Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
datasets:
|
4 |
+
- Dahoas/full-hh-rlhf
|
5 |
+
base_model:
|
6 |
+
- google/gemma-7b
|
7 |
+
---
|
8 |
+
# Model Card for MA-RLHF
|
9 |
+
<a href="https://iclr.cc/Conferences/2024" target="_blank">
|
10 |
+
<img alt="ICLR 2025" src="https://img.shields.io/badge/Proceedings-ICLR2025-red" />
|
11 |
+
</a>
|
12 |
+
<a href="https://github.com/ernie-research/MA-RLHF" target="_blank">
|
13 |
+
<img alt="Github" src="https://img.shields.io/badge/Github-MA_RLHF-green" />
|
14 |
+
</a>
|
15 |
+
|
16 |
+
This repository contains the official checkpoint for [Reinforcement Learning From Human Feedback with Macro Actions (MA-RLHF)](https://arxiv.org/pdf/2410.02743).
|
17 |
+
|
18 |
+
## Model Description
|
19 |
+
|
20 |
+
MA-RLHF is a novel framework that integrates macro actions into conventional RLHF. The macro actions are sequences of tokens or higher-level language constructs, with can be computed through different defined termination conditions, like n-gram based, perplexity-based, or parsing-based termination conditions. By introducing macro actions into RLHF, we reduce the number of decision points and shorten decision trajectories, alleviating the credit assignment problem caused by long temporal distances.
|
21 |
+
|
22 |
+
|
23 |
+
|Model|Checkpoint|Base Model|Dataset|
|
24 |
+
|-----|----------|-|-|
|
25 |
+
|TLDR-Gemma-2B-MA-PPO-Fixed5|🤗 [HF Link](https://huggingface.co/baidu/TLDR-Gemma-2B-MA-PPO-Fixed5)|[google/gemma-2b](https://huggingface.co/google/gemma-2b)|[openai/summarize_from_feedback](https://huggingface.co/datasets/openai/summarize_from_feedback)
|
26 |
+
|TLDR-Gemma-7B-MA-PPO-Fixed5|🤗 [HF Link](https://huggingface.co/baidu/TLDR-Gemma-7B-MA-PPO-Fixed5)|[google/gemma-7b](https://huggingface.co/google/gemma-7b)|[openai/summarize_from_feedback](https://huggingface.co/datasets/openai/summarize_from_feedback)
|
27 |
+
|TLDR-Gemma-2-27B-MA-PPO-Fixed5|🤗 [HF Link](https://huggingface.co/baidu/TLDR-Gemma-2-27B-MA-PPO-Fixed5)|[google/gemma-2-27b](https://huggingface.co/google/gemma-2-27b)|[openai/summarize_from_feedback](https://huggingface.co/datasets/openai/summarize_from_feedback)
|
28 |
+
|HH-RLHF-Gemma-2B-MA-PPO-Fixed5|🤗 [HF Link](https://huggingface.co/baidu/HH-RLHF-Gemma-2B-MA-PPO-Fixed5) |[google/gemma-2b](https://huggingface.co/google/gemma-2b)|[Dahoas/full-hh-rlhf](https://huggingface.co/datasets/Dahoas/full-hh-rlhf)
|
29 |
+
|HH-RLHF-Gemma-7B-MA-PPO-Fixed5|🤗 [HF Link](https://huggingface.co/baidu/HH-RLHF-Gemma-7B-MA-PPO-Fixed5) |[google/gemma-7b](https://huggingface.co/google/gemma-7b)|[Dahoas/full-hh-rlhf](https://huggingface.co/datasets/Dahoas/full-hh-rlhf)
|
30 |
+
|APPS-Gemma-2B-MA-PPO-Fixed10|🤗 [HF Link](https://huggingface.co/baidu/APPS-Gemma-2B-MA-PPO-Fixed10) |[google/codegemma-2b](https://huggingface.co/google/codegemma-2b)|[codeparrot/apps](https://huggingface.co/datasets/codeparrot/apps)
|
31 |
+
|APPS-Gemma-7B-MA-PPO-Fixed10|🤗 [HF Link](https://huggingface.co/baidu/APPS-Gemma-7B-MA-PPO-Fixed10) |[google/codegemma-7b-it](https://huggingface.co/google/codegemma-7b-it)|[codeparrot/apps](https://huggingface.co/datasets/codeparrot/apps)
|
32 |
+
|
33 |
+
|
34 |
+
## Model Usage
|
35 |
+
|
36 |
+
```python
|
37 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
38 |
+
|
39 |
+
model_path = "baidu/HH-RLHF-Gemma-7B-MA-PPO-Fixed5"
|
40 |
+
|
41 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
42 |
+
|
43 |
+
model = AutoModelForCausalLM.from_pretrained(model_path, device_map="auto", torch_dtype='auto', trust_remote_code=True)
|
44 |
+
|
45 |
+
input_text = """
|
46 |
+
Human: Would you be able to explain the differences between the Spanish
|
47 |
+
and Italian language? Assistant: Of course. Can you tell me more about
|
48 |
+
the specific areas where you’re interested in knowing more? Human: I’m
|
49 |
+
thinking between the Spanish spoken in Mexico and Italian spoken in Italy.
|
50 |
+
Assistant:
|
51 |
+
"""
|
52 |
+
|
53 |
+
input_ids = tokenizer(input_text, return_tensors='pt').to(model.device)
|
54 |
+
output_ids = model.generate(**input_ids, max_new_tokens=20)
|
55 |
+
response = tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
56 |
+
|
57 |
+
print(response)
|
58 |
+
```
|
59 |
+
|
60 |
+
## Citation
|
61 |
+
|
62 |
+
```
|
63 |
+
@inproceedings{
|
64 |
+
chai2025marlhf,
|
65 |
+
title={{MA}-{RLHF}: Reinforcement Learning from Human Feedback with Macro Actions},
|
66 |
+
author={Yekun Chai and Haoran Sun and Huang Fang and Shuohuan Wang and Yu Sun and Hua Wu},
|
67 |
+
booktitle={The Thirteenth International Conference on Learning Representations},
|
68 |
+
year={2025},
|
69 |
+
url={https://openreview.net/forum?id=WWXjMYZxfH}
|
70 |
+
}
|
71 |
+
```
|