Badr Abdullah commited on
Commit
5188ae8
·
verified ·
1 Parent(s): c8d5aaf

Model save

Browse files
Files changed (1) hide show
  1. README.md +141 -196
README.md CHANGED
@@ -1,199 +1,144 @@
1
  ---
2
- library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
-
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
  ---
2
+ license: apache-2.0
3
+ base_model: facebook/wav2vec2-xls-r-300m
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - common_voice_17_0
8
+ metrics:
9
+ - wer
10
+ model-index:
11
+ - name: xlsr-polish
12
+ results:
13
+ - task:
14
+ name: Automatic Speech Recognition
15
+ type: automatic-speech-recognition
16
+ dataset:
17
+ name: common_voice_17_0
18
+ type: common_voice_17_0
19
+ config: pl
20
+ split: validation
21
+ args: pl
22
+ metrics:
23
+ - name: Wer
24
+ type: wer
25
+ value: 0.1443174034459139
26
  ---
27
 
28
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
29
+ should probably proofread and complete it, then remove this comment. -->
30
+
31
+ [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/badr-nlp/xlsr-continual-finetuning-polish/runs/v7cepqow)
32
+ # xlsr-polish
33
+
34
+ This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice_17_0 dataset.
35
+ It achieves the following results on the evaluation set:
36
+ - Loss: 0.1686
37
+ - Wer: 0.1443
38
+ - Cer: 0.0313
39
+
40
+ ## Model description
41
+
42
+ More information needed
43
+
44
+ ## Intended uses & limitations
45
+
46
+ More information needed
47
+
48
+ ## Training and evaluation data
49
+
50
+ More information needed
51
+
52
+ ## Training procedure
53
+
54
+ ### Training hyperparameters
55
+
56
+ The following hyperparameters were used during training:
57
+ - learning_rate: 0.0003
58
+ - train_batch_size: 16
59
+ - eval_batch_size: 8
60
+ - seed: 42
61
+ - gradient_accumulation_steps: 2
62
+ - total_train_batch_size: 32
63
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
64
+ - lr_scheduler_type: linear
65
+ - lr_scheduler_warmup_steps: 500
66
+ - num_epochs: 10
67
+ - mixed_precision_training: Native AMP
68
+
69
+ ### Training results
70
+
71
+ | Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
72
+ |:-------------:|:------:|:----:|:---------------:|:------:|:------:|
73
+ | 4.7158 | 0.1543 | 100 | 4.0453 | 1.0 | 1.0 |
74
+ | 3.3469 | 0.3086 | 200 | 3.2544 | 1.0 | 1.0 |
75
+ | 2.9194 | 0.4630 | 300 | 2.7288 | 0.9985 | 0.8650 |
76
+ | 0.921 | 0.6173 | 400 | 0.5673 | 0.5449 | 0.1303 |
77
+ | 0.8196 | 0.7716 | 500 | 0.4311 | 0.4439 | 0.1025 |
78
+ | 0.7248 | 0.9259 | 600 | 0.3672 | 0.3894 | 0.0875 |
79
+ | 0.1727 | 1.0802 | 700 | 0.3141 | 0.3363 | 0.0739 |
80
+ | 0.1807 | 1.2346 | 800 | 0.3075 | 0.3463 | 0.0758 |
81
+ | 0.1683 | 1.3889 | 900 | 0.2969 | 0.3217 | 0.0707 |
82
+ | 0.1616 | 1.5432 | 1000 | 0.2650 | 0.3045 | 0.0675 |
83
+ | 0.1569 | 1.6975 | 1100 | 0.2718 | 0.2912 | 0.0658 |
84
+ | 0.1185 | 1.8519 | 1200 | 0.2647 | 0.3139 | 0.0672 |
85
+ | 0.1101 | 2.0062 | 1300 | 0.2476 | 0.2659 | 0.0576 |
86
+ | 0.1296 | 2.1605 | 1400 | 0.2493 | 0.2704 | 0.0590 |
87
+ | 0.0829 | 2.3148 | 1500 | 0.2299 | 0.2614 | 0.0576 |
88
+ | 0.0881 | 2.4691 | 1600 | 0.2434 | 0.2670 | 0.0601 |
89
+ | 0.125 | 2.6235 | 1700 | 0.2318 | 0.2745 | 0.0570 |
90
+ | 0.1227 | 2.7778 | 1800 | 0.2245 | 0.2527 | 0.0542 |
91
+ | 0.1128 | 2.9321 | 1900 | 0.2293 | 0.2600 | 0.0562 |
92
+ | 0.079 | 3.0864 | 2000 | 0.2227 | 0.2511 | 0.0530 |
93
+ | 0.0906 | 3.2407 | 2100 | 0.2289 | 0.2331 | 0.0515 |
94
+ | 0.09 | 3.3951 | 2200 | 0.2196 | 0.2486 | 0.0528 |
95
+ | 0.1113 | 3.5494 | 2300 | 0.2230 | 0.2392 | 0.0539 |
96
+ | 0.0867 | 3.7037 | 2400 | 0.2155 | 0.2237 | 0.0492 |
97
+ | 0.097 | 3.8580 | 2500 | 0.2120 | 0.2261 | 0.0493 |
98
+ | 0.0659 | 4.0123 | 2600 | 0.2073 | 0.2216 | 0.0493 |
99
+ | 0.0796 | 4.1667 | 2700 | 0.2135 | 0.2181 | 0.0468 |
100
+ | 0.0601 | 4.3210 | 2800 | 0.2034 | 0.2190 | 0.0480 |
101
+ | 0.0644 | 4.4753 | 2900 | 0.2115 | 0.2092 | 0.0456 |
102
+ | 0.0772 | 4.6296 | 3000 | 0.1986 | 0.2127 | 0.0461 |
103
+ | 0.066 | 4.7840 | 3100 | 0.1985 | 0.2027 | 0.0447 |
104
+ | 0.0633 | 4.9383 | 3200 | 0.2094 | 0.2115 | 0.0456 |
105
+ | 0.0579 | 5.0926 | 3300 | 0.2058 | 0.2169 | 0.0460 |
106
+ | 0.0709 | 5.2469 | 3400 | 0.1976 | 0.1973 | 0.0428 |
107
+ | 0.0405 | 5.4012 | 3500 | 0.2001 | 0.1965 | 0.0424 |
108
+ | 0.0515 | 5.5556 | 3600 | 0.2035 | 0.2014 | 0.0438 |
109
+ | 0.0785 | 5.7099 | 3700 | 0.1864 | 0.1928 | 0.0412 |
110
+ | 0.0514 | 5.8642 | 3800 | 0.1850 | 0.1858 | 0.0397 |
111
+ | 0.0355 | 6.0185 | 3900 | 0.1903 | 0.1837 | 0.0399 |
112
+ | 0.0621 | 6.1728 | 4000 | 0.1881 | 0.1798 | 0.0392 |
113
+ | 0.0525 | 6.3272 | 4100 | 0.1852 | 0.1881 | 0.0403 |
114
+ | 0.0497 | 6.4815 | 4200 | 0.1855 | 0.1770 | 0.0387 |
115
+ | 0.0362 | 6.6358 | 4300 | 0.1945 | 0.1899 | 0.0400 |
116
+ | 0.0399 | 6.7901 | 4400 | 0.1803 | 0.1742 | 0.0378 |
117
+ | 0.0483 | 6.9444 | 4500 | 0.1777 | 0.1723 | 0.0372 |
118
+ | 0.0293 | 7.0988 | 4600 | 0.1903 | 0.1697 | 0.0369 |
119
+ | 0.0635 | 7.2531 | 4700 | 0.1787 | 0.1726 | 0.0365 |
120
+ | 0.0199 | 7.4074 | 4800 | 0.1722 | 0.1682 | 0.0362 |
121
+ | 0.0393 | 7.5617 | 4900 | 0.1918 | 0.1641 | 0.0357 |
122
+ | 0.0357 | 7.7160 | 5000 | 0.1801 | 0.1649 | 0.0358 |
123
+ | 0.0444 | 7.8704 | 5100 | 0.1775 | 0.1626 | 0.0353 |
124
+ | 0.0266 | 8.0247 | 5200 | 0.1693 | 0.1592 | 0.0341 |
125
+ | 0.0381 | 8.1790 | 5300 | 0.1794 | 0.1571 | 0.0341 |
126
+ | 0.0308 | 8.3333 | 5400 | 0.1685 | 0.1551 | 0.0333 |
127
+ | 0.0304 | 8.4877 | 5500 | 0.1752 | 0.1519 | 0.0330 |
128
+ | 0.0316 | 8.6420 | 5600 | 0.1752 | 0.1507 | 0.0326 |
129
+ | 0.0377 | 8.7963 | 5700 | 0.1671 | 0.1523 | 0.0328 |
130
+ | 0.0588 | 8.9506 | 5800 | 0.1725 | 0.1550 | 0.0335 |
131
+ | 0.0487 | 9.1049 | 5900 | 0.1774 | 0.1531 | 0.0332 |
132
+ | 0.0169 | 9.2593 | 6000 | 0.1709 | 0.1470 | 0.0318 |
133
+ | 0.0274 | 9.4136 | 6100 | 0.1778 | 0.1468 | 0.0318 |
134
+ | 0.023 | 9.5679 | 6200 | 0.1718 | 0.1482 | 0.0322 |
135
+ | 0.0274 | 9.7222 | 6300 | 0.1700 | 0.1451 | 0.0315 |
136
+ | 0.0349 | 9.8765 | 6400 | 0.1686 | 0.1443 | 0.0313 |
137
+
138
+
139
+ ### Framework versions
140
+
141
+ - Transformers 4.42.0.dev0
142
+ - Pytorch 2.3.1+cu121
143
+ - Datasets 2.19.2
144
+ - Tokenizers 0.19.1