--- library_name: transformers license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer metrics: - precision - recall - accuracy model-index: - name: classify results: [] --- # classify This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5723 - Precision: 0.0 - Recall: 0.0 - F1 Binary: 0.0 - Accuracy: 0.7429 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 4 - eval_batch_size: 4 - seed: 0 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 Binary | Accuracy | |:-------------:|:-------:|:----:|:---------------:|:---------:|:------:|:---------:|:--------:| | No log | 0 | 0 | 0.7028 | 0.2437 | 0.7160 | 0.3636 | 0.3556 | | 0.6 | 2.8181 | 1000 | 0.5779 | 0.0 | 0.0 | 0.0 | 0.7429 | | 0.5522 | 5.6347 | 2000 | 0.5709 | 0.0 | 0.0 | 0.0 | 0.7429 | | 0.5582 | 8.4513 | 3000 | 0.5709 | 0.0 | 0.0 | 0.0 | 0.7429 | | 0.5791 | 11.2680 | 4000 | 0.5703 | 0.0 | 0.0 | 0.0 | 0.7429 | | 0.5895 | 14.0846 | 5000 | 0.5701 | 0.0 | 0.0 | 0.0 | 0.7429 | | 0.5629 | 16.9027 | 6000 | 0.5730 | 0.0 | 0.0 | 0.0 | 0.7429 | | 0.5841 | 19.7193 | 7000 | 0.5723 | 0.0 | 0.0 | 0.0 | 0.7429 | ### Framework versions - Transformers 4.48.1 - Pytorch 2.3.0 - Datasets 3.2.0 - Tokenizers 0.21.0