
+
},
|
1699 |
+
"128212": {
|
1700 |
+
"content": "<|reserved_special_token_204|>",
|
1701 |
+
"lstrip": false,
|
1702 |
+
"normalized": false,
|
1703 |
+
"rstrip": false,
|
1704 |
+
"single_word": false,
|
1705 |
+
"special": true
|
1706 |
+
},
|
1707 |
+
"128213": {
|
1708 |
+
"content": "<|reserved_special_token_205|>",
|
1709 |
+
"lstrip": false,
|
1710 |
+
"normalized": false,
|
1711 |
+
"rstrip": false,
|
1712 |
+
"single_word": false,
|
1713 |
+
"special": true
|
1714 |
+
},
|
1715 |
+
"128214": {
|
1716 |
+
"content": "<|reserved_special_token_206|>",
|
1717 |
+
"lstrip": false,
|
1718 |
+
"normalized": false,
|
1719 |
+
"rstrip": false,
|
1720 |
+
"single_word": false,
|
1721 |
+
"special": true
|
1722 |
+
},
|
1723 |
+
"128215": {
|
1724 |
+
"content": "<|reserved_special_token_207|>",
|
1725 |
+
"lstrip": false,
|
1726 |
+
"normalized": false,
|
1727 |
+
"rstrip": false,
|
1728 |
+
"single_word": false,
|
1729 |
+
"special": true
|
1730 |
+
},
|
1731 |
+
"128216": {
|
1732 |
+
"content": "<|reserved_special_token_208|>",
|
1733 |
+
"lstrip": false,
|
1734 |
+
"normalized": false,
|
1735 |
+
"rstrip": false,
|
1736 |
+
"single_word": false,
|
1737 |
+
"special": true
|
1738 |
+
},
|
1739 |
+
"128217": {
|
1740 |
+
"content": "<|reserved_special_token_209|>",
|
1741 |
+
"lstrip": false,
|
1742 |
+
"normalized": false,
|
1743 |
+
"rstrip": false,
|
1744 |
+
"single_word": false,
|
1745 |
+
"special": true
|
1746 |
+
},
|
1747 |
+
"128218": {
|
1748 |
+
"content": "<|reserved_special_token_210|>",
|
1749 |
+
"lstrip": false,
|
1750 |
+
"normalized": false,
|
1751 |
+
"rstrip": false,
|
1752 |
+
"single_word": false,
|
1753 |
+
"special": true
|
1754 |
+
},
|
1755 |
+
"128219": {
|
1756 |
+
"content": "<|reserved_special_token_211|>",
|
1757 |
+
"lstrip": false,
|
1758 |
+
"normalized": false,
|
1759 |
+
"rstrip": false,
|
1760 |
+
"single_word": false,
|
1761 |
+
"special": true
|
1762 |
+
},
|
1763 |
+
"128220": {
|
1764 |
+
"content": "<|reserved_special_token_212|>",
|
1765 |
+
"lstrip": false,
|
1766 |
+
"normalized": false,
|
1767 |
+
"rstrip": false,
|
1768 |
+
"single_word": false,
|
1769 |
+
"special": true
|
1770 |
+
},
|
1771 |
+
"128221": {
|
1772 |
+
"content": "<|reserved_special_token_213|>",
|
1773 |
+
"lstrip": false,
|
1774 |
+
"normalized": false,
|
1775 |
+
"rstrip": false,
|
1776 |
+
"single_word": false,
|
1777 |
+
"special": true
|
1778 |
+
},
|
1779 |
+
"128222": {
|
1780 |
+
"content": "<|reserved_special_token_214|>",
|
1781 |
+
"lstrip": false,
|
1782 |
+
"normalized": false,
|
1783 |
+
"rstrip": false,
|
1784 |
+
"single_word": false,
|
1785 |
+
"special": true
|
1786 |
+
},
|
1787 |
+
"128223": {
|
1788 |
+
"content": "<|reserved_special_token_215|>",
|
1789 |
+
"lstrip": false,
|
1790 |
+
"normalized": false,
|
1791 |
+
"rstrip": false,
|
1792 |
+
"single_word": false,
|
1793 |
+
"special": true
|
1794 |
+
},
|
1795 |
+
"128224": {
|
1796 |
+
"content": "<|reserved_special_token_216|>",
|
1797 |
+
"lstrip": false,
|
1798 |
+
"normalized": false,
|
1799 |
+
"rstrip": false,
|
1800 |
+
"single_word": false,
|
1801 |
+
"special": true
|
1802 |
+
},
|
1803 |
+
"128225": {
|
1804 |
+
"content": "<|reserved_special_token_217|>",
|
1805 |
+
"lstrip": false,
|
1806 |
+
"normalized": false,
|
1807 |
+
"rstrip": false,
|
1808 |
+
"single_word": false,
|
1809 |
+
"special": true
|
1810 |
+
},
|
1811 |
+
"128226": {
|
1812 |
+
"content": "<|reserved_special_token_218|>",
|
1813 |
+
"lstrip": false,
|
1814 |
+
"normalized": false,
|
1815 |
+
"rstrip": false,
|
1816 |
+
"single_word": false,
|
1817 |
+
"special": true
|
1818 |
+
},
|
1819 |
+
"128227": {
|
1820 |
+
"content": "<|reserved_special_token_219|>",
|
1821 |
+
"lstrip": false,
|
1822 |
+
"normalized": false,
|
1823 |
+
"rstrip": false,
|
1824 |
+
"single_word": false,
|
1825 |
+
"special": true
|
1826 |
+
},
|
1827 |
+
"128228": {
|
1828 |
+
"content": "<|reserved_special_token_220|>",
|
1829 |
+
"lstrip": false,
|
1830 |
+
"normalized": false,
|
1831 |
+
"rstrip": false,
|
1832 |
+
"single_word": false,
|
1833 |
+
"special": true
|
1834 |
+
},
|
1835 |
+
"128229": {
|
1836 |
+
"content": "<|reserved_special_token_221|>",
|
1837 |
+
"lstrip": false,
|
1838 |
+
"normalized": false,
|
1839 |
+
"rstrip": false,
|
1840 |
+
"single_word": false,
|
1841 |
+
"special": true
|
1842 |
+
},
|
1843 |
+
"128230": {
|
1844 |
+
"content": "<|reserved_special_token_222|>",
|
1845 |
+
"lstrip": false,
|
1846 |
+
"normalized": false,
|
1847 |
+
"rstrip": false,
|
1848 |
+
"single_word": false,
|
1849 |
+
"special": true
|
1850 |
+
},
|
1851 |
+
"128231": {
|
1852 |
+
"content": "<|reserved_special_token_223|>",
|
1853 |
+
"lstrip": false,
|
1854 |
+
"normalized": false,
|
1855 |
+
"rstrip": false,
|
1856 |
+
"single_word": false,
|
1857 |
+
"special": true
|
1858 |
+
},
|
1859 |
+
"128232": {
|
1860 |
+
"content": "<|reserved_special_token_224|>",
|
1861 |
+
"lstrip": false,
|
1862 |
+
"normalized": false,
|
1863 |
+
"rstrip": false,
|
1864 |
+
"single_word": false,
|
1865 |
+
"special": true
|
1866 |
+
},
|
1867 |
+
"128233": {
|
1868 |
+
"content": "<|reserved_special_token_225|>",
|
1869 |
+
"lstrip": false,
|
1870 |
+
"normalized": false,
|
1871 |
+
"rstrip": false,
|
1872 |
+
"single_word": false,
|
1873 |
+
"special": true
|
1874 |
+
},
|
1875 |
+
"128234": {
|
1876 |
+
"content": "<|reserved_special_token_226|>",
|
1877 |
+
"lstrip": false,
|
1878 |
+
"normalized": false,
|
1879 |
+
"rstrip": false,
|
1880 |
+
"single_word": false,
|
1881 |
+
"special": true
|
1882 |
+
},
|
1883 |
+
"128235": {
|
1884 |
+
"content": "<|reserved_special_token_227|>",
|
1885 |
+
"lstrip": false,
|
1886 |
+
"normalized": false,
|
1887 |
+
"rstrip": false,
|
1888 |
+
"single_word": false,
|
1889 |
+
"special": true
|
1890 |
+
},
|
1891 |
+
"128236": {
|
1892 |
+
"content": "<|reserved_special_token_228|>",
|
1893 |
+
"lstrip": false,
|
1894 |
+
"normalized": false,
|
1895 |
+
"rstrip": false,
|
1896 |
+
"single_word": false,
|
1897 |
+
"special": true
|
1898 |
+
},
|
1899 |
+
"128237": {
|
1900 |
+
"content": "<|reserved_special_token_229|>",
|
1901 |
+
"lstrip": false,
|
1902 |
+
"normalized": false,
|
1903 |
+
"rstrip": false,
|
1904 |
+
"single_word": false,
|
1905 |
+
"special": true
|
1906 |
+
},
|
1907 |
+
"128238": {
|
1908 |
+
"content": "<|reserved_special_token_230|>",
|
1909 |
+
"lstrip": false,
|
1910 |
+
"normalized": false,
|
1911 |
+
"rstrip": false,
|
1912 |
+
"single_word": false,
|
1913 |
+
"special": true
|
1914 |
+
},
|
1915 |
+
"128239": {
|
1916 |
+
"content": "<|reserved_special_token_231|>",
|
1917 |
+
"lstrip": false,
|
1918 |
+
"normalized": false,
|
1919 |
+
"rstrip": false,
|
1920 |
+
"single_word": false,
|
1921 |
+
"special": true
|
1922 |
+
},
|
1923 |
+
"128240": {
|
1924 |
+
"content": "<|reserved_special_token_232|>",
|
1925 |
+
"lstrip": false,
|
1926 |
+
"normalized": false,
|
1927 |
+
"rstrip": false,
|
1928 |
+
"single_word": false,
|
1929 |
+
"special": true
|
1930 |
+
},
|
1931 |
+
"128241": {
|
1932 |
+
"content": "<|reserved_special_token_233|>",
|
1933 |
+
"lstrip": false,
|
1934 |
+
"normalized": false,
|
1935 |
+
"rstrip": false,
|
1936 |
+
"single_word": false,
|
1937 |
+
"special": true
|
1938 |
+
},
|
1939 |
+
"128242": {
|
1940 |
+
"content": "<|reserved_special_token_234|>",
|
1941 |
+
"lstrip": false,
|
1942 |
+
"normalized": false,
|
1943 |
+
"rstrip": false,
|
1944 |
+
"single_word": false,
|
1945 |
+
"special": true
|
1946 |
+
},
|
1947 |
+
"128243": {
|
1948 |
+
"content": "<|reserved_special_token_235|>",
|
1949 |
+
"lstrip": false,
|
1950 |
+
"normalized": false,
|
1951 |
+
"rstrip": false,
|
1952 |
+
"single_word": false,
|
1953 |
+
"special": true
|
1954 |
+
},
|
1955 |
+
"128244": {
|
1956 |
+
"content": "<|reserved_special_token_236|>",
|
1957 |
+
"lstrip": false,
|
1958 |
+
"normalized": false,
|
1959 |
+
"rstrip": false,
|
1960 |
+
"single_word": false,
|
1961 |
+
"special": true
|
1962 |
+
},
|
1963 |
+
"128245": {
|
1964 |
+
"content": "<|reserved_special_token_237|>",
|
1965 |
+
"lstrip": false,
|
1966 |
+
"normalized": false,
|
1967 |
+
"rstrip": false,
|
1968 |
+
"single_word": false,
|
1969 |
+
"special": true
|
1970 |
+
},
|
1971 |
+
"128246": {
|
1972 |
+
"content": "<|reserved_special_token_238|>",
|
1973 |
+
"lstrip": false,
|
1974 |
+
"normalized": false,
|
1975 |
+
"rstrip": false,
|
1976 |
+
"single_word": false,
|
1977 |
+
"special": true
|
1978 |
+
},
|
1979 |
+
"128247": {
|
1980 |
+
"content": "<|reserved_special_token_239|>",
|
1981 |
+
"lstrip": false,
|
1982 |
+
"normalized": false,
|
1983 |
+
"rstrip": false,
|
1984 |
+
"single_word": false,
|
1985 |
+
"special": true
|
1986 |
+
},
|
1987 |
+
"128248": {
|
1988 |
+
"content": "<|reserved_special_token_240|>",
|
1989 |
+
"lstrip": false,
|
1990 |
+
"normalized": false,
|
1991 |
+
"rstrip": false,
|
1992 |
+
"single_word": false,
|
1993 |
+
"special": true
|
1994 |
+
},
|
1995 |
+
"128249": {
|
1996 |
+
"content": "<|reserved_special_token_241|>",
|
1997 |
+
"lstrip": false,
|
1998 |
+
"normalized": false,
|
1999 |
+
"rstrip": false,
|
2000 |
+
"single_word": false,
|
2001 |
+
"special": true
|
2002 |
+
},
|
2003 |
+
"128250": {
|
2004 |
+
"content": "<|reserved_special_token_242|>",
|
2005 |
+
"lstrip": false,
|
2006 |
+
"normalized": false,
|
2007 |
+
"rstrip": false,
|
2008 |
+
"single_word": false,
|
2009 |
+
"special": true
|
2010 |
+
},
|
2011 |
+
"128251": {
|
2012 |
+
"content": "<|reserved_special_token_243|>",
|
2013 |
+
"lstrip": false,
|
2014 |
+
"normalized": false,
|
2015 |
+
"rstrip": false,
|
2016 |
+
"single_word": false,
|
2017 |
+
"special": true
|
2018 |
+
},
|
2019 |
+
"128252": {
|
2020 |
+
"content": "<|reserved_special_token_244|>",
|
2021 |
+
"lstrip": false,
|
2022 |
+
"normalized": false,
|
2023 |
+
"rstrip": false,
|
2024 |
+
"single_word": false,
|
2025 |
+
"special": true
|
2026 |
+
},
|
2027 |
+
"128253": {
|
2028 |
+
"content": "<|reserved_special_token_245|>",
|
2029 |
+
"lstrip": false,
|
2030 |
+
"normalized": false,
|
2031 |
+
"rstrip": false,
|
2032 |
+
"single_word": false,
|
2033 |
+
"special": true
|
2034 |
+
},
|
2035 |
+
"128254": {
|
2036 |
+
"content": "<|reserved_special_token_246|>",
|
2037 |
+
"lstrip": false,
|
2038 |
+
"normalized": false,
|
2039 |
+
"rstrip": false,
|
2040 |
+
"single_word": false,
|
2041 |
+
"special": true
|
2042 |
+
},
|
2043 |
+
"128255": {
|
2044 |
+
"content": "<|reserved_special_token_247|>",
|
2045 |
+
"lstrip": false,
|
2046 |
+
"normalized": false,
|
2047 |
+
"rstrip": false,
|
2048 |
+
"single_word": false,
|
2049 |
+
"special": true
|
2050 |
+
},
|
2051 |
+
"128256": {
|
2052 |
+
"content": "<im_patch>",
|
2053 |
+
"lstrip": false,
|
2054 |
+
"normalized": false,
|
2055 |
+
"rstrip": false,
|
2056 |
+
"single_word": false,
|
2057 |
+
"special": true
|
2058 |
+
}
|
2059 |
+
},
|
2060 |
+
"additional_special_tokens": [
|
2061 |
+
"<im_patch>"
|
2062 |
+
],
|
2063 |
+
"bos_token": "<|begin_of_text|>",
|
2064 |
+
"chat_template": "{{- bos_token }}\n{%- if custom_tools is defined %}\n {%- set tools = custom_tools %}\n{%- endif %}\n{%- if not tools_in_user_message is defined %}\n {%- set tools_in_user_message = true %}\n{%- endif %}\n{%- if not date_string is defined %}\n {%- set date_string = \"26 Jul 2024\" %}\n{%- endif %}\n{%- if not tools is defined %}\n {%- set tools = none %}\n{%- endif %}\n\n{#- This block extracts the system message, so we can slot it into the right place. #}\n{%- if messages[0]['role'] == 'system' %}\n {%- set system_message = messages[0]['content']|trim %}\n {%- set messages = messages[1:] %}\n{%- else %}\n {%- set system_message = \"\" %}\n{%- endif %}\n\n{#- System message + builtin tools #}\n{{- \"<|start_header_id|>system<|end_header_id|>\\n\\n\" }}\n{%- if builtin_tools is defined or tools is not none %}\n {{- \"Environment: ipython\\n\" }}\n{%- endif %}\n{%- if builtin_tools is defined %}\n {{- \"Tools: \" + builtin_tools | reject('equalto', 'code_interpreter') | join(\", \") + \"\\n\\n\"}}\n{%- endif %}\n{{- \"Cutting Knowledge Date: December 2023\\n\" }}\n{{- \"Today Date: \" + date_string + \"\\n\\n\" }}\n{%- if tools is not none and not tools_in_user_message %}\n {{- \"You have access to the following functions. To call a function, please respond with JSON for a function call.\" }}\n {{- 'Respond in the format {\"name\": function name, \"parameters\": dictionary of argument name and its value}.' }}\n {{- \"Do not use variables.\\n\\n\" }}\n {%- for t in tools %}\n {{- t | tojson(indent=4) }}\n {{- \"\\n\\n\" }}\n {%- endfor %}\n{%- endif %}\n{{- system_message }}\n{{- \"<|eot_id|>\" }}\n\n{#- Custom tools are passed in a user message with some extra guidance #}\n{%- if tools_in_user_message and not tools is none %}\n {#- Extract the first user message so we can plug it in here #}\n {%- if messages | length != 0 %}\n {%- set first_user_message = messages[0]['content']|trim %}\n {%- set messages = messages[1:] %}\n {%- else %}\n {{- raise_exception(\"Cannot put tools in the first user message when there's no first user message!\") }}\n{%- endif %}\n {{- '<|start_header_id|>user<|end_header_id|>\\n\\n' -}}\n {{- \"Given the following functions, please respond with a JSON for a function call \" }}\n {{- \"with its proper arguments that best answers the given prompt.\\n\\n\" }}\n {{- 'Respond in the format {\"name\": function name, \"parameters\": dictionary of argument name and its value}.' }}\n {{- \"Do not use variables.\\n\\n\" }}\n {%- for t in tools %}\n {{- t | tojson(indent=4) }}\n {{- \"\\n\\n\" }}\n {%- endfor %}\n {{- first_user_message + \"<|eot_id|>\"}}\n{%- endif %}\n\n{%- for message in messages %}\n {%- if not (message.role == 'ipython' or message.role == 'tool' or 'tool_calls' in message) %}\n {{- '<|start_header_id|>' + message['role'] + '<|end_header_id|>\\n\\n'+ message['content'] | trim + '<|eot_id|>' }}\n {%- elif 'tool_calls' in message %}\n {%- if not message.tool_calls|length == 1 %}\n {{- raise_exception(\"This model only supports single tool-calls at once!\") }}\n {%- endif %}\n {%- set tool_call = message.tool_calls[0].function %}\n {%- if builtin_tools is defined and tool_call.name in builtin_tools %}\n {{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' -}}\n {{- \"<|python_tag|>\" + tool_call.name + \".call(\" }}\n {%- for arg_name, arg_val in tool_call.arguments | items %}\n {{- arg_name + '=\"' + arg_val + '\"' }}\n {%- if not loop.last %}\n {{- \", \" }}\n {%- endif %}\n {%- endfor %}\n {{- \")\" }}\n {%- else %}\n {{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' -}}\n {{- '{\"name\": \"' + tool_call.name + '\", ' }}\n {{- '\"parameters\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- \"}\" }}\n {%- endif %}\n {%- if builtin_tools is defined %}\n {#- This means we're in ipython mode #}\n {{- \"<|eom_id|>\" }}\n {%- else %}\n {{- \"<|eot_id|>\" }}\n {%- endif %}\n {%- elif message.role == \"tool\" or message.role == \"ipython\" %}\n {{- \"<|start_header_id|>ipython<|end_header_id|>\\n\\n\" }}\n {%- if message.content is mapping or message.content is iterable %}\n {{- message.content | tojson }}\n {%- else %}\n {{- message.content }}\n {%- endif %}\n {{- \"<|eot_id|>\" }}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' }}\n{%- endif %}\n",
|
2065 |
+
"clean_up_tokenization_spaces": true,
|
2066 |
+
"eos_token": "<|eot_id|>",
|
2067 |
+
"model_input_names": [
|
2068 |
+
"input_ids",
|
2069 |
+
"attention_mask"
|
2070 |
+
],
|
2071 |
+
"model_max_length": 131072,
|
2072 |
+
"pad_token": "<|eot_id|>",
|
2073 |
+
"padding_side": "right",
|
2074 |
+
"tokenizer_class": "PreTrainedTokenizerFast"
|
2075 |
+
}
|