bagwai commited on
Commit
ecda2a0
1 Parent(s): adc4f71

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +15 -15
README.md CHANGED
@@ -94,12 +94,12 @@ Use the code below to get started with the model.
94
  from transformers import AutoModelForSequenceClassification, AutoTokenizer
95
 
96
  ### Load the model and tokenizer
97
- **model** = AutoModelForSequenceClassification.from_pretrained("bagwai/fine-tuned-gemma-7b-hausa")
98
- **tokenizer** = AutoTokenizer.from_pretrained("bagwai/fine-tuned-gemma-7b-hausa")
99
 
100
  ### Example usage
101
- **inputs** = tokenizer("Ina son wannan littafin", return_tensors="pt")
102
- **outputs** = model(**inputs)
103
 
104
 
105
  ## Training Details
@@ -120,11 +120,11 @@ Preprocessing: Hausa stopwords were removed using a custom stopword list (hau_st
120
  #### Training Hyperparameters
121
 
122
  - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
123
- **Epochs:** 5
124
- **Learning Rate:** 2e-4
125
- **Batch Size:** 8
126
- **Optimizer:** AdamW
127
- **LoRA Rank:** 64
128
 
129
  ## Evaluation
130
 
@@ -160,13 +160,13 @@ Carbon emissions can be estimated using the [Machine Learning Impact calculator]
160
 
161
  ### Model Architecture and Objective
162
 
163
- **Model Type:** Gemma 7B (LLM)
164
- **Objective:** Fine-tuned for sentiment analysis in the Hausa language.
165
 
166
  ### Compute Infrastructure
167
 
168
- **Hardware:** Kaggle NVIDIA P100 GPUs
169
- **Software:** PyTorch, Hugging Face Transformers, LoRA (Low-Rank Adaptation)
170
 
171
 
172
  ## Citation [optional]
@@ -196,5 +196,5 @@ Mubarak Daha Isa
196
 
197
  ## Model Card Contact
198
 
199
- **mubarakdaha8@gmail.com**
200
- **2023000675.mubarak@pg.sharda.ac.in**
 
94
  from transformers import AutoModelForSequenceClassification, AutoTokenizer
95
 
96
  ### Load the model and tokenizer
97
+ - **model** = AutoModelForSequenceClassification.from_pretrained("bagwai/fine-tuned-gemma-7b-hausa")
98
+ - **tokenizer** = AutoTokenizer.from_pretrained("bagwai/fine-tuned-gemma-7b-hausa")
99
 
100
  ### Example usage
101
+ - **inputs** = tokenizer("Ina son wannan littafin", return_tensors="pt")
102
+ - **outputs** = model(**inputs)
103
 
104
 
105
  ## Training Details
 
120
  #### Training Hyperparameters
121
 
122
  - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
123
+ - **Epochs:** 5
124
+ - **Learning Rate:** 2e-4
125
+ - **Batch Size:** 8
126
+ - **Optimizer:** AdamW
127
+ - **LoRA Rank:** 64
128
 
129
  ## Evaluation
130
 
 
160
 
161
  ### Model Architecture and Objective
162
 
163
+ - **Model Type:** Gemma 7B (LLM)
164
+ - **Objective:** Fine-tuned for sentiment analysis in the Hausa language.
165
 
166
  ### Compute Infrastructure
167
 
168
+ - **Hardware:** Kaggle NVIDIA P100 GPUs
169
+ - **Software:** PyTorch, Hugging Face Transformers, LoRA (Low-Rank Adaptation)
170
 
171
 
172
  ## Citation [optional]
 
196
 
197
  ## Model Card Contact
198
 
199
+ - **mubarakdaha8@gmail.com**
200
+ - **2023000675.mubarak@pg.sharda.ac.in**