Create handler.py
Browse files- handler.py +23 -0
handler.py
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from typing import Dict, List, Any
|
3 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
4 |
+
from transformers.generation.utils import GenerationConfig
|
5 |
+
|
6 |
+
# get dtype
|
7 |
+
dtype = torch.bfloat16 if torch.cuda.get_device_capability()[0] == 8 else torch.float16
|
8 |
+
|
9 |
+
class EndpointHandler:
|
10 |
+
def __init__(self, path=""):
|
11 |
+
# load the model
|
12 |
+
self.model = AutoModelForCausalLM.from_pretrained(path, device_map="auto", torch_dtype=dtype, trust_remote_code=True)
|
13 |
+
self.model.generation_config = GenerationConfig.from_pretrained(path)
|
14 |
+
self.tokenizer = AutoTokenizer.from_pretrained(path, use_fast=False, trust_remote_code=True)
|
15 |
+
|
16 |
+
def __call__(self, data: Any) -> List[List[Dict[str, float]]]:
|
17 |
+
inputs = data.pop("inputs", data)
|
18 |
+
# ignoring parameters! Default to configs in generation_config.json.
|
19 |
+
messages = [{"role": "user", "content": inputs}]
|
20 |
+
response = self.model.chat(self.tokenizer, messages)
|
21 |
+
if torch.backends.mps.is_available():
|
22 |
+
torch.mps.empty_cache()
|
23 |
+
return [{'generated_text': response}]
|